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In order to allow for a large mn. scattering length ao, a reducible model of chiral-symmetry breaking
is considered. Our model yields reasonable possible values for the width of the decay p'~ &7|7t. A sUm

rule connecting chiral and dilatational symmetry breaking is furthermore fulfilled in the model.

I. INTRODUCTION

a~' -1 Om

a~ ~ -0.6m, '.
(1.1a)

(1.1b)

As can be seen from the Appendix, the value of
Eq. (1.1b) is very plausible on experimental
grounds. We find it interesting to clarify further
the effects of a large a,' by also doing the calcula-
tion for the value in (1.1a). Since almost any cur-
rent prejudice tends to keep a,' near the Weinberg
value, we have allowed for the possibility that
(1.1a) is correct in the off-shell equations (2.1a)
and (2.3).

If the order of magnitude of ao' given in Eg. (1)
is really correct, it presents a serious problem
to all irreducible models of chiral-symmetry
breaking investigated in the literature so far.
Namely, the irreducible [of SU(3)S SU(3) and par-
ity] models (3, 3)6 (3, 3), (8, 8), and (6, 6)8 (6, 6)
yield' 'm„a,' =0.16, -0.34, and -0.06, respec-
tively. In order to accommodate a large a,' it is
therefore necessary to investigate still other irre-
ducible models of chiral-symmetry breaking, or
else to allow the symmetry-breaking Hamiltonian
density u(x) to contain parts belonging to different
irreducible representations of SU(3) SU(3) and
parity. We shall investigate the possibility that u
belongs to the representation (3, 3)+ (3, 3)+ (8, 8),
i.e., has the form

8 = SO+ CQ 8 +zSO+ M3S~ . (1.2)

In the above, u„and u, (S, and S,) belong to the

There are indications that the s-wave, 1=0, mm

scattering length a,' is large as compared to the
Weinberg-prediction ao =0.16m, '. A short de-
scription of the situation —following the review in
Ref. 1—has been given in the Appendix. In this pa-
per we will assume that a,' actually is large and
positive and shall do calculations with the two val-
ues

(3, 3)$ (3, 3) [(8, 8)J representation of SU(3) SU(3);
the index (0 or 8) denotes the transformation prop-
erty under SU(3) (singlet or eighth component of an
octet), and c and z are numerical constants. ' We
have defined

g Snn
n=l

8

dsae s,"~.

(1.3a)

(1.3b)

The u given in (1.2) is the most general chiral-
symmetry-brea, king Hamiltonian density from the
(3, 3)8 (3, 3)$ (8, 8) representation conserving pari-
ty, isospin, and strangeness and yielding the Qell-
Mann-Okubo mass formulas for baryons and me-
sons. Since these mass formulas are accurate up
to a few percent, we may neglect from the outset
any contribution of an SU(3) 27 to the Hamiltonian
density. Except for contributions of the (8, 1}
6 (1, 8) (which must be small), the model defined
by Eq. (1.2) is the simplest mixed model in the
sense that the number of basic operators of any
other mixed model is greater. [Our model has 18
+ 64 = 82 operators; a (3, 3}$(3, 3)8 (6, 6)8 (6, 6)
has 18+72 =90.] This is a rather weak argument
in favor of our ansatz in Eq. (1.2), though we be-
lieve our methods to also be applicable to other
mixed models. Incidentally a u as given in (1.2)
has already been proposed in the literature with
motivations different from ours."

Without further theoretical input it appears to be
impossible to obtain any testable prediction of
such a model. Being forced by the large a," to in-
troduce a mixed model, one has then the possibili-
ty, however, of incorporating further theoretical
ideas which, in the case of irreducible models in-
vestigated so far, were excluded by the data. The
initially distasteful presence of more parameters
in a mixed-model theory is, then, compensated
for by its added flexibility. In the present paper,
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we shall determine the essential constants of our
mixed model and obtain some predictions which
can be compared with experiment.

We shall assume lowest order in SU(3) breaking
and Goldstone axial-symmetry breaking for the
vacuum expectation values of the 0. terms. Fur-
thermore, the (8, 8) necessarily breaks SU(2}
ID SU(2) and we shall assume this to be the only
SU(2)8 SU(2)-breaking present. That is to say,
we put c =-M2. These assumptions are essential
for all of our conclusions.

The derivation of a. sum rule in Sec. III assumes
that the current divergences and 5 [an SU(3)
Cs SU(3)-invariant scale-noninvariant contribution
to the Hamiltonian density] have dimensions l „and
E z, respectively. Our test of the sum rule in that
section assumes furthermore that 5 is a c number
and that I ~ l „~3. In deriving a prediction for the
width q'- pm' in Sec. IV we shall require the low-
energy theorems for pions to be correct, which,
as is well known, is in agreement with the above
assumptions only if l „=2.

II. THE m'm SCATTERING LENGTHS AND

PARAMETERS OF THE MODEL

(P) 2~ 8
sl P (2.1b)

In the above, only' depends upon the model of
chiral-symmetry breaking. The two possible val-
ues for a~,' which we chose in (1.1a,) and (1.1b)
yield for A.

A -23m „'/f „'
and

~ -13m, '/f, '

(a"' = m ')

(a'" =0 6m ')

(2.2a)

(2.2b}

respectively. We have taken f,' = 0.44m, '.
The theory requires A. to satisfy, to leading or-

ders

As has been shown in Ref. 2, the m7t scattering
lengths with isospin 0 and 2, respectively, can be
written as

a~," =- 5A +161 m. '
96vm „ f,'

+ (bsb bed + bac bbd + bad bbe)

= -(1/8f,') / (0 i [ Qs, [ g', , [ Q,', [ Q,', u]]]]i 0) + (23 other terms symmetrizing in a, b, c, and d)j,

where a, 5, c, and d run 1, 2, 3. It is straightfor-
ward to compute A in the (3, 3)8 (3, 3), (8, 8), or
(6, 6)$ (6, 6) models of chiral-symmetry breaking.
We shall demonstrate the calculation in our model
using the result, quite easily obtainable from
(2.3), that

The leading-order SU(3) statement

( Sa 8 ) bn By

with y a constant, enables us to write

W = (-6/f .')(6z+ 5)y.

(2.8)

(2 9)

2 =-(4/15 f„')(0t(3b,' —4ba)u in), (2.4)

zS, +M3S, =(z+1)g S", +(z --,') g S,""+(z-1)S,".
(2.5)

where b, is the SU(2}SSU(2) Casimir operator
3

g (e.'e.'+e;e;)
a=1

(see Bef. 9). Now, as we have chosen the (3, 3)
S (3, 3) part of u to be an SU(2) S SU(2} scalar, it is
set equal to zero by the operator b, . As for the
(8, 8) part, Eqs. (1.2), (1.3a), and (1.3b) enable us
to write

f 'm, ' = -6(2z+1)y,

f 'm»~ = -6(2z —T)y —(u, )„

(2.10a)

(2.10b)

which follow from Goldstone vacuum symmetry
breaking for the axial part of SU(3)8 SU(3). Here
we have set f, = f»= f, where f„, for example, is
defined by

(v. isa, in) = m, 'f, b.,
A third relation

Now the important constants of our model are z, y,
and (u, ),. We may consider (2.9), with the values
of A given in Eqs. (2.2), to give one relation be-
tween these quantities. Two other relations are

This decomposition makes it clear that" f 'm „' = -6(2z —1)y ——,
' (u 0) 0 (2.10c)

b,u = 4(z+ 1)S,"+-'.(z ——,')S,"",

from which

(3b '-4b )u=40(z+1)s~~++(z —T)S,"".

(2.6)

(2 7)

is not independent of the first two; taken together
they yield the Qell-Mann-Okubo mass formula.

Solving Egs. (2.2), (2.9), and (2.10) we find the
solutions
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and

a'P -1.0m, ' ~ ( u, ),/m, 'f „'--2"I,

y/m „'f,' - -1.7,

z --0.45;
a~~~ -0.6m, ~ '~ (uo)o/m „ f ~ --20,
y/m, 'f,' - -0.9,

(2.11a)

(2.11b)

We shall assume at this point that 5 is a c number
(l ~ =0). The reader should notice that this attrac-
tive assumption cannot be made for any one of the
irreducible models mentioned in the Introduction
since it contradicts the experimental values of the
meson-nucleon 0 terms. '" In order to agree with
the soft-pion theorems we will assume l„=2 in the
following section. At present we shall only use

and

z - -0.41.

- -21 (a',"m „-1)
--17.3 (a~,"m, -0.6).

(2.12b)

(2.12c)

It is worthwhile to mention that in determining z
from a~,"we have z =0 for a~,'~ =0.31m„' and z=~
[i.e., no SU(3)-violating (8, 8) part of u(x)] at a~/
=0.24m „'. There is, however, no peculiar be-
havior of the observables we compute at these
points since zy does not develop a singularity at
a,' =0.24m „'. In the next section we use the fact
that this vacuum expectation value is alternatively
obtainable through the low-energy theorems of
broken scale invariance to provide a test of our
model.

We have thus calculated the important parameters
of the theory. They require that

(u), /m „'f„'=(u, ),/m, 'f „'+Bay/m „'f„' (2.12a)

i ([q~, T„"(0)]),= (-3/32m)[m, '+(l „-2) m, ']

x(m, '-4m, ')'"r '

= (-3/32~)(m, '/r) . (3.4)

1 &l„&3. (3.3)

qD= Jd'xx"T, (0, x) is the dilatation
charge as defined in terms of a certain symmetric
energy-momentum tensor T„,.

It is easily seen that any intermediate state con-
tributes negatively to i ([q~, T„"(0)]),. Equations
(3.2) and (3.3) then show that at least the sign of
(u), in Eqs. (2.12) is correct. Allowing only inte-
gral values for l „, the factor l „(4—l „) is 3 or 4;
consequently an estimate of i ([ qD, T„"](0)),will
give us a value for (u), to compare with Eqs.
(2.12). Such estimates exist in the literature, us-
ing either a single e-meson state, or two e reso-
nances, to dominate the matrix element. In the
case of a single e meson of mass m, and width I
one finds'3'"

III. A SUM RULE TESTING THE PREDICTIONS

OF EQS. {2.12)

In this section we shall make essential use of
our assumption that the current divergences have
dimension. " It then follows that u(x) has the same
dimension, l„. Namely, in the present model u(x)
can be written as'"

16

16

a, b =I

(3.1)

i([qD, T„"(0)])o=(l.—l 6)(4 —l.)(u)0 ~ (3 2)

The charges are assumed to have a dimension and
current algebra then implies that this dimension is
zero. Then u(x) is seen to have the same dimen-
sion as the current divergences by commuting Eq.
(3.1) with the dilatation charge and using the Jacobi
identity.

If one assumes that the chiral-invariant scale
symmetry-breaking Hamiltonian density 6(x) has
dimension l q then it follows that'

This result presumably has a rather large uncer-
tainty (see, however, the discussion at the end of
this section) due to the assumptions that go into
the derivation and due to the appearance of m, '/I'.

With the limiting values of m, =700 MeV and 1"
= 600 MeV we find from (3.4)

(u),/f, 'm „'= -10. (3.5)

This certainly agrees with Eqs. (2.12) within the
errors since use of m, =721 MeV already yields

(u),/f „2m,' = -18.
Thus as a test of the order of magnitude our mixed
model agrees with the prediction of e-meson domi-
nance.

Phenomenologically, rather than by c saturation,
the expression in (3.4) should be computed directly
from the ww phase shifts. No satisfactory attempt
presently exists in the literature. In a preliminary
study (using experimental" vv phases up to 1 GeV)
we find agreement with our present results.
Namely, the number which is finally obtained in
Ref. 17 for m„'f, '(u), is -19. Moreover, there
is good agreement with y and (u, ), taken separate-
ly.
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IV. THE WIDTH q'~yern IN THE MIXED MODEL o„„.=,'-pq/(q, I8(z+1)S,"+3(z--,')S,""
I q, &

Theoretical estimates of the width I" of the decay
q'- qnm have been obtained in the (3, 3)63 (3, 3),
(8, 8), and (6, 8)$ (8, 6) models of chiral-symmetry
breaking. "" Experimentally an upper bound of
2.0 MeV has been set" for this width, "and one
would expect a I' of about 1 MeV. If one takes l„
=2 from the soft-pion theorem, one finds, "0.07
MeV as upper limit on 1 in the (3, 3)$ (3, 3). This
value appears to be unacceptably low. [For l„=3,
the upper limit in the (3, 3)8 (3, 3) is 0.25 MeV. ]
The (8, 8) and the (6, 6)$ (6, 6), on the other hand,
yield values of I' of the expected order of magni-
tude. For details and for a discussion of the un-
certainties of these estimates the reader is re-
ferred to the original literature. It is our present
purpose to obtain an estimate for I', similarly, in
the mixed model.

For I' we shall use the expression

-( q, I
8(z+1)s~~+ 3(z - -,')s,""

I q, &j.

The first term may be rewritten as

(3pq/4) (2z + 1)(qo I So I ]1O &,

(4.8)

(4.9)

&q, ls,"lq, & =o, (4.10a)

using SU(3) and the definition (1.3a). The value of
the matrix element (q, Is, Iq, & being ill-deter-
mined, it is important to realize that the factor
(2z+1) is close to zero. Consequently, the pre-
cise value of (q, IS, I]1,& is not as decisive for the
final answer as one might think. We shall esti-
mate it presently.

For the second term of (4.8) we use the low-en-
ergy theorems to see that

Pl 0
(4 1) &n. ls,""

In, &
= m. '/(z+2) (4.10b)

with cr«. given by

3

Q fQ~, B"A~] g')
0=1

= ';( q I (25, )u I
7l' &

(4.2a)

(4.2b)

Thus (4.9}can be written as

o „„=pq[-[(z - —,')/(z+-,')]m, '+-,'(2z+1)(q, IS, I q, &).

(4.11)

We do not intend to become too involved in a dis-
cussion of the q/q' mixing angle and shall simply
quote the commonly accepted estimates of

using the notation of Sec. II. In the above,

9 keV& $(=15 keV) &28 keV. (4.3)
lpql-o. 17-o.23

and use

(4.12a}

=-.«18( +1)s,"+3( --', )s,"" lq'&. (4.4)

It is convenient to write the Iq&, I
q'& states as a,

mixture of SU(3) singlet (lq, &) and octet (lq, &)

states. Thus

Equations (4.1)-(4.3) follow from assuming a lin-
ear extrapolation in the Dalitz plot of the decay
and standard current algebra. From Eq. (2.6) now,

lpql-o. 2. (4.12b)

There finally remains the estimation of
(q, ls, lq, &. For this we shall assume that the con-
tribution of the z$, part of the Hamiltonian density
to the "q, mass" is less than the whole mass, but
greater than zero. Taking also z =-—,

' for the pur-
pose of this estimate, we write, then,

ln& =pin. &+qln. &,

ln'& = ql n. &+-p
I no&0 ~

(4.5)
o --,'(q, ls, lq, & - m„'

or, in round numbers,

(4.13a)

Substituting into Eq. (4.4), and using the result of
the low-energy theorems assumed here that o -(q, ls, I q, & loom. '. (4.13b)

[which follows from

(4 6) Now the two possible values of z in Eqs. (2.11)
lead to

&n. ls,"'In.&=-(ilf) p cp.'(q.
I sf ln&,

p, a=1

(4.7)

where C~ is some constant tensor, and the ab-
sence of an SU(3) scalar, pseudoscalar operator
in the (8, 8)], one obtains

o ~ -pq(19m„'+0. 075(q, ls, lq, &) for z--0.45,

(4.14a)

o „„-pq(lorn„'+0.14(q, IS, I g, &) for z --0.41.

(4.14b)

Setting Ipql-0. 2, as in (4.12b), and imposing the
bounds (4.13b) one gets
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3.8
a „„/m, ' = 2'4 for z - -0.45, (4.15a)

2.0
o « /m „'= for z - -0.41, (4.15b)

0~ I'~0.3 MeV for z--0.41. (4.16b)

Thus —contrary to the (3, 3)+(3,3)—plausible val-
ues of I' are possible in the present model.

as a result of using the lower bound of (4.13b)
shown above in each case. We see that for z
--0.45 (which corresponds to a~,'~ m „-1.0) we have
obtained a fairly good estimate of o«although we
only know the order of magnitude of ( q, ~ S, ~ q, ).
For z --0.41 (a~" m, -0.6) there is a cancellation,
however, and the result is consistent with zero if
we really allow such a large upper bound in
(4.13b). One might argue that it is unrealistic.

Finally, using (4.1) with ( =15 keV, one gets

0.4~1 ~1.1 MeV for z--0.45, (4.16a)

APPENDIX

In this appendix, we give a brief account of the
determination of ao' as reviewed in Ref. i. We
have also used the more elaborate analysis of Ref.
16.

Independent of the model of chiral-symmetry
breaking, it follows from Eq. (2.1) that (2a~,'~

—5a~,'~)m, =0.54. This relation is in good agree-
ment with the data in Ref. 16. In order to deter-
mine ao', one might first consider extrapolation
of the ~w phases down from the region with E„,
=(500-1000 MeV). Taking into account all avail-
able phase shifts, this method yields only rather
weak restrictions according to Ref. 1 (where the
original work has been quoted):

-0.05~m „a',"~ 0.07.

Second, according to Laurens in Ref. 1, there are
data on the 7tm S wave from m'7t ' and K)4 at low E„„.
These agree with each other and yield
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