PHYSICAL REVIEW D

VOLUME 10, NUMBER 9

1 NOVEMBER 1974

Triple-Regge coupling and the multiperipheral or Mueller-Regge model*

Dale R. Snider
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201
(Received 26 June 1974)

In the pole approximation the Mueller-Regge and multiperipheral models have been shown to be
equivalent. The couplings in the two forms are related by a transformation by a particular orthogonal
matrix. This same matrix and the above couplings also yield the triple-Regge coupling constants.

Recently it has been realized by a number of
workers that the multiperipheral model (MPM) and
the Mueller-Regge model (MRM) are equivalent.'*?
This is demonstrated in the pole approximation
most economically in Pinsky, Snider, and Thomas®
(PST) whose notation we will use. They found that
there is an orthogonal transformation between the
Mueller-Regge (central region) couplings and the
multiperipheral couplings. This orthogonal ma-
trix also relates the inclusive poles, the exclusive
poles, and the coupling constants.®

Here we will show that the triple-Regge cou -
plings* are also related to the multiperipheral cou-
plings by this orthogonal matrix. This relation
will be another constraint for anyone trying to con-
struct a realistic Mueller-Regge or multiperipher-
al model.

We are working in the approximation of a two-
component model,® where the Pomeron is not in-
cluded in the set of exclusive trajectories (those
used in the production amplitudes), but is included
among the inclusive trajectories. Therefore we
will be able to find expressions for g;;, and g;,;,
i#P #3j, but not for gpp; Or gppp. The papers by
Abarbanel, Chew, Goldberger, and Saunders® are
the analogous investigation for gppp.

Although if one started with a three-dimensional
MPM he would find an expression for g;;, (¢, ¢, 0),
we will consider only the one-dimensional model
and obtain an expression for a ¢ integral involving
this triple-Regge coupling constant.

Before proceeding we review the notation of
PST? for an N-channel description of nature. We
work with the Mellin-transformed cross sections
since everything is diagonal in J:
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Then in PST
Q,(J)=DTF(N[GF(N]"D, 2)

where G and F are N XN matrices and D is an N-
dimensional vector. (We assume just one kind of
incident particle to reduce notation.) F(J) is diag-
onal and has the form
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F(J) = A 3)

where 7,=2a, -1 are the exclusive poles. G is the
matrix of “coupling constants.” The analogous
Laplace transform of the fully integrated n-particle
inclusive cross section from the MRM is called
P,(J). (We exclude a single particle from each
fragmentation region for ease of counting so it is
like pp =nn’s +anything integrated.) It is

P,(J)=ATe()[T2(N]" A, )

where I', &, and A are analogous to G, F, and D
in every way. PST show that there exists an or-
thogonal N XN matrix, S, found by “solving” either
model, which relates the two models by

r=STGS, A=S"D, and =ST(F'-G)7'S; (5)

furthermore, Sis J-independent. This establishes
the notation; now we want to look in the triple-
Regge region.

The triple-Regge cross section is given by
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We have neglected g,;,, ¢+#j terms; they could be
included if the {j channel were retained in the
original multiperipheral model. To correspond
with the previous notation ¢ should vary over the

N MPM channels and v over the N MRM channels.
The elements of the vector A are just the p’s above
evaluated at ¢=0, i.e., 6,=8,(0). To compare with
a one-dimensional model we must integrate over

t. We approximate the integration range by —«

<t <0 and neglect the ¢ dependence of a,(¢). This
yields
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do 1% s 20y M2 oy

de?;R‘”é”ﬁP‘) <T0> : &
where

Buw = 1617/o dt B, %(t)] &, (1) P83, (2) - @)

We make a change of variables by defining Y and y
by

Y=ln<§;) and y-—-ln(—t—/?) 9)

to obtain

| _Q_e ZRI 5, L Y-y)2a;-1) e,

sz dy
(10)
We introduce the double Laplace transform
f(j,J)=f dy e'j”f dye~' =9 (v —y)
] 0
do
x'soeyd—y(y,Y). (11)

Notice that f is defined in such a way that f(J, J)
is just the usual Laplace transform of the infe-
grated triple-Regge cross section. Then

. 1 1
f(],J)-ZR,.vch_(Za“l) e 12
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We note that j is just the Mellin conjugate variable
of the missing mass squared, M2, or the Laplace
conjugate of the corresponding rapidity interval,
In(M%/s,), while J is the Laplace conjugate of the
rapidity gap between the leading particle and the
missing mass, In(s/M?).

Since the missing mass can contain any number
of particles (greater than 1—elastic scattering is
excluded) f(j,J) in the notation of PST is

G, D=3 DT GF)]"D

=D"F(J)G[ F(j)™ - G]™'D

=DTF(J)GS®(j)A. (13)
These two expressions agree if R;, =d;(GS), ,
=d;(8"T');,. Thus we have

0
1—36",-,]_” at B, *(t)1 &, (t) °g1,,(t) = 4, (GS)y,

=d,(S'T),,, (14)

which is the desired result.

If we further assume g;,,(¢) has the same ¢ de-
pendence as B,%(¢), then by comparing the expres-
sions for the elastic cross section in both forms
we get

p(0)d; 2 g4y, (0)( 1 0 ]
£ ésg i =§¢iz(f)))<16ﬂso>[_m dat B *(t) &, (1) |
d
=52 (. (15)
Hence
5.2
gm(o)=(cs),yﬁ02. (16)

Here we have assumed that at least for some tra-
jectories the bootstrap problem is solved, so that
among the inclusive (output) trajectories is one
corresponding to ith exclusive (input) singularity;
0, is the external coupling for that trajectory.
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