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Predictions of three-body decays of mesons from pole-dominated dispersion relations*
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The meson decays p m~, Q m~, p' ~~, ~ 37r, Q 3x, and X* Xm are studied,
using dispersion relations for the related two-body "scattering" amplitudes. Pole dominance
of the low-energy part of the dispersion integral with Regge-pole dominance of the high-
energy part leads to relations between these three-body decays and various meson two-body
decays. When these are known, the approach leads to predictions for the three-body decays
in agreement with experiment. In other cases, consistency is shown with the results of
vector-meson-dominance couplings, SU{3)-symmetric couplings with p-Q mixing, and upper
limits for unobserved decays.

I. INTRODUCTION

For two-body scattering reactions, the principle
of crossing relates the three channels (s, t, u) via
analytic continuation of the scattering amplitudes.
If, in addition, the masses are such that one par-
ticle can decay into the other three, the same am-
plitudes, continued into an appropriate kinematic
region, will also describe the decay. W'e apply
this to three-body decays of pseudoscalar and vec-
tor mesons. The analytic continuation is accom-
plished with a fixed-t dispersion relation for the
scattering amplitude. The low-energy region is
assumed to be dominated by the s- and u-channel
resonances, and the high-energy part by the t-
channel Regge-pole exchanges. Finite-energy
sum rules (FESR) are used to relate the Regge
residues to the resonance couplings, so that the
three-body decay is predicted in terms of various
two-body decays. Note that this method provides
an unambiguous way to combine pole terms in
various channels without double-counting. Com-
parisons with various pole models will be made
for individual reactions. In Sec. II the formalism
for the dispersion relation and continuation will
be developed. Section III deals with the individual
reactions. General conclusions and comparisons
are made in Sec. IV. An appendix on three-body
decay kinematics is added for completeness.

variables are defined as

& = (& +0 )' = (fp - (f )'

~ =(&+q,)'=(f -e.)',
~=(~, 4.)'=(u-~)'.

Following Ref. 1, we write a fixed-t dispersion
relation for the appropriate invariant amplitude
A'(v, f), where v=2(s-u) and+ means amplitudes
even or odd in v. The contour is a circle of radi-
us N in the v plane, with indentations to avoid
crossing the cuts on real u axis for the s- and u-
channel thresholds:

2m c V V

It is convenient to separate the circular integral
from the integral around the cuts, which is pro-
portional to the discontinuity, or imaginary part
of the amplitude:

A'(v, t) =A,'+A2,

(4)

II. FORMALISM

W'e use the method of finite dispersion relations
(FDR) as developed by Aviv and Nussinov. '

Consider a three-body decay with momenta and
masses

M m+p +p, ,

P -K+q, +q„
where we always will have at least two equal-mass
particles in the final state. The usual Mandelstam

Qne makes the usual assumption that a value of
N can be found such that resonance-pole saturation
in the s and u channels dominates the imaginary
part of the amplitude for ( v'j& X, and that a t-
channel Regge-pole expansion dominates for ( v')
0 N.

The resonance contributions have the form

A;.,(v, t)=f(v, t) * )
1 1

which yields
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{6)

where v~=M„'+&t —2Z is the position of the res-
onance; M& is the resonance mass and Z is the
usual sum of the squares of the four external
masses. f{v, t) contains resonance couplings and
spin factors appropriate to the external particles.

We parameterize the Regge contribution

or

A'„, (v, t)= . [v +(- v) ]sin@a

(8)

or

where the two possible forms are for different ex-
ternal spins. Upon integration around the circular
contour, they yield

va ~
1

A2'(v, t) =2p'N" '
v Q —

2 0
n=o

&&mar&&2)ry, g (M -p, )(v, t)=
M 6 v+, t —Z-

8 B

(14)

where p. =pion mass, M=g mass, andM~=42
mass. The couplings g are related to the two-
body decays of the A2:

16 gA2 ~
15 4 M„ (15)

with positive results, with emphasis on deter-
mining the single- or double-pole nature of the
s- and u-channel A, -resonance pole. Here we
shall review this reaction, concentrating on the
FDR and FESR procedures.

The s- and u-channel quantum numbers allow
only the A2 pole of the well-established resonances.
The t channel similarly allows only the p Regge
pole. The invariant amplitude A(v, t) (see Appen-
dix for definition) is an even function of v and has
one unit of spin flip, so we use (6), (8), and (10)
with the upper sign. The quantities of interest
are

n 1
A2 (v, t) =2p'N" . Q ~

~ (,)

8 g~2ry q
5

( .— )=-
7r 8

(16)

which yiems

N 1
v~f'(v~, t) =O' N"" (12)

or

(10)
where we have expanded the denominator of the
integral in a power series which converges for
( v~&¹ Since the amplitude is to be evaluated in
the three-body decay region and N is typically of
the order of a few GeV', this requirement ~vill be
satisfied for all cases to be considered.

The functions f(v, t) and P can be related by re-
quiring the amplitude to satisfy a finite-energy
sum rule (FESR). One uses

where q, is the magnitude of the momentum of
one of the decay products in the A.2 rest frame.
From the known A.2- qn rate, ' one calculates
g+„„'/4m=1.06+0.20. Since the A~ yv rate has
not been accurately measured, one must resort
to the vector-meson-dominance model (VDM) to
relate it to the well-known A2- pm decay. If we
use the y-p coupling e/f ~ with f~'/4m=2. 56+0.22,4

the result is g„, '/4)) =0.0146+0.0033. It onlyA2ry
remains to determine the cutoff value N. Accord-
ing to usual procedure, and as suggested by semi-
local duality, the cutoff point is taken halfway be-
tween the last resonance pole included in the s or
u channel and the next Regge recurrence. The
effect of varying the N value by an amount corre-
sponding to the resonance width on the trajectory
changes the predicted P values by about 15/o. We
take the A2 trajectory

u„(t) =0.5+1.5t/M„'
vlf '(ve, t) =O' N"

~a &+ (Or
(13) so that

Remember that in general a sum over resonances
and/or Regge poles is implied. The same N value
as in the FDR is used here.

III. MESON RESONANCE DECAYS

A. q~mmy

2N=&M~2- pM

An alternate parameter ization

o.~(t) =2.0-Ms +t

and the corresponding

N=1.0+M„- 2M —p, +2t

(18)

(20)

This reaction has been considered using the
FDR and FESR procedures by Lassila and Young

turn out to have no significant effect on the results.
We use similar parameterization for the t -channel
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p Regge trajectory:

n, (t) =0.5+ t/2m, '
or

o, p(t) = 1.0 -m '+ t,

(21)

(22)

which also give essentially the same results. The
FESR (11) is evaluated for t =0 and p' from (13) is
taken as constant over the decay region 4p. ' &t &M2.
The FESR could be used to determine P(t) for all
t in this case where only one trajectory dominates,
but the variation in t obtained is insignificant when
compared with the over-all uncertainty in the mag-
nitude of P due to cutting off the FESR after only
one resonance pole. We estimate the uncertainty
in P to be of the order of 15-20% based on the
standard investigations of FESR in mN amplitudes. '
The final calculated value is I'(q - wry) = 0.141 keV,
with an estimated uncertainty due to all previously
mentioned sources of about 25%. This compares
well with the experimental average value of 0.131
+ 0.02S keV. '

We have also investigated the effect of including
the width of the p by modifying the denominator
of (10) to read n —1+iI'~/2m~. This changes the

calculated value of I'(q -may) by about 3% as I'~
is varied from 0 to 145 MeV. The reason is that
the p pole is outside the decay region, but this

p(t) — n'g„g „,
t-+ m p&

where z' is the p trajectory slope, and

2
QI

3
P(p~ ~~) gPm 0

3 4~ m''
P

2

r(p-qy)=
3

g'

gpss
(23)

(24)

(25)

define the couplings. From the latest p width of
146+10 MeV (see Ref. 3) we fixg~ '/4m=2. 8.
From the FESR at / =0, P=3.53 GeV ', which
predicts g„z&2/4m=0. 042 GeV 2 and I"(p-qy) =89
keV. This small value is consistent with the ab-
sence of this mode in the experimental surveys. '
One can, however, compare this with the fitted
values using SU(3) and q-g' mixing, which give
g„z&'/4w =0.038 and 0.043 GeV 2 for linear and

effect will turn out to be very important in the q'
decay.

The mm spectrum is shown in Fig. 1, along with
pure phase space and the experimental points. It
is seen that the FDR amplitude with the p pole en-
hances the large-t (invariant wm mass) part of the
spectrum, in agreement with the data. '

One can further assume that the constant P as-
sumption is valid out to t = mp' and relate it to
decay couplings in the t channel. The relation is

l.5—

Al0

I.O—
X

0.5—

0.0
.05 .IO

I

.I 5 .20
f (GeV/c) ~

.25 .50

FIG. 1. xm-invariant mass spectrum for p ~~ (arbitrary units). The dashed curve is phase space, the solid 1ine the
FDR prediction; and the data points are from Cnops et al. , Ref. 6.
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quadratic mixing, respectively. This gives one
some added confidence in the procedure of ob-
taining P via FESR.

and

P(t)
t ~m P

(26)

&. q' ~ mmy

Superficially, this reaction is the same as the
previous one and one need merely replace masses
and couplings appropriate to g' rather than g to
get the results. However, there are two important
differences. One is that all of the couplings are
not known in this case. Only an upper bound is
known for the total q' width (1.9 MeV) (see Ref. 3)
and only branching ratios are known accurately.
Also, the A., -g'w decay is only known as an upper
limit, thus placing only an upper limit on g» „.
The second and more important difference is that
due to the higher mass of the g', the t -channel
p resonance pole is in the physical decay region,
i.e., the decay q' —p'y followed by p'- m+m con-
tributes to the over-all three-body decay. In fact,
this mode is certainly the major part of the decay,
with a branching ratio estimated to be (94+ 20)%.'
Thus one should not necessarily expect that the
p residue function determined at t=0 by the FESR
should remain constant throughout the p resonance
region. In fact, one can calculate the ratio of the
residues at t=mz' by

2

1'(n' p-~) = 4,
" 4'.'

to that determined by the FESR at t =0 via (13).
Remember that the P (m~') is the appropriate val-
ue for the q'- py decay' if it stays constant over
the p width. The values for this ratio are 2.66,
4.65, and 3.06 for upper limits, ' quadratic, and
linear mixing, respectively. It is obvious from
these numbers that P cannot remain constant over
the entire t range. One cannot calculate the decay
rate in this case, but merely show consistency
with the FDR approach. Since the ratios just dis-
cussed are approximately a measure of the rela-
tive size of the p-pole to the A.,-pole contributions
to the amplitude, it is clear that the A, poles will
give a contribution of the order of 10%, which is
certainly consistent with the (94+ 20)% branching
ratio. The actual procedure was to fix the resi-
due at t =0 by FESR and let it vary (either linearly
or exponentially, both give equivalent results) to
a value at t = m~' which produces the correct de-
cay width for the case under consideration (upper
limit, quadratic, or linear). The t spectrum is

4.0
I I I I I

3.0—

~f:
(b)~'. 'Wa)

IJ

rI

I.O—

0.0
0

I

.08 .I 6 .24 .32 40 48 .56 64 .72 .80 .88 .96
t [(Gev/c) ]

FIG. 2. mz-invariant mass spectrum for g ~~ (arbitrary units). Curves (a) and (b) are the FDR predictions for
Z(g') =100 keV or 160 keV. Curve (c) is described in the text. Curve (d) is pure phase space.
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then plotted and checked to ensure the (94+ 20)%
population of the p-meson region. In Fig. 2 such
spectra are shown, along with pure phase space
(no p pole). Note that the two curves (a) and (b)
(corresponding to decay widths of 100 and 160
keV but normalized to the same area) give essen-
tially the same shape, so that no prediction of the
decay width is possible. Both of them have ap-
proximately 85/o of the area in the p band (shown
with dotted lines). Note, however, in (c) which
corresponds to a linear mixing total width com-
bined with the upper limit for the A2- q'm cou-
pling, the curve is shifted substantially toward low
t values, so that only about 78% of the area is in
the p band. In this sense there is a direct corre-
lation between the total q' width and the size of the
A2- g'w decay, both in the three-body-decay anal-
ysis here and in the SU(3)-mixing schemes from
two-body decays alone."

This reaction is symmetric in all three channels,
with the wm- m~ having the quantum numbers of
the p meson. The quantities of interest are

f(~, t) =2g.~r p
(28)

and a crossing-even spin-flip p Regge amplitude,
according to the top sign of (8) and (10) with a
residue evaluated at t=0 from FESR (13) as

(y+ 1
P = ~»+t 2~aÃup» g p&»» (29)

r(& vy) = —~ g ~ =0.9 MeV,
3 4n fp

(30)

which yields g„,=14.8 GeV ' for f p
from leptonic

decays or g =15.4 GeV ' for f p =g~ universal-
ity. Both of these are in reasonable agreement

where the effective &pm coupling is defined by

&"(~)&'(p)& ag„(& )'(&p)"g p. .
The coupling constant g ~„cannot be directly deter-
mined from a decay, but must be inferred from
the &o my decay via vector meson (p) dominance.
This leads to

with the SU(3) value of 15.8 GeV ' from two-body
meson decays. ' We again use a linear p trajectory
and take N halfway between the p and its first re-
currence, the g(1680). When these numbers are
inserted into the amplitudes and integrated over
phase space, the resulting decay width is pre-
dicted to be r(&o - 3m) = 5.84 MeV, compared with
the experimental 8.8+ 0.4 MeV. '

This value is quite low, and we must look at the
amplitudes more carefully. One obvious remark
is that this amplitude is almost the same as the
vector-dominance case, which predicts r(&u -my)/
r(u&-3m) =0.11 for f p'/4m=2. 6, in agreement with
experiment. However, that approach includes
some obvious double-counting, since it adds the
p-pole amplitudes in all three channels simulta-
neously. The FDR approach avoids this difficulty,
but seems to give too small an amplitude. Since
the ~-Sm amplitude is completely crossing-sym-
metric, the FDR approach also makes an approxi-
mation in singling out one channel (t) to use as the
Regge channel, while treating the resonance chan-
nels (s and u) symmetrically. This is obvious
when one looks at (10), which exhibits the com-
plete pole structure of every resonance on the p
trajectory, whereas we have cut off the resonance
contribution to the s and u channels with only the
p. Theoretically, the N value chosen should take
this into account and make the amplitudes at least
numerically crossing-symmetric. In fact, one
can compare the P value at t =0 (P is approximate-
ly independent of t from the FESR evaluation) to
the value at t = m&2 directly since both are propor-
tional tog ~,. One gets

P(m&) 3vw vent=0)
e(o) (~.)"'~'

which indicates approximate numerical crossing
symmetry. It is obvious, however, that a larger

value in the FESR better satisfies the approxi-
mation of using the Regge amplitude for the cir-
cular integral. To this end, we extend the cutoff
point above the next resonance on the p trajectory,
the spin-3 g(1680) meson. The appropriate quanti-
ties are

2 2 2

f(&g& t) =g~~ gg~„4(2t+Mg -M~~-3p~)~+5(M ~-4y~) 2M~~+2pa-M ~+
g'

(31)

256 gr(g -(um) = ~' q,', (32)

r(g- mm) =—
35 4m M~

From the latest values' r~(total) = 160+ 30 MeV,

r(g -2m)/r, =40%, r(g-~v)/r, & r(g-4s)/r,
=50% one getsg~ =2.2 GeV ' andg~, s3.0 GeV '.

When these values are inserted into (6) it is seen
that the g gives a negligible contribution (com-
pared with the p) to the s- and u -channel ampli-
tudes, merely because the poles are far away
from the decay region. However, inclusion of
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the g meson does change the t -channel amplitudes
via the P(0) determined by the FESR and the in-
creased N value. We evaluate P at t =0 and get
P(0) = —69 GeV ' (where we have taken g2„„at its
maximum value and all couplings to have the same
sign). We compare this with the values at the /-
channel poles, P(m~2) = —85 GeV ' and P(M, ')
= —51 GeV '. The approximate agreement of
these numbers indicates that the approximation
of using P = constant in the decay region is not a
bad one, and in addition that approximate cross-
ing symmetry is maintained. When one integrates
these new amplitudes over the decay region, the
resulting I'(~-Sm) values are 6.65 and 7.37 MeV
for assumed branching ratios of (g-002)/(g-4w)
of 50%%uo and 100%, respectively. These values are
substantially higher than the results with no g
meson (5.84 MeV) but still somewhat lower than
the 8.8-MeV experimental value. However, the
typical uncertainty in the resonance-pole saturated
FESR again gives an estimated 25% uncertainty in
the calculated decay widths, so that the values
with the g meson included are consistent with the
experimental value. As a check on crossing sym-
metry, the amplitudes were calculated twice more,
with the s and u channels as the Regge-pole chan-
nel. The three amplitudes were then averaged to
impose crossing symmetry and the decay width
calculated again. The result was I'(~ - Sv) = 7.36
MeV, compared with the single-amplitude value
of 7.37 MeV.

This reaction bears the same resemblance to
cu-3w a,s the q'-may does to the q-wry deca.y.
The main differences again are that the p meson
i,":.

' in the physical decay regions and accounts for
a substantial (but unknown precisely) fraction of
the total decay, and also the coupling constant
g„.,„ is not experimentally determined. We need
-;:.&j alter the ~ Sm case to include the p region
by replacing t-mP' with t-m P'+imPI' in the s
and u poles, and o. —1 with a —I+ 21'/2m~ in the
t -channel contribution to the amplitude. Since
the amplitude is completely crossing-symmetric,
only one product of coupling constants g&P, gP„,
enters, and the FESR predicts P at f = 0 to be

p(0) ~RAPE CP~B 1 P

(34)
where the last factor is the finite-width correc-
tion (about 6/0) and v3 and N are to be evaluated
at f =0 in GeV units. Alt:ernatively, P at t = m~'
is directly related to the couplings

P(m 2) 8 &SPY 8 Pw3

2m'
P

I'(P-pm) = —q,' ~'" xS (for all charge modes)

=0.504 (g0, p„)' MeV. (37)

Thus the ratio is independent of the unknown g@P,
and tests the FDR approach, I'(Q -pm)/I'(Q - Sw)
=O. '706. Note that it can be considered a success
that this number is less than unity, since there
is no guarantee that an interference of the t -chan-
nel p pole with the 8- and u-channel terms could
not predict a decrease of the Sm decay rate below
that for P- pw alone. To get the absolute decay
rate, one must again appeal to the VDM for the
coupling g& . This is related via the VDM to Q

-
my,

but only an upper limit (0.35/o) is known for thi. s
branching fraction. ' Hence we adjust g&~ to fit
the Q

- Sn rate and compare with the upper-limit
values. Experimentally, I'(P - Sm) =0.64+ 0.16
MeV, which yields g &,=0.947 GeV '. From the
VDM we get

~2
P(Q~ py) q

3 g50w
0 f 2

P

which gives I'(p-wy) =8.3 keV. We compare this
with the upper-limit value, I'(p- 2y) & (.35/0)
(4.2 MeV) = 14.7 keV to show consistency of this
number with the FDR approach to the P - 37T de-
cay.

(38)

This is the SU(3) partner of +, P - Sm and the
same amplitude structure applies. Experimentally
this decay ls not observedp and an upper llmlt of
0.2'%%uo of the total width is estimated, i.e.,
I'(K*-K2z) & 0.1 MeV. Part of this suppression
is due to phase space. From (A15) one can cal-
culate the ratio of phase space for this decay to
that for (d-3m. This result is approximately, '0,
which would predict

I'(K*-Km2) = 3~0(10 MeV) =0.2 MeV

so that we can see that P(0)/P(m, 2) = 0.16 and the
residue function must change with t quite dramat-
ically over the decay phase-space region. Note
that this variation with t is not predicted by FESR
(P here is again approximately independent of t
as for cu-32) but required by crossing symmetry
imposed at t = mP'. This variation wa, s put in both
linearly and exponentially„and the difference be-
tween the two forms was negligible. The result
for the decay width is

I'(y-Str) =0.714(g~„)' Mev, (36)

where g@P, is in units of GeV '. Alternatively,
one can express the two-body decay p- pm in
terms of the same coupling:



10 PREDICTIONS GF THREE-BQDY DECAYS QF MESQNS FRQM. . .

if the amplitudes were equal. Hence a suppression
of at least v2 is needed in this amplitude relative
to that for u decay, and must be provided by the
pole coupling factors in the FDR approach.

W'e consider the K*' decay in three possible
charge modes. Mode I, K'm'm, has K* and KN

poles in the s channel, no poles in the u channel,
and vacuum' and p Regge trajectories in the t
channel. Mode II, K'm'm', has K* and KN poles in
both s and u channels with only the vacuum' Regge
trajectories in the t channel. Mode III, K'm'm',
has only the p Regge trajectory in the t channel,
with the K* and K~ poles in the s and u channels.
From isospin invariance, one can write

pp(mp') = —mu'fv(vv, t) . (46)

0.023 MeV
III

0.010 MeV

Using the usual cutoff value at halfway between the
K„and the next Regge recurrence (N = 2 GeV'), we
get P(m~')/P(0) = 2.0. Hence the residue function
probably does not vary much over the physical de-
cay region 4p. &t&(M*-m»)', we assume it is
constant P =P(0) in this region. This leads to a
decay width of

1
I ~2 u I u

so that only two of the three charge modes are
independent.

The s- and u-channel pole factors are

for

f (vs, t) = 2 g»«»", g»~»„,

for K„,

f(va~ t)=4g»»»«rg»„»~

x (2t -m»2 —2p~+M»2-M*2)

(40)

P(o)= ~[fv(v~, t)+fr(vr, t)] ~', , (47)

for the K'm+m' mode, where the two values are for
the products of K* or K~ couplings with the same
or opposite signs, respectively.

For the charge mode II (K'v'w'), one must use
the FESR for the vacuum trajectories. In the K*
production cross section KN-K*N, there is no
evidence for an energy-independent component.
This indicates that the Pomeron-K-K* coupling
is very small, and we can neglect the Pomeron
contribution to the t channel in this decay. The
lower-lying vacuum poles give an FESR result

(41)

where M„and M* are masses of K„and K*, and
the couplings are related to two-body decays by

where the v factor is missing Icompare with (45)]
because this amplitude is crossing-odd. This pole,
along with the corresponding crossing-odd com-
bination of s- and u -channel. poles gives a decay
rate

16 grc z2
N

(42)

81 eV
II

35 eV

gEp(K1(K„-K«m) = — q,'=30+3 MeV,

2 gZ'(K«-K~) = — " "' ' =50+1 MeV. (44)
3 4g M*'

For g»«»«, we use tile SU(3) vallle fl'om g»~ ln
the previous work, yielding g»«»«, '/4w = 5.5 «V '.

The FESR relation for the p trajectory alone
leads to

pp(0) = —v[f„(v„,t) v, +f,(v„ t) v, ]

for the K'v'w' mode. Since this is so small (due
to the crossing-odd amplitude) we need not investi-
gate its sensitivity to the parameters of the vac-
uum trajectories. The SU(2) relation (39) then
implies I', = 2I",», so that we predict

0.034 MeV

0.015 MeV.
(48)

Both possible values are well below the experimen-
tal upper limit, so that a confirmation or contra-
diction with the FDR approach must await a lower-
ing of the upper bound by at least a factor of 3.

where V, T refer to vector or tensor pole factors
and resonance positions. Qne can compare this
with the factors at the t -channel pole point (t = m~')
directly when n& 1, which implies

F. q' ~ qm'vr

This strong decay shares the same s- andu-
channel structure with the g, q'- @my decays, i.e.,
only the A2 poles contribute. The pole factor is
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3 P, (I P—)(I —P )
}VBP M2 R + + M2R R

Sf' -2M —2P. + 2 ~R -2m -2P. +2 2 2 (M i ) 2 2 2
R MR MR

(49)

where'„, M, m, and p, are the A„q', q, and g
masses, respectively, and the couplings are de-
fined by (15). Since only an upper limit is known
for the decay A2- q'n, we consider three cases:
(1) The upper limit value' of the A2 branching ratio
of 1.1/q which implies g„„,=4.7 [must be consis-
tent with F()i')(1.9 MeV . (2) The SU(3)-fitted val-
ue" of the branching ratio assuming quadratic
7i, q' mixing which leads to g„,~, -—3.2 and I'(q')
=2.7y1.1 Mey. (3) The SU(3)-fitted value" for
linear mixing which leads to g„,„,,=1.6 and F(g')
= 0.43 + 0.19 MeV.

The t channel has vacuum quantum numbers.
The residues of the vacuum' trajectories (except
for the Pomeron according to the Harari-Freund
conjecture) are constrained by FESR. For this
crossing-even amplitude, the t -channel contribu-
tions are quite significant and their magnitude de-
pends sensitively on the trajectory and residue
parameterization. We consider four different
possibilities:

(a) One trajectory only with o. =0.5+/, which

leads to

1 2

~m~= ~ o+ 3 s (50a)

1
2 3

(50b)

1
o 3 s

l

mith n =0.5 predicts amplitudes much too small,
while the inclusion of a lower-lying trajectory
(n2&0) reverses the situation but predicts ampli-
tudes sometimes orders of magnitude too large.
However, one must still examine the effect of in-
cluding the Pomeron. "

The Pomeron contribution cannot be assumed
negligible here, since there are no high-energy
data for qm-q'w. To estimate the contribution,
we use a U(3)-coupling model, with the octet part
of the Pomeron adjusted to account for the differ-
ence between vN and KN total cross sections, and
the singlet part determined via factorization using
these plus the NN total cross section. The rele-
vant expressions are (as s -~)

p(t) = +2 Vpp f (VBp t)

2o„q =7) p, ,

2 2
3P2 P

(50d)

(50e)

(b) One trajectory u, =0.5+/ and another o.'2
= —0.5+t, which leads to p, =3.12 g, g2 and p,
= —3.82 g g where ggg2:gg 7)7i.g~ q~.

(c) One trajectory o., =0.5+t, another o(2

= -0.5+k with a factor of o.2 in p„which leads to

p, =o 677Z3g2, p. =l 54m g'|
(d) One trajectory n, =0.5+t, another n2 =0.0+t

with a factor of n2 in P„which leads to P,
= 0.062 g,g„p2 = 1.72 g, g2.

The a, trajectory is meant to include the usual P'
(or f,f ') trajectory, while the lower-lying o.2 in-
cludes a possible scalar meson (o.) trajectory. For
a single trajectory [case (a)] the t dependence of
p from the FESR is substantial over the allowed
decay range 4(((2 (t ((M-m)' and is kept in the cal-
culations. For the two trajectory cases [(b), (c),
and (d)], the P values are determined by a simul-
taneous solution of the FESR equation at both end

values of t, thus ensuring approximate compliance
of the amplitude with the t dependence implied by
the FESR. Unfortunately, none of these cases
give a consistent calculated decay width. All of
the case (a) values are too small, while all of the
remaining cases give widths much too large. The
pattern that emerges is that a t -channel trajectory

1
0 jt' K p+ p ~ 22o8 Dlb

p

1
zx ~ o 2 s m-18 ™

op(N = v(Pp(3)) =39 mb.

(50f)

(50g)

(50h)

=1.61 GeV for linear mixing

= 1.81 GeV for quadratic mixing. (51)

It is mell knomn that these values are not in fact
asymptotic, but the cross sections rise at larger
energies. It is still possible, however, that the
Pomeron contribution (pole plus cuts) approximate-
ly factors. We take the cross-section values in an
energy range where all are well known and pre-
sumably at their minimum values. We conjecture
that this procedure mill indicate approximately
(factor of 2) the magnitudes of the Pomeron-3}-q'
and Pomeron-n-w couplings. .The result is

1
P, (-, ) P, (P, +

~~ P,).
—

cose sin8cos28 —sin20-
M2



10 PRE DIC T IONS OF T HRE E - BOD Y DE CA YS OF ME SON S FROM. . . 3001

The Pomeron contribution gives an amplitude A~
=2pN /n=2pN for n=1. We take N=2. 1 GeV'
(halfway between the A, and the next recurrence)
and find the Pomeron contribution alone to the
total q' width to be 0.195 MeV for linear or 0.247
MeV for quadratic mixing. We next combine the
Pomeron amplitude with the A, pole and other
vacuum trajectory amplitudes. There is a sign
ambiguity since the relative sign of the Pomeron
to A.,-pole amplitude is not determined by an FESR,
so that we have calculated 2X3&4 =24 possible
cases. Out of these, there are three which may
be consistent solutions. Two are for the upper
limit values and case (a) for the trajectories. De-
pending on the relative Pomeron sign, one gets
0.34 or 0.09 MeV for the total g' width, both of
which are consistent with the upper bound I'(q')
&1.9 MeV. However, the small I (q') combined
with a large A2q'm coupling may be inconsistent
with p dominance of the q'-may decay, as men-
tioned in part B. The third possible solution is
for case (a) vacuum trajectory, linear mixing,
and constructive Pomeron interference. It pre-
dicts I'(q') =0.25 MeV, which is consistent with
the linear mixing value from SU(3)-fitted two-
body decays. There are no consistent solutions
for quadratic mixing. All remaining 21 cases
give inconsistent results, either above the bound
for I'(q'), or unequal to the SU(3)-fitted values
for the linear or quadratic mixing cases. It is in-
teresting to note that although the A.,-pole con-
tributions are negligible in the amplitude, the
essential scale of the decay is still determined
by the A2q'm coupling through the FESR and its
interference with the Pomeron amplitude.

One might think that the unknown coupling A2q'm

might be eliminated by considering the ratio
I'(q'-yaw)/1(q'- wry). However, one must re-
member that, unlike this case, the scale of the
I'(q'- mmy) is not determined by the A,q'v cou-
pling. This only determines P near t =0 and is in
disagreement with the P at t = m~' inferred from
the existence of a two-step decay through a real
p meson t see discussion after Eq. (27)].

APPENDIX: THREE - BODY DECAYS

We consider the general decay,

mass: M-m, m2m»

momentum: p -q, q, q3

and specialize to m, =m, = p. , m3=m. The decay
rate is given by

1 d'q, d'q, d'q, (2w)4

2M 2E, 2E, 2E, (2v) ~

x5t'i (p -q, -q, -q, ) Q ~M~'
SPlllS

1 m'

( )5 dEi dE2 F(E„E2), (A1)

where F(E„E,) -=Q, IM ('. We define the usual
Mandelstam variables and evaluate in the rest
frame of M, where p = (M, 0, 0, 0):

the g meson. For K*-Kmm an absolute decay rate
is predicted which is lower than the present upper
bound, but may be accessible in the future. For
q'- r~mm several solutions are possible, but one
with linear q-q' mixing is preferred. For each
possibility, however, a definite form for the t-
channel Regge-pole terms is selected. The form
of the FDR amplitude may be considered as vector-
meson pole dominance plus corrections (q, q'
-mny), or a method of consistently adding poles
in all three channels of a crossing-symmetric
amplitude without double-counting (&u, p-3m), or
as a constraint on possible mixing schemes (q'
-qpm). It is interesting to note the consistency
of the SU(3)-fitted values for A, -q'v and I'(q')
from two-body decays with the three-body decays
g'-7tmy and q' pm' via the FDR amplitude con-
strained by FESRS.

We take these successes as an indication of the
basic reliability of the FDR+ FESR approach, and
propose to extend it to other reactions. Other
less well known meson decays as well as the bary-
on decays N*-Nzm will be considered in a subse-
quent paper.

IV. CONCLUSIONS

The main result of this study is that the FDR
approach with pole dominance is consistent with
a wide range of three-body meson decays. The
specific results vary with each reaction. For
q- mmy, an absolute total width prediction is made
which is in agreement with experiment. " For
q'- ivy and Q -3w absolute branching fractions
are predicted for the p-dominated part. For +

3m an absolute decay rate consistency requires
a substantial branching ratio for the cow decay of

s =- (P —q, )' = (q„+q, )' = M'+ m ' —2ME„

t=(p -q, )' = (qa+q, ) =M2+ p,
' —2ME, ,

u=(p -q, )' =(q, +q, )' =M'+ p~ —2ME2,

limits

4)2 & s &(M-m)2

(m+ p, )' & t, u &(M- p, )'.
In terms of the s, t variables,

(A2)

(A3)

(A4)
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We first consider all 0 particles (q - Sm, q'- r]mm)

Since there are no spins involved, assume F(s, t)
= constant.

The phase-space boundary is given by zeros of
the Kibble determinant

M2+ m2+ 2p, —S
E~

(s -4g') [s —(M+ m)'J I s —(M-m)'J'2 S

(A7}

q
2 q1' q2

We need

q1 q2
2

q2 q3

q1'q3 q2 q3
2

6 =0 when t = t, (s):

b =-,' (st(M2+ m'+2p, 2) —s't —st'
+ s(M2 —i),2)(t), 2 -m') —t(2(M2 -m')'],

(A6}

ds dt=
(Af -m) 2

ds(t, —t ).
P

To evaluate this, we let

s -4p2 s —4p2
(M-m)2-4p2 a

with

a =(M-m —2(L(, )(M -m+2' ) —=Q(M-m+2') .

Then

r (M+ m)2 —4(L(,
2 't2 ' y(1 —y) (1 —ay/I (M+ m)' —4t(, 2J$

J
dsdt=a 2 dy 1 ( ~4 2)

, (M+m)2
= Q2(M —m+ 2tt)', —1

4p, 2
1 1

&(2)2) i(2, —
r iSixqy)q (A8)

where

Q(M-m+2', ) Q(M-m+2')
(M+m)2 —4t(, 2 ' 4t(,

r(x) r(y)
I'(x+ y)

Q(M-m+2') Q(M-m+2t(, )
4Mm ' (M -m)2

We evaluate this for q-3m in the nonrelativistic
(N.R.) limit, m=p, M=St(, , u =v =0, F, =1, to
get the usual expression

and I', is a generalized hypergeometric function, "
defined by a series expansion

F (- t P'.' y)=ZQ '-"'-"".-y
m=a n=o (y)rn+nml 22!

IAI2 Q2 (4~ )2 (3~2)1/2

(32)' m'M (Sp)' 2p

Q2 IAI'
)t3 v2Mx384 ' (A 12)

(A 9)

which converges for IxI&1, lyl&1.
For most mass configurations, I yl& 1 and Ixl & 2,

so we must use the joining relation

F,4, ~, tt'; y;x, y}

=() —q) q(( —r) q n, (r —q, (l, () r; „) ))."

For q'- gm7t, we evaluate F, by the power series

=1 —4Q+ 4V —~QV —~Q + ~V +'''1 1
1 4 4 64 128 128

This leads to

1"„, „... = 1.97 x 10 '
I A
I' MeV

or

r„, „,„=3IAI'&eV

This gives

IAI2q2 (M-m+2t )2 (Mm)'t2
(32)2 s2M M2 M m

1 1
XFx(2 r

- 2 q 2 i Siur V) q

where

(A10)

(A11)

for all charge modes.
For one vector and three pseudoscalar particles

((q) -Sx, 7i, q'-)T2y), the most general form for
the amplitude is

JIM(*=glqg (q)q"qr'(q, )q(q, ) (q, ), n(l',
spins

which leads to

g IMI'=IAI'~,
spin s
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where ~ is the Kibble determinant previously calculated. We need

(N m) t+
~ ddt & s t = ds dt t-t+ t-t

4p2

(s -4p, 2)(s-(M+ m)')(s-(M-m)')
s

(N -m)

24

We again use y = (s -4p, 2)/a, and express the integral as

(A14}

For most equal-mass configurations, we use the joining relation

4l1M ' (M-l1)' ' '
1 Q(M+y, ) Q(M+g)

1(2% 2t 0 I PX) (M )(M 3 ) 4 2 1 2t 212t 0 4 M 9 (M )2

(A16}

For vector-meson decay, the result is

2 Q4(M+P)4l1dl1M (A(2
3 ~2(16)'M2(M-q )

(A17)

For &-3m, we find numerically F, =2.08, so that if
if we express

ate F, by a power series and find a value 19.3.
This yields 7@=0.78&10 ', where T is defined
in the same way as in (A18). It is instructive to
compare this value with the extreme relativistic
case, where I» p. . The phase-space integral is
then

QJ~ 32 (2 )3 QJ

we find the phase-space factor

(A18)

so that

tdt JIjl"—(t -M')' =
24 480

p =4.57x10-'.

For the decay $-32, the masses are such that
we must use the joining relations

&1(-', -2, -'; » », X) =(I -~)'(I -S) "'
or

1 1
3 642 M 4M 480

P,= 2.17x 10
XxF, —,, 6, 2', 5;x, —;—
]

(A19)

with 2: =0.552 and (x —y)/(1 —y) =0.955. We evalu-

almost a factor of 3 greater than for P. For the
decays q, q'- mmy, the zero-mass photon makes
phase-space integrals simplify somewhat. We
have

1
d

s -4p. s -M
24 4p2 s

(M2 4~2)11/2 4~2
24M B(2, 4) 2E, 4, 2, 2, 1 -

M2 (A20)

where 2' is the usual hypergeometric function of
one variable. This leads to

(/(2MV(] 4/2/M2)11~2

(2v}' 24 33 35

and

K =0.98x10-'
7)

F„,=3.4x10-',

2F~ 4~ 2 (A21)

A numerical evaluation of,F, yields 1.35 for the
q and 1.51 for the q', leading to the usual dimen-
sionless phase-space factor of

It is often useful to have a pole-dominated ampli-
tude integrated over phase space rather than a
constant matrix element. For ~-3w, the p pole
is outside the physical region, so we multiply the
original phase-space density by a factor
[(4p2 -m~2) j(s -m~3)]2 and expand around s =4p, '
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(the normalization point). The result is a series
of hypergeometric functions, and we can express
the ratio of this to the original phase space as an
enhancement factor

m, '+m 'P'
(t-m ')'+m 2r2

P P

and do the extreme relativistic. case and get

where

(n+1) [(M-3p, )(M+p}]" B(—,'+n, 2)
(m p2 —4p2)" B(-., 2)

1
E1(2, —2, 2,' 5+n;u, v)X

+1(2 i 21 21 5~211 v)
(A22}

where

dz(1-z) z2

z'+ 2z (a —1) + (a —1)'+ b
(A23)

(M- 3p,)(M+ p. ) (M- 3p)(M+ p, )
4Mp, ' (M-p)

A numerical evaluation gives 2.3 for this pole en-
hancement factor for &u -311. For $-32, the p
pole is in the physical region, so we must include
a width. We multiply by a factor

can be evaluated in terms of elementary functions.
»r p-, 311 and 1",=125 MeV, J=1.27, which leads
to an enhancement factor of 8.2 over the constant
matrix element case.

For g- wry the p pole is outside the physical
region so we use the same factor as for ~-3w.
The phase-space integral becomes

J M2 4 211/2 m 2 4 2 2 I'-4' 4 ~

P P

(A24)

The E, function is evaluated for M= m„and yields 0.62, leading to an enhancement factor of 1.4 over the
constant matrix element result. For g'- mmy, the p pole is in the physical region, and we use the same
factor as for P-3m. This leads to a phase-space integral which must be approximated:

(M2 4/2)ll/2 4/2(m 2 4/2) 1/2 m 2 + m 2 ZI2 m 2 4@2 m 2 Zl2

48'
m

~2(M2 —4112} (M' —4p2)2 M' —4p2 ' (M' —4p2)2 (A25)

where Z is again defined by (A23). The approxima-
tion involved using an average value of a slowly-
varying part of the phase-space factor, but keep-

ing the exact pole factor. For M =m„and 1 = 125
MeV, J=0.645, which yields an enhancement fac-
tor of 10.0.
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