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Possible alternatives to the usual (3*,3) @ (3, 3~) form for the symmetry breaking of chiral
SU(3) SU(3) are discussed. The width for the decay X gnat is calculated in the pure
(6*,6) @ (6, 6~) breaking model, and the result is compared with (3*,3) @(3,3~) and (8, 8) models. The
symmetry-breaking parameters are shown to be restricted to certain allowed regions for both
(6*,6) y (6, 6*) and (8, 8) representations on the basis of positivity of spectral functions. These
restrictions are shown to be particularly severe if the additional assumption f~ & f„ is imposed. Based
on X qmm and present mw scattering data we conclude that a symmetry breaking which is reducible
into (3*,3) g (3, 3~) and (8, 8) is favored and we estimate the relative amounts of the two types of
breaking.

I. INTRODUCTION

Success of SU(3)8 SU(3) current algebra has
prompted a study of the nature of the breaking of
chiral symmetry. The most popular model for
symmetry breaking has been the (3*,3)8 (3, 3")
model, which was investigated by Qell-Mann,
Qakes, and Renner'„and by Qlashow and %ein-
berg. ' In this model the symmetry-breaking
Hamiltonian„Hs» transforms like the quark mass
terms in a quark model of current algebra. The
symmetry is realized in the Goldstone manner by
the vacuum being approximately SU(3)-invariant,
to ensure an SU(3) spectrum of states, and the
Hamiltonian being approximately SU(3)8SU(3)-
invariant to ensure smallness of the pion mass in
relation to other pseudoscalar mesons. This
latter property is specific to the (3*,3)@(3,3*)-
breaking model, . Thus, if we write the total Ham-
iltonian density as

where Ho is SU(3) && SU(3)-invariant, and Hs~ is the
symmetry-breaking term, then in the (3*,3) model
we ha.ve

where Uo and U, are the unitary singlet and the
Z=- 0, V= 0 member of an octet. Smallness of the
pion mass requires a(==a /e )= —&2 yieldin~ ap-
proximate SU(2)8SU(2) invariance. Hs„can be de-
composed into an SU(2)8SU(2)-invariant part, H„
and a part that breaks SU(2)8SU(2) invariance,
Hag e

Hg)8 0$ i .Ail p

H, = —,',.-,(I - v~ a)(U„- &2U,),
H~ = sco(a+ V2 )(/2UO+ Us) .

The pattern of symmetry breaking is thus neces-
sarily

0, »H, »H, .
Tests of such a model of symmetry breaking

involve the verification of Eq. (1.4). This is ex-
perimentally feasible since the o term involved in
current-algebra, calculation of processes involving
two pi.ons is proportional to H„'

H, =ARIZ,",s&a„"],

o, = 1, 2, or 3 (no summation). (1.5)

Expectation values of H, have been investigated
in three processes in recent years: (a) the nucle-
on o term extracted from m+ N scattering data,
(b) the expectation value (X~H, ~ q) in the decay
X-qwm, and (c) the o term in m+ v-v+ v scatter-
ing. In all the three processes a serious dis-
crepancy ex1sts between predictions of the (3* 3)
model and experiment. In process (a) the experi-
mental values fall in the range' '

o-„"P' = 70~ 30 Mew.

Theoretically, if we assume H, is -10/o of H. »
and H, is of the order of SU(3) breaking, then

'"' '" = 10-15 Me&.NN

In process (b) the experimental width which is
proportional to the square of the 0 term' is

while the theoretical range' is

It has been emphasized in recent years that the
w-r o term xs not purely X =- 0, as required by the
(3~, 3) model, '0 but that a sizable I = 2 admixtu. re
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exists.
It thus becomes natural to ask if the symmetry-

breaking Hamiltonian could transform according
to some other irreducible representation. Among
the simplest viable alternatives" are the (8, 8)-
and the (6*,6) @ (6, 6*)-breaking models.

The nucleon v term has been calculated with
both pure (8, 8) (Ref. 12) and pure (6*,6)@ (6, 6*)
symmetry breaking, "'"and a larger 0» can be
obtained in either model. Predictions based on a
pure (6*,6) model, however, do not seem to agree
with a terms obtained from KN and mZ experi-
ments. " The mm scattering process becomes
worse in either pure (8, 8) or in pure (6, 6")6r (6",6)
because of the sign of the contribution.

For the process X-gem a symmetry breaking
which transforms as (8, 8) yields a very reason-
able value. " We calculate this process for (6*,6)
6r (6, 6*) symmetry breaking and find a value larger
than that found in the (3*,3) model but still much
smaller than the experimental number.

The more difficult problem of Hamiltonian den-
sities with mixed representations seems intract-
able in general because of several new parameters
that enter the theory. Even in the meson sector,
and assuming octet dominance, four new param-
eters enter for every added representation (the
vacuum expectation values and strengths of the
singlet and octet parts). If we assume, however,
that the mixing satisfies an additivity property

II. THE (6,6*)(p(6*,6)-BREAKING MODEL

[F., U, ]= 0,

[Fn~ Us] = ifnsyUy i

[F Ue]= —»enrUr ~

[Fn~ Ve]= 0

[F„,V, ] = ifn, y Vy i

[F„,V, ]= -iF,„,V„
[F5 U ] i (5)r/2 V

[F'„,Us) = —i Q)' 5ns Vo —dns y Vy

Dnse Ve i

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2. le)

(2.1f)

(2 lg)

(2.1h)

2[F„,Ue] =
410 Dnse Vs —iEner Vr ~

[F'„, Ve] = i (~)'"U„,

(2.1i)

(2.1j)

IF'n, Vs]=i(y'"6.sU, + 6d„syUy

2
+

~ D~seUe, (2.1k)

The (6, 6*)@ (6*,6) model has been investigated
by Auvil' as a possible alternative to (3*,3)

(3, 3*) model. The commutation rules of the
scalar and pseudoscalar densities with the charges
are given by

H„= nH '" " + (1 —er)H', (1.6) [F'„, Ve ] ~10 D n s e U s + i F.ne r Ur ~ (2.11)

where H' ' is the (normalized) contribution from
(3*,3) (3, 3*) breaking andH' is the contribution
from (6*,6)$ (6, 6*) or (8, 8), then it makes sense
to consider the two contributions separately. The
expectation values of the 0 terms are the weighted
sum of the expectation values of the a terms cal-
culated in models with H» belonging to the differ-
ent irreducible representations of the symmetry.

In Sec. II we define our notation and discuss the
(6*,6)-breaking model. The results of Sec. II are
then used in Sec. III to evaluate the X- qm7t decay
rate. This rate is compared with the results for
the rate obtained from other breaking models.

Nontrivial restrictions on the parameters of the
symmetry breaking have been obtained for the
(3*,3) model from the requirement of positivity
of the spectral functions. " In Sec. IV we calculate
the similar restrictions for the cases of pure
(6~, 6)(EI (6, 6*) or pure (8, 8) symmetry breaking.
Surprisingly, if we also add the assumption of one-
meson dominance and make the reasonable require-
ment that fr() f„ the parameters are severely
restricted in all models.

Our conclusions are contained in Sec. V.

Tr(S"S ) = 106"S, Tr(S"T ) = 0,

Tr(T'T') = 6er.
The algebra obeyed by the matrices is

[S„,Ss] = 2if sySy,

(2.2)

(2.3a)

(Sn, Ss}=~5ns+~dnsySy + 2D„seTe, (2.3b)

kSniTe}= Ener'Tr+ 5 DnseSs t

[Sn Te] = -iFenr Tr.

(2.3c)

(2.3d)

where E„is the vector charge; E5~ is the axial
charge; U„U~, U are the scalar densities which
transform as 1, 8, 27 representations of SU(3),
respectively; and Vp Vzp Ve are the correspond-
ing pseudoscalar densities. Note that o. , P, y
= 1, . . . , 8 while 6, I" = 1, . . . , 27. The structure
constants are defined in terms of the algebra of
6&&6 matrices that decomposed into singlet &,
octet {S"},and 27-piet matrices (T }. The ortho-
normality relations chosen for these matrices are

Tr(b, b, ) = 6, Tr(ES")= Tr(5T ) = 0,
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The symbols f„a«and d„[]«are the usual SU(3)
structure constants, while D~B~, +e~r, and &~er
can be evaluated from the explicit representation
for the matrices given in the Appendix.

For the symmetry-breaking Hamiltonian we
take

H = C6 DUO+ C6 sUs + C6 27U27 (2.4)

where U' and U27 are the I=0, F= 0 members of
the octet and 27-piet representations, respectively.

Using the commutation relations above it is easy
to write the 0 commutators:

[F",[F8,H]] = C„f '«f« "U + C, „F""F s U

[F,",[F~,H]] =C, (f5'~U +~ d" ~Uq+ D U")

(2.5)

+ C 56"SU8 + 7 d««(5P~'e«8U + 7d«~8U + D«»U + DB"e Des "U +EesrU1 1 1
68 Y v'10 ' 010 v'10

+C D'7 «( )5~~' 6«'U + ~ds«]U + D«»U +Em'" Des"U +Ee8rU1 1 1
6, 27 /10 0 7 ) q10 r v'10 X r

(2.6)

The contributions of the a terms to ~m scattering
and mN scattering have been considered before. "'"
We shall work out the consequences for X-pwm
decay in the next section.

III. THE DECAY X~qmw

In& =pin. )+sin. &, (3.5)
I» =el n.&

- pl n.&,
l

with P2+q2 = 1.
In terms of our decomposition (2.10) the masses

of the pseudoscalar mesons are

The width for X decay" is given in terms of the
slope parameter g as

I'(x- nm«[) = 3(1.00+0.24g+ 0.27g')
I
M I' (3.1)

in units of keV. The matrix element is

m, ' = C, ,[~+(-,')'"p] + C, , 5~p,

7

(3.6a)

(3.6b)

&Xq

f,' 1+2g ' (3.2)

7
(3.6c)

ox, =(nl[F'„[F'„H]]lx). (3.3)

For the purposes of calculating this decay we
will assume that the symmetry breaking should be
dominated by the octet term and set C6 27 0 in H.

The scalar density U, where 8 is the member of
the 27-piet transforms as I =2 and thus does not
contribute to o~„. The structure constants which
we need are given in the Appendix.

We evaluate (3.3) by parameterizing the matrix
elements of the scalar densities as

where o~„ is the matrix element of the o commuta-
tor (2.6):

1/2 1
m~8-~o'=co, s —.-, P+ ~- P'

~v6
(3.6d)

1/2
m „,' = p, '+ C, , u'+ o. + — P+ P'. (3.6e)

The term p, o' is added to (3.6c) so that the mass of
n„will not be zero in the limit of exact SU(3)
S SU(3) symmetry. We cannot determine the value
of p, o' but it is expected to be around 1 GeV. The
masses m ', m~', and m, ' satisfy the Gell-Mann-
Okubo mass formula, as they must since C6 27 has
been set equal to zero.

These equations (3.6), together with the equa-
tions from diagonalizing the mass matrix

(iaaf, l U» I ~&) = ~' @.e, ,f„+~e„e„+pd„,
1

+ p'(e»e;, + 6;~|],,)46

2 2= 2 2m~ +m„=m„+rn„, ,

(m»' —m8')(me' —m„') =my, q,',

(3.7a)

(3.7b)

+r'D )a (3.4)

where j, k equal 0, 1, . . . , 8 and i equals 0 (singlet),
1, . . . , 8 (octet), or 1, . . . , 27 (27-piet). The
physical g and X states are defined as

give us six equations on the eight unknowns C«,

We may get one more equation by considering
the divergence of the axial-vector current
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a„x& =f[z,", a]. (3.8)

The matrix element of this between the vacuum
and the one-pion state gives

(0 la„&~le) =m„'f „
1/2 'l

= c„— + c„(olv l s&.

(3.9)

This implies that the pion mass is zero if C«
= ——,

'v 5 C„, which, together with (3.6a), implies
a=0.

Finally an eighth equation may be found by using
soft-pion techniques and comparing 6p Up + f8 U8 (4 1)

commutation of two vector or two axial-vector
currents then the integral of the scalar spectral.
function is the vacuum expectation value of the o

commutators, (2.5) or (2.6). Let us call this
vacuum matrix element of (2.5) K„8, and the simi-
lar matrix element of (2.6) I „8 P. ositivity of the
spectral function then requires K 8 and I 8 to be
positive. This requirement puts nontrivial re-
strictions on the values of the symmetry-breaking
parameters.

The restrictions for the (3*,3) 6 (3, 3*)symmetry-
breaking model are well known. There the Ham-
iltonian is

»m(M. (e)l U IM. (Y)&
P ~p

with

lim(M, (P) I U. I M. (P' )&
P~p

(3.10a)

(3.10b)

and if we define

(U,),
(Uo)o

'

2
y = Se.-(U.).,

(4.2)

If we assume that (Ol Vr lM, ), I' = 3 can be neg-
lected compared with (Ol V~ lM,), y =3, where M,
is the member of the octet (pion), then (3.10a) and

(3.10b) give

(3.11)

we have

I» =y(l+ a+ b+ ab),

I =y(1- 2a —2b+ 4ab),

I« = y(1- a —b+3ab),

g44= 4 yab

(4.3a)

(4.3b)

(4.3c)

(4.3d)

Solving the eight equations gives

vr „=m„'(0.47+ 1.80 ',o').

If p p is 1 GeV' we obtain

I"(X-rivm) =(64-254) keV

(3.12)

(3.13)

Requiring these to be positive restricts a and b

to lie in the domains shown in Fig. 1.
If the symmetry breaking is purely (6, 6*)e (6+, 6)

then the restrictions are similar. In this case the
Hamiltonian is given by (2.4), and if we assume
C, » and (U»), are zero and define

for a range of the slope parameter g=0 to g= —0.2.
This can be compared with the result derived by

assuming (3, 3*)6 (3*,3) symmetry breaking':
C„b 7 (U, )0

5&5 c„' 5&5 (U.). '

(4.4)
I"(X'- pm') = (0.2 —0.8) keV, (3.14)

where again p.p' is taken to be 1 GeV' and we have
taken the case of no dilaton. "

The symmetry breaking (8, 8) gives a much more
reasonable value for the width, '

I'(X- q&m) = (1-5) MeV. (3.15)

A symmetry breaking which transforms as
(1, 8) or (8, 1) gives zero contribution to X- qss.
Thus, if we are to add an alternate symmetry
breaking to (3, 3*)8 (3*,3) which will give a rea-
sonable value for the width of X decay, it would
seem that it is required to transform as (8, 8).

IV. RESTRICTIONS DUE TO POSITIVITY
OF SPECTRAL FUNCTIONS

If we write a Lehmann-Kalldn spectral represen-
tation for the vacuum expectation value of the

then the matrix elements of the 0 commutators give

I» =y(1+ a+ b+ —", ab),

I« =y(1 —a —b +'+' ab),

(4.5a)

(4.5b)

(4.5c)

Z —&&& yzb1S6 (4.5d)

The structure functions D and E needed
to obtain these are listed in the Appendix.

The restrictions on the parameters a and b for
this case are shown in Fig. 2.

%'e can also work out the restrictions for the

(8, 8) symmetry-breaking model. Here there are
64 operators S", o., P = 1, .. . , 8. In terms of these
the Hamiltonian can be written as
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FIG. 1. The allowed values of the symmetry-breaking parameters a and b for the (3*,3){3, 3*) model. The cross-
hatched regions are the only allowed values if we require fz~f .

H(x) = S""(x)+ d, „~S"8(x).
2 8 2v'5

The S can be expanded as

with (S"),taken to be zero. In this case we
define

(4.6)

(4.7)

urates the relation then we may identify

1 2I,4= , f» m», -

&44= ,' f„'rn, ', -

(4.10a)

(4.10b)

(4.10c)

(4.10d)

1 Il
b

4 (S'),
2A' ~3 (5), '

y=- A(s)„3
4

and the independent I 8 and K 8 are

I» = y(1+ a+ b+ 3ab),

I44 =y(1 —-'a —,' b+ 'ab), -
I„=y(1—a —b+ab),

(4.8)

(4.9a)

(4.9b)

(4.9c)

where, for example, f, is defined by the matrix
element of the axial-vector current

(4.1 1)

f» )1 (4.12)

Now experimentally f»'/f, ' is greater than one.
The interesting thing is that, in the (6, 6*)8 (6*,6)
model where we use (4.10) in (4.5), requiring

(4.9d)K,4
= —'yab.

The restrictions on a and b are similar to those
shown in Fig. 2 for the (6, 6*)8(6",6) model

If we introduce a set of intermediate states in
the 0 commutator and assume that the one-meson
state, where the mesons belong to the octet, sat-

and using experimental values for mz and m, el-
iminates almost all of the allowed values of a and
b of Fig. 2. The only values of a and b consistent
with (4.12) are the narrow regions shown in Fig. 3.

The same thing happens in the (8, 8) model and
also in the (3*,3) model; requiring (4.12) restricts
a and b of (4.8) to lie in narrow bands similar to
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FIG. 2. The allowed values of the symmetry-breaking parameters a and b for the (6*,6)+ (6, 6*) model. The (8, 8)
model gives a similar graph.

or

(4.14)

is sufficient, when taken together with (4.10) and

positivity, to require

(4.15)

For example, (4.14) leads to the GMOR formula'

mg 1- 2a2 1

n.s~ 1+a (4.16)

those of Fig. 3. For the (3*,3) model the allowed
values of a and b are shown by the cross-hatched
areas in Fig. 1.

These restrictions may be stated in a different
way by not using the experimental values for the
masses. In any calculation involving only (6, 6*)
8 (6*,6) or (8, 8) symmetry breaking, any assump-
tion of SU(3) symmetry of a matrix element like,
e.g. ,

(4.13)

This, together with (4.5) and (4.10), is enough to
require (4.15). This is not true in the (3*,3)
6 (3, 3") model, however, since for that model
(4.16) gives

f»' 1 —2b

f,' 1+b' (4.17)

which does not necessarily require (4.15). This
difference in the models can easily be seen from
Fig. 1 and Fig. 3. Using the experimental values
for m» and m„ in (4.16) gives a= —0.89. This value
of a requires 5 =0 in Fig. 3, but all b between 9
and —1 are allowed in Fig. 1.

In most of the discussions in the recent litera-
ture the authors have been careful to set y'~ =-q'„

when using assumptions like (4.13) or (4.14), but
it is possible to find calculations where this was
not done. " We do not know, however, of any
cases where incorrect conclusions were reached
because of this mistake. It does not seem to have
been realized, however, that f» =f„ is in fact
required by positivity.

Finally we could plot f,'/f, ' on the same graph



3054 NILENDRA G. DEDESHPANDE ANDD DUANE A. DI CUS 10

kLLLLLL

XM'AMMA

The I = 0 andI = 2 mm scatterin g
, w hach is defined b

where w

FIG. 3 The allowed vvalues of a and b 'fi we require f The (8, 8) model h

e have required f
mo e has similar allow d

, to de

mo e h
'

owe regions.

V. CONCLUSIONS

H» = nH('*' " + (1 —n (5 l)

The expression for the Xe rate is now
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1
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2
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S, = &2(5„+5„)+ 5, + H. c. ,

S2 = &2i (512 + 523) + i 545 + H. c. ,

S, = 2(5„-5„)+5„-5„,
S 4

= W2(5,»+ 5«) + 5„+H. C. ,

S, = &2i (5,4+ 548) + i525+ H. c. ,

S6 = v 2(53, + 5,8) + 524+ H. c. ,

S7 = v 2i (535+ 556)+ i524+ H. C. 1

2 —1 4
8 ~g ( 11 22 33) ~g ( 44 55) ~g 566&

v'40 T1= &2i (512+ 523) —4i545+ H. c. ,

~40 T, = W2(512+ 5„)—45„+ H. c. ,

410T3 'Gay 533 2544 + 2655,

v 40 T, = v 2(5,4+ 5«) —45„+H. c. ,

440T 5iv 2(5,4+ 5«) —4i5„+ H. c. ,

1 40 T, = v 2(5„+5„)—4524 + H. c. ,

v'40T, = v 2i (5»+ 5„)—4i5,4+ H. c. ,

v 6T, = 5„+5„—25„,
v 2T =i5 + Hc. ,

&2T,8 = 5„+H. c. ,

2T „=i (512
—523) + H. c. ,

2T~ —6,2 —623+ H. c. ,

&2T13 = i5„+H. c. ,

2T~4 = 6~4 —546+ H. c. ,

2T„= i(5, —5,) + H. c. ,

2~M = ~35- ~56+ H c

2T„——i(5„—5„)+ H. c. ,

&2T18 = 5„+H. c. ,

&2T18 = i5„+H. C. ,

v 2 T28 = 5„+H. c. ,

W2T„= i5„+H. c. ,

W2 T22 = 528+ H. C. ,

W2T23= i5,6+ H. c. ,

&2T24= 5,4+ H. c. ,

W2T25 = i5,4+ H. c. ,

v 2 T28 —538 + H. C. ~

& oT27 = 511+ 5» + 533- (544+ 555- 566) .

Using these matrices it is easy to calculate
D 5, E" r, and E " from (2.2). The ones we
need in Sec. III are

D8, 3 «3 2(6)1/2

D3 ~ 3827 2

430 '

D3.3, 8 4(2)1/2Y

E3 ~ 3 427
8

5W3 '

where the third index refers to the 27-piet.
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