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Triple-Regge coupling and the multiperipheral or Mueller-Regge model*

Dale R. Snider
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201

(Received 26 June 1974)

In the pole approximation the Mueller-Regge and multiperipheral models have been shown to be
equivalent. The couplings in the two forms are related by a transformation by a particular orthogonal
matrix. This same matrix and the above couplings also yield the triple-Regge coupling constants.

1
sv"(s) =

27ri
dJ — „J.

Then in PST

where ( and E are N xN matrices and D is an N-
dimensional vector. (We assume just one kind of
incident particle to reduce notation. ) F(J) is diag-
onal and has the form

Recently it has been realized by a number of
workers that the multiperipheral model (MPM) and
the Mueller-Regge model (MRM) are equivalent. "
This is demonstrated in the pole approximation
most economically in Pinsky, Snider, and Thomas'
(PST) whose notation we will use. They found that
there is an orthogonal transformation between the
Mueller-Regge (central region) couplings and the
multiperipheral couplings. This orthogonal ma-
trix also relates the inclusive poles, the exclusive
poles, and the coupling constants. '

Here we will show that the triple-Regge cou-
plings' are also related to the multiperipheral cou-
plings by this orthogonal matrix. This relation
will be another constraint for anyone trying to con-
struct a realistic Mueller-Regge or multiperipher-
al model.

We are working in the approximation of a two-
component model, ' where the Pomeron is not in-
cluded in the set of exclusive trajectories (those
used in the production amplitudes), but is included
among the inclusive trajectories. Therefore we
will be able to find expressions for g, ,~ and g«, ,
i 4 P 0 j, but not for g», or g»~. The papers by
Abarbanel, Chew, Goldberger, and Saunders are
the analogous investigation for g»~.

Although if one started with a three-dimensional
MPM he would find an expression for g, ;& (t, t, 0),
we will consider only the one-dimensional model
and obtain an expression for a t integral involving
this triple-Regge coupling constant.

Before proceeding we review the notation of
PST' for an N-channel description of nature. We
work with the Mellin-transformed cross sections
since everything is diagonal in J:

J —l,
1

J-l,

P„(J)= & 4(J)[I'4(Z)]"6, (4)

where I", 4, and 6 are analogous to G, I', and D
in every way. PST show that there exists an or-
thogonal N xN matrix, S, found by "solving" either
model, which relates the two models by

I' =SrGS, d, =S D, and 4=S (I" ' —G) 'S; (5)

furthermore, S is J-independent. This establishes
the notation; now we want to look in the triple-
Regge region.

The triple-Regge cross section is given by

We have neglected g,», i 0 j terms; they could be
included if the i j channel were retained in the
original multiperipheral model. To correspond
with the previous notation i should vary over the
N MPM channels and v over the N MRM channels.
The elements of the vector 6 are just the P's above
evaluated at t=0, i.e. , d„=P„(0). To compare with
a one-dimensional model we must integrate over
t. We approximate the integration range by -~
&t(0 and neglect the t dependence of o.&(t). This
yields

where l, =2n, -1 are the exclusive poles. G is the
matrix of "coupling constants. " The analogous
Laplace transform of the fully integrated n-particle
inclusive cross section from the MRM is called
P„(J). (We exclude a single particle from each
fragmentation region for ease of counting so it is
like pp-nw's +anything integrated. ) It is
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Since the missing mass can contain any number
of particles (greater than 1—elastic scattering is
excluded) f(j,J) in the notation of PST is

We make a change of variables by defining Y and y
by

Y=ln — and y =ln

to obtain

2 ~ g g (7 y)(2+ ~ 1) y+p
A do'

S0

We introduce the double Laplace transform

f(j, J)= dye '" dye ~'" 'e(I'-y)
0 0

xe e"—(y y) .y dQ

dy

f(~, J) = g D'Z(J)[GZ(j)] "D
n=1

=D F(J)G[F(j )
' —G] 'D

=D Ii(J)GS4( j)d, .
These two expressions agree if R„=d,. (GS)i „
=d, (Sri"),„. Thus we have

dt p, '(f) I (, (&) I'g„.„(f)=d,. (GS),„

=d, (S I'), „, (14)

which is the desired result.
If we further assume g«„(t) has the same t de-

pendence as P, '(t), then by comparing the expres-
sions for the elastic cross section in both forms
we get

giiu( ) i giiU( ) dt p 4($) I( (t) I262 =p2(0) 16',
Notice that f is defined in such a way that f(J, J)
is just the usual Laplace transform of the inte-
grated triple-Begge cross section. Then

Hence

= —
2 (GS) ~ .

0
(15)

1 If(j, J) =QB;„6„-
( )4 gV ns 2 nv

Q 2

g. ..(o) =(GS),.„,' . . (16)
We note that j is just the Mellin conjugate variable
of the missing mass squared, M2, or the Laplace
conjugate of the corresponding rapidity interval,
In(M'/s, ), while J is the Laplace conjugate of the
rapidity gap between the leading particle and the
missing mass, In(e/M').

Here we have assumed that at least for some tra-
jectories the bootstrap problem is solved, so that
among the inclusive (output) trajectories is one
corresponding to ith exclusive (input) singularity;
5, is the external coupling for that trajectory.
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