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The constituent-interchange model is used to relate large- and small-momentum-transfer reactions, to
relate inclusive and exclusive processes, and to predict the form of the inclusive cross section
throughout the Peyrou plot. Two important corrections to the triple-Regge formula are derived. The
first, important at a small missing mass, allows a smooth connection to exclusive processes. The second,
important at large missing mass, allows a smooth connection to the central region and to the
large-transverse-momentum regime. Simple quark-counting rules are given which predict the limiting
behavior of Regge trajectories and residue functions, and also the powers of P~' and the missing-mass
dependence of inclusive cross sections. Many experimental consequences of the model are given.

I. INTRODUCTION

One of the most exciting aspects of large-trans-
verse-momentum hadron reactions is the pos-
sibility that we can probe the simplest constituent
structure and underlying dynamics of hadronic
matter at short distances. Recent data for in-
clusive and exclusive processes at large P& ap-

pear to be consistent with scaling laws of the
form'

GO' I;E &, (A+B-C+X)-(pz, ') ~ f
and' '

—(A+B C+D) (pz2) «f
dg S
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from P,„=5 to 2000 GeV/c, and have given support
to field-theoretic composite-hadrons models' "
with the degrees of freedom of the quark model.
In the case of exclusive processes, the observed
power-law behavior ~n P& is consistent with the
simple dimensional-counting prediction N=n —2,
where n is the total minimum number of eleme«arv
fields in the external particles, .4, B, C, and D."
The angular distributions of the exclusive pro-
cesses f(t/s) are also consistent' with the hypoth-
esis of the constituent-interchange model (CIM)
that the important elementary interaction between
hadrons is the interchange and exchange of common
quark constituents; hard-gluon exchange between
quarks of different hadrons does appear to be sup-
pressed at large P&."

In the case of the inclusive processes at large
P&, the predicted power from dimensional counting
is N=n —2, where n is the minimum number of
fields required xn the elementary lrreduclble sub-
process responsible for the production of C at
large transverse momentum. In the CIM, the
minimum subprocesses involve quark-hadron scat-
tering and have n» 6, or N» 4. Again, this seems
to be consistent with the recent measurements at
the CERN Intersecting Storage Rings (ISR)' and
Fermi National Accelerator Laboratory (FNAL). '
A rough analysis of the reactions PP - wX and

PP -P& are consistent with values of 2N ranging
from 8 to 12. Therefore scale-invariant quark-
quark gluon-exchange interactions (X=2) are ap-
parently absent, or at least not required by the
data.

In contrast to the possible theoretical simplicity
of large-P~ reactions, the physics of small-t and
-u processes are complicated by the coherent
multiparticle and multiperipheral nature of Begge
behavior. Nevertheless, as emphasized by Hjorken
and Kogut" and demonstrated explicitly in Befs.
8 and 17, there must be a continuity of dynamics
from large to smaO momentum transfers. By
assuming a smooth connection between these two
domains, one obtains conditions on the normal-
ization and functional dependence of the large-
transverse-momentum reactions in direct analogy
with the Drell- Yan" relation and Bloom-Gilman
duality" for electroproduction.

In this paper we turn the "correspondence" argu-
ment around and investigate the implications and
constraints on low-momentum phenomena in order
that the physics in the 8egge region is consistent
with power-law scaling behavior at large trans-
verse momentum. %e emphasize here one feature
of the CIM which is different from other parton
models: Once the basic irreducible amplitude is
given, the calculation proceeds by using only had-
ron intermediate states in order to produce the

full complexltles of Begge behavior ln the ampli-
tude.

This paper thus represents an attempt toward
the theoretical unification of the under lying physics
of the many kinematic domains of inclusive and
exclusive processes (see Fig. I). We shall at-
tempt to clarify the relations between large- and
small-momentum-transfer react&ons, to explore
the exclusive-inclusive connection, and to predict
the limiting forms of the inclusive cross section
at the kinematic boundaries. Among our new re-
sults are the following:

(I) The domain of applicability of the simplest
Begge formulas for inclusive reactions is more
limited than usually supposed. The usual triple-
Begge formula, ' because of the restriction %2
»( f ~, cannot be continued into the resonance
region or exclusive limit. However, we shall
present a cross section A„valid for small K'/s
which connects smoothly onto (i) the large-trans-
verse-momentum region, (ii) the exclusive and
resonance region at any 9, , and (iii) the triple-
Begge formula for the fragmentation region
s +&K'»I,. The formula for A„respects the CIM
and the dimensional-counting rules at large mo-
mentum transfer and obeys a generalized Drell-
Yan-Bloom-Gilman duality at the exclusive limit.

(2} The consistency of Regge behavior and pow-
er-law falloff at large transverse momentum de-
mands that the effective trajectory o.„c(t),which
appears in exclusive reactions and the triple-
Begge formulas for inclusive cross sections, ap-
proach negative integers as I;- —~. %e present
an extended dimensional-counting formula for
n&c(-~) for all 4 and C including exotic channels
in Sec. IIB.

(3} Throughout most of the allowed kinematic
domain of inclusive reaction, i.e. , for finite NI /s,
fragmentation (hadronic br emsstrahlung) will oc-
cur from both target and beam projectiles. In
Sec. IV we present a cross section 8, for the entire
interior or central region of the Peyrou plot which
is expressed in terms of a convolution of A„con-
tributions. In this case, we find that A, connects
smoothly to the central Regge region [s-~, t, and
uS0(vs )], and yields a generalized multiperiph-
eral type of description of low-P& processes. On
the other hand„we find that B, may play a critical,
unexpectedly important role in the triple-Begge
domain. These new important contributions, which
originate (for t/s-0) from beam fragmentation and
dissociation diagrams, correspond to disconnected
cut contributions and cannot be identified with a
simple Begge singularity of an exclusive process.
The analogous contributions in inelastic Compton
scattering and photoproduction yield important
background terms at large transverse momentum
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g (a/A) =2n(aA) —1 .

Here n(aA) is the minimum number of quark fields
in the state aA. [For a =A, i.e., no beam frag-
mentation, we can formally take g= —1.] We find
that the subprocess a+b- C+&* then gives a con-
tribution of the form [K'/s -0, xz =p~™/pp'&0]

cfog g(a/&)+ g(b/B)+1-f.~-c~*(pr')
p 8

p 2 A/2 1-g(b/B) -2'~
X yy8 S

where f(Pr') —(Pr')' "' "~ "c "~* for large Pr and

y -[g(b/&) +1J /[g(a/A) +g(b/B) +2]. The threshold
dependence can be critically angular-dependent.
Thus in the forward direction (Pr'/s -0, xz, - I)
we have the threshold behavior

g(~ /&)+ 2-2 n«40
d'p (2)

where a,c = cL,c(x~ t) is the effective trajectory
coupling a to C. This agrees with the usual triple-

and small K'/s.
We thus find that examining the inclusive cross

section from the perspective of the entire kine-
matic domain of both large and small momentum
transfer leads to many unexpected relationships.
The formulas for R„andR, serve as a link be-
tween the normally separated domains of inclusive
reactions. Most satisfactorily, the underlying
quark constituent structure which yields power-
law behavior is only evident at large P&, our de-
scription melds into a purely hadronic-state anal-
ysis Bt small momentum transfers.

In addition to determining the power-law behavior
and effective trajectories c~c(t) at large trans-
verse momentum, we can extend dimensional
counting to completely determine the threshold
dependence (K'/s-0) of the inclusive cross section
at any angle, including t=0. First, some defini-
tions are needed.

We shall describe the most general scattering
processes which contribute to A. +B-C+X accord-
ing to the classification shown in Fig. 2. The sub-
process a+b- C+ &* which produces the detected
particle is by definition haChon-ihheducible in
that neither a nor b fragments (i.e., emits hadronic
bremsstrahlung before interaction). We define the
probability of finding the irreducible state a in the
incident hadron A with fractional longitudinal mo-
mentum x (in the infinite momentum frame of A)
as G,~„(x).Dimensional counting then gives for
x-1 (see Sec. IIA),

G, g„(x)-(1-x)~ ' "

Regge formula if A does not fragment [g(a/A) = —1J.
However, in most cases, especially for exotic
channels, fragmentation of the beam will be an
important contribution for finite K'/s values. In

particular, if we consider the diffractive sub-
process C+b-C+b, then a«-1 at t-0, and we
obtain the direct dissociation term

E -(1-x )' ~"& =(1-x )'" " ' (t -0)
y3p L l

in place of the triple-Regge term (1-x~)' '"~c '
This gives an "effective" trajectory

n„'"= —,
' [I-gC/A)]

=1-n(CA) .

Again we emphasize that this contribution falls
outside the scope of the usual triple-Regge anal-
ysis since it derives from beam fragmentation
and is usually associated with the central {or dou-
ble-Regge) region. The definiteness of the CIM
allows one to continue these contributions into the
tr iple-R egge r egion. The compar ison of these
predictions with experiment is given in Sec. V.

At large transverse momentum, the threshold
dependence of Eq. (1) for the subprocesses
( +ah-C+d+) is (K'/s)"' "'+' ' ' +'

havior, together with the predicted power-law
dependence in P&', and the distinctive quantum-
number character, multiplicities, and correlations
of the final states, allows an unraveling of the con-
tributions of the various subprocesses a + b -C + d*
which can contribute in different kinematic do-
mains of the inclusive cross section. This will be
discussed further in Sec. II B, and the leading
subprocesses are summarized in Table I.

The organization of this paper is as follows: In
Sec. II we present a useful decomposition of the
inclusive cross section which separates the com-
plications of hadronic bremsstrahlung (fragmenta-
tion) from the basic hadron-irreducible scattering
subprocess. The properties of the hadronic struc-
ture function G,y~(x) are reviewed and the thresh-
old dependence at x-1 is computed using dimen-
sional counting. The computation of the irreduc-
ible subprocess in the CIM is then presented. We
also give a new, general, dimensional-counting
formula for the asymptotic trajectory o~c(- ~)
coupling any two hadron states A and C, and the
corresponding residue functions.

In Sec. III we present an analysis of the exclusive-
inclusive connection and a generalization of the
triple-Regge formula. The complete cross sec-
tion, allowing for both beam and target fragmenta-
tion, is then computed in Sec. IV, and the thresh-
old dependence at the various kinematic boundaries
is made explicit. Additional applications are dis-
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cussed in Sec. V. A section with a discussion and
conclusion then follows.

PT
e -0 (exclusive limit)

II. DECOMPOSITION OF THE INCLUSIVE CROSS SECTION

The entire kinematic range of high-energy in-
clusive reactions is illustrated on the Peyrou plot
of Fig. 1. As usual we define

S (PA +PS) &
t (PA pc) ~Triple Regge Region PL

=(Ps -Pc)
&

3g' =(PA+Ps -Pc)',

e =K'/s =(1—p, /p, „),
xr =pr/p, „& xr. =pr/p, „=(t-u)/s.

The resonance region and exclusive scattering
limit occur near or at the kinematic boundary
on the circle. The position of the triple-Regge
region is shown schematically, as is the central
region.

The decomposition of the inclusive scattering
process displayed in Fig. 2 is extremely useful
for separating the effects of peripheral interactions
and hadronic bremsstrahlung (or fragmentation)
from the effects due to basic elementary processes
dependent upon constituent structure. The sub-
process a+b- C+d* is hadron-irreducible in that
neither hadron a nor hadron b can produce another
hadron by the bremsstrahlung process before in-
teracting (see Fig. 3). Using this decomposition,
we can compute the total inclusive cross section
as

FIG. 1. Schematic representation of the various
kinematical domains within the Peyrou plot for the
inclusive reactions A+B C + X. The cross section
B„discussed in Sec. III connects smoothly onto the
triple-Regge formula for inclusive reactions and the
exclusive cross sections in both the fixed-t Regge limit
and the fixed-angle deep scattering region. The cross
section R~, discussed in Sec. IV, should dominate the
interior central region of large missing mass.

dx, G, /„(x,) G, /s(xb) (s '+ t'+u')

In general, one has

do'
x ——(a+b-C+d*) .

dbp/E

transverse momentum.
Note that it is also possible to compute the aver-

age missing mass of the state d* directly from
(Kaw =s +t +u )

E, (4+B-C+X)&3gaa')
do'

d'p

E d, (A+B- C+X)
do

p
I

dx,
a, 5

dXb Ga/A(Xa) GBb/( b)X

x, (a+b-C+d*) . (4)
d

d3p E

&3ga*') =Pr'f(e, xr'),
where f(e, 0) does not vanish, and f decreases as
e-0. This allows an estimate of the associated
multiplicity (if the entire recoiling system is de-
tected) if one assumes that the multiplicity of d*

is linear in in&SR„*'),as intypicalhadronic events.
The function G„/A(z) gives the probability that a

The superscript I means hadron-irreducible, and
the basic irreducible subprocess a+b -C+d* is
evaluated at

S ' = (pa +pb ) = x a xb S

t'=(p. —p, )'=-x. t,
u = (Pb P) = xbu-

b)

The missing-mass state X in general consists
of beam fragments (Xa), target fragments (Xb),
and the system (d*) which is produced in the basic
irreducible subprocess and carries the balancing

FIG. 2. The general decomposition of inclusive re-
actions. The overaIl inclusive process A. +& —C +X is
written as a sum of hadron-irreducible processes a +b
—C +0*.
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(a) (b)

from at least one hadron is suppressed. In the
central region, which will be described by the
reducible cross section B, (see Sec. IV), brems-
strahlung from A. and B has no strong suppression
and must be included.

A. The properties of the distribution functions G „(z)

+ ~ ~ ~

(c)

FIG. 3. The interior structure of the irreducible sub-
process a +b —C +d*.

hadron A with infinite momentum will emit a had-
ron H with fractional longitudinal momentum z
(0&z &1), as has been discussed in Ref. 8 and Sec.
I. Note that the convolution formula (4) neglects
the transverse-momentum distribution and certain
off-shell effects in intermediate states. These
corrections will be inessential in the applications
discussed here.

The summation in Eg. (4) implicitly includes
the direct contributions to the inclusive cross sec-
tion where fragmentation from the target B and/or
the projectile A. does not occur. In this case, one
clearly has Gzy~(z) ~5(1-z). In general, frag-
mentation from the initial particles is only sup-
pressed when we approach the exclusive limit
II'/s 0. The nature of this suppression, how-
ever, depends critically on the production angle.
For processes at large transverse momentum
with 4Pr'/s approaching 1, a finite fraction of the
momentum of both A and B is required in the
basic production subprocess, and bremsstrahlung
from both incident particles will be kinematically
suppressed. This is the deep region of inclusive
scattering which is most sensitive to short-dis-
tance effects and which will smoothly connect onto
large-angle exclusive scatter ing.

On the other hand, at small momentum transfers
(Pr' = tu/s -0) in the forward direction, hadronic
bremsstrahlung from just the projectile A will be
suppressed as we approach the exclusive limit
(1-x~ -SR'/s —0); however, fragmentation from
the target is allowed. This is the triple-Regge
(or fragmentation) region which is usually de-
scribed in terms of the Regge poles a~c(t) in the
XC channel observed in elastic scattering.

More generally, we shall divide the Peyrou plot
of Fig. 1 into a central region (which includes the
central Regge region, roughly ~xl. ~& & at small
momentum transfer) and an outer ring region. In
the outer region, which is described by the cross
section B„(seeSec. III), hadronic bremsstrahlung

G,g„(x)=
dz I

G~„( /xz) GHy„(z),z
H

(6)

where the summation is over all irreducible had-
ron states H which contain a quark of type q. The
deep-inelastic structure function is given by the
familiar relation

F,„(x)=x g A., 'G,g„(x),
c

where ~, is the quark charge. The notation G,yH

in Eq. (6) denotes that it originates directly from
a hadron-irreducible wave function —computed
without hadron intermediate states. As discussed
in Ref. 16 the Bethe-Salpeter wave function of
the irreducible hadron H has asymptotic power-
law behavior and is responsible for the power-law
falloff of exclusive scattering amplitudes at fixed
angle, form factors, and the Drell-Yan-West re-
lation. "

For x-1, the threshold power g(q/A) can be
introduced as

G,y~(x) -G', i~(x) -(1-x)""'
Dimensional counting then gives the result

g(q/A) =2K- 1,
where N is the minimum number of left-over
quarks that are necessary for hadron A to produce

In order to describe the reducible contributions
to the inclusive cross section we shall require the
properties of the hadronic distribution functions
Gzg~(z). In particular, the central Regge region
is sensitive to the small-z behavior of both G, ~&

and G, y~. On the other hand, the & —0 dependence
requires the z-1 behavior of either or both dis-
tribution functions. In fact, we shall show that
all of the essential features of the G(z) can be
predicted, and thus these are not functions to be
fitted to experiment, but will serve as critical
tests of the model.

By momentum conservation, we have

1
dzz Gzy~(z) =1,

H

which serves as an overall normalization con-
straint. The distribution function for quark-par-
tons in hadron A can clearly be written as a con-
volution:
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the (luark of type q. Now using E(i. (6}, one easily
sees that the only consistent threshold dependence
of GH/~ ls given by

G„/ (z) -(1-x)'"/") z x

g(H/A) = 2n(HA) —1, I
—z I-x

where n(H&) is the minimum number of (luarks
that can be produced in the process A+H-quarks.

This simple yet interesting result only depends
on constituent counting and the assumption of an
underlying scale-invariant hadronic theory on the
(luark level. Sample values of g(H/&) are easily
computed with the above rule: g(P/P)= —1 [this
actually represents G), /), ~ &(1-z)] or 3, g)('/p) = 5,
g(K'/p) =5, g(K p) =9, g(p/p) =11, and g()(/p) =3.
Note also g(q/p) =3, g(q/p) =7 for anti(luarks and

strange quarks in the nucleon, andg(q/z) = 1. Some of
these latter results have also been independently
derived (in a different manner) by Farrar, "and
Gunion~ has given a derivation of all these num-
bers using infinite-momentum-frame techniques.

It has been shown in Bef. 16 that the small-z
behavior of G„y&is determined by the leading
Begge trajectory in the X4-IIII channel, i.e., the
leading behavior of &~z - 8 & ~ '. A form of G&y~
that has the correct behavior as z -0 and z -1 is

G (z) z-a~(0) (1 z)&(&/&)

This simple behavior will be used throughout this
paper, but it could be multiplied by any smooth
function of z without modifying any of our essential
r esults.

Using E(l. (6), the deep-inelastic structure func-
tion has the form

E„()(,) = ~z P E,'„(x/z)G„/,(z), (10)
x H

where I",& is the hadron-irreducible structure
function. This equation is illustrated in Fig. 4.
Note, as has been emphasized in Bef. 17, that the
Hegge behavior of Gz/&(z), which in turn reflects
the hadronic bremsstrahlung of the target particle
B, leads to Begge behavior for the structure func-
tion at small x.

B. The structure of ihe irreducible subprocess

The most critical physics of an inclusive re-
action occurs in the irreducible subprocess
a+5-C+d~ and in a certain sense, this is phys-
ically the most interesting object to study. The
major complication of inclusive processes —ha-
dronic radiation from the incident particle —is,
by definition, removed.

At small momentum transfer, the irreducible
subprocess amplitude has the conventional ex-

(a) Reducible (b) Irreducible

FIG. 4. The decomposition of the structure function
v W2&(x) into its hadron-reducible and hadron-irreducible
components.

S(4 n~ ng nc nD) /2f ( () )

where n& is the number of elementary fields in
A. , etc. The amplitude can also be written in Begge
form as

M p»(t) (-u)" -'"+p»(f) ( s)" c'"
+ ~ 4 ~

for fixed t, s -~. The asymptotic behavior of the
trajectory ~~& at large t is controlled by the quark-
hadron scattering amplitude as in Fig. 5, and the

pansion in terms of Hegge trajectories o.,c(t} for
f -0 and u(, c(u) for u -0, where anc and o.,c are
the same trajectories that occur in exclusive pro-
cesses. This is not always true for the reducible
contributions, as emphasized in Sec. IV. At high
momentum transfer, the subprocess occurs at an
energy

SgQ + 4plp

It is therefore sensitive to the same short-distance
effects which occur in high-energy fixed-angle ex-
clusive scattering. In the large-momentum-trans-
fer region we will use the constituent-interchange
model developed in Befs. 8, 9, and 17, which has
a wide range of experimental support. This sup-
port ranges from 5-GeV/c exclusive experiments
at fixed angle to the large-transverse-momentum
exclusive experiments at NAL and the CERN ISR.

The main hypothesis of the interchange model
is that only quark-hadron interactions are impor-
tant at short distances; direct interactions be-
tween quarks of different hadrons are assumed to
be negligible. Exclusive scattering of hadrons at
fixed angle is thus accounted for by the exchange
or interchange of common quarks between the
hadrons,

By using dimensional counting and a specific
choice of quantum numbers for the constituents,
we can completely specify the asymptotic behavior
of the irreducible CIM amplitude. At fixed angles,
the exclusive amplitude M for A +J3-C+D scales
as
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ratio of the residues is determined by the quan-
tum numbers of the constituents. It is now easy
to see that for t- —~ one has rthese results are
extensions of the formula given in Ref. 14, and
we assume for s» t that M(qA - qC} depends only
on s and u]

1
+AC( ) 2 ( +A +C +' t)

and

where n. , is the minimum number of exchanged
quarks compatible with the external states. The
necessary cancellations between trajectories that
are required for the factorization of residues are
derived and discussed in Ref. 17. Only the domi-
nant diagrams were kept in the above derivation.

Some representative asymptotic trajectories
o.„c(t-—~}using quark counting are as follows.

&"(-")=&rx(-")=-1
o'pp(- )=np.(- )=-~
n,p(-")=-~

&s p(-") =-3
o'x- -(-")= —1

Pomeron, p, ~, P, etc.

Pomeron, p~ (d~ (j), etc.

N, A

K*

a,+r-(- ~) = a,+,-(- ~) = —2 exotic

~x-.(- "}= —3

&pp (- ")= o' -(-")= - 4

exotic

exotic

These results are in agreement with PP and n P
elastic scattering. "'"

We also can predict the limits of the resultant
effective trajectories induced by the pointlike
aspect of the photon (nz = 1):

FIG. 5. The virtual hadronic bremsstrahlung, which
gives rise to full Regge behavior in the CIM.

n~z( ~}=0 (J =-0 fixed pole),
1~„(-")=-2,

o p(-")=-2
(although spin may modify these last two results).
Also, for the case of inclusive processes at large
transverse momentum, we need the values

and

( oo) =0

dg (a+B-C+x)
dtdx

Nfl
G,ts(x) —(a+q- C+q), , „,(14)

t'=g

where x= —t/(It' —t) = —t/(s +u) is Bjorken's
scaling variable and

do' s x do'

d'p s(s+u) dtdx
We emphasize that we have automatically included
fragmentation from the target particle B by using
the structure function G,gs(x) ~ E»(x)/x. Then by
convolution with G, t„(z)and summation over the
irreducible states a we obtain the full cross sec-
tion for 4 +B- C +D. Note that, formally, Eq.
(4) can now be applied both when a and b are had-
ron-irreducible states with hadronic quantum
numbers and also at the short-distance level where
a and/or b can be taken as a hadron-irreducible
quark-parton state.

Clearly in the exclusive limit where e-0, we
will obtain the analogue of the Drell-Yan relation
and Bloom-Gilman duality, i.e., we shall obtain
a smooth connection between the inclusive reaction

a~(-~) = —1.
In general, the signature and possible exchange-

degeneracy of the trajectories are controlled by
the assumed types of quarks which can be ex-
changed in the t channel. Notice that exotic as
well as ordinary trajectories are specified by
the CIM at t--~. The iteration of the basic CIM
irreducible kernel in the I; channel will produce
a moving trajectory, which then connects with
normal Regge phenomenology at t -0 and eventuall. y
connects to the particle bound states in the AC
channel at positive t, Accordingly, it is natural
to expect that the exotic trajectories remain quite
near to their asymptotic t- —~ values and even
at t=0 may not be very high above this value.

The basic irreducible subprocesses of the CIM
for inclusive processes are shown in Fig. 3. In
Fig. 3(a) an irreducible hadron state a of the pro-
jectile interacts (via constituent interchange)
with a quark state of hadron B. We can compute
the quark probability function G, y~ via hadron-
irreducible intermediate hadron state b, as in Eq.
(6), or directly via Eq. (9). The quark-hadron
scattering amplitude a+q-C+q in Fig. 3(a) yields,
for deep-inelastic hadron scattering, an "effective
current" which is the analogue of the e+q- e'+q
amplitude in deep-inelastic lepton scattering. We
thus have immediately
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H+B- C+~ (where H is a hadron-irreducible) and
exclusive channels H+B- C+D (calculated via
the CIM at the corresponding t). This will be
discussed in detail in Sec. III.

As t becomes small, the "virtual" hadron brems-
strahlung diagrams [Fig. 4(b)], where hadrons
are emitted by & and are absorbed by C, become
important and build up normal Regge trajectories
o'.c(t ).

In this way, the internal quark description, which
is required in order to understand the power-law
behavior and angular structure of reactions at
large transverse momentum melds into the con-
ventional hadronic description at small momen-
tum transfer. This effect, along with the exclu-
sive-inclusive connection, extends the validity
of the correspondence principle proposed by
Bjorken and Kogut. "

Another potentially important contribution to
the irreducible subprocess at large transverse

momentum is the "fusion" process, which has
been particularly emphasized by Landshoff and
Polkinghorne. " The important fusion processes
are evidently p + p -meson+ meson*, and p + q
-baryon+q. In the first case, assuming C is
a meson, we compute

40' 40'
(q+B C+X) =G;gs(z) —(q+ q-C+C+

t'=t

(15)
and then convolute with G,y~ as in Eg. (4) to obtain
the full inclusive reaction A +B C+X.

In addition to quark interchange and fusion, we
can also have "reverse fusion" based on the pro-
cess M +M -q+g. The detected hadron C is then
emitted along the quark-jet direction, with prob-
ability given by the quark fragmentation C,g& as
discussed by Berman, Bjorken, and Kogut. ' In
this case the final state contains two jets, and
should be analogous to the final state produced in

TABLE I. The expected dominant subprocesses for selected hadronic inclusive reactions
at large transverse momentum. The second column lists the important exclusive processes
which contribute to each inclusive cross section at & 0. The basic subprocesses expected in
the CIM, and the resulting form of the inclusive cross section Eda/d p - (P&'2) e forp„2-~,
E' 0, and fixed 0&.m. are given in the last columns. The subprocesses that have the dominant
P~ dependence at fixed e are underlined. For some particular final. -state quantum numbers,
the above powers of e should be increased.

Inclusive
process

Excl.usive-limit
channel Subprocesses

do'

dye@
(()-90')

M+B-M+X M+8 -M+B~ (n =10) M +q~M+q
q +B ~M+qq
M+B M+B *

(p ') 4~'

(p 2) -6(c 1

(p 2) 8q

B+B~B+X B +B B+B* (n =12)

B+B B +B*+M* (n =14)

B +q B+q
(qq)+ (qq)-B+q
B + (qq) B +qq
B+B B+B+

q+q B +q
q + (qq) B +M*

(qq) +B B +M*+qq
B +B-B+B *+M*

(p 2) 6g 3

(p 2) -6~ 3

(p 2) 8g1

2) -10& -1

(p 2)-4~7

(p 2) 6g 5

(p 2) -106 1

(p 2) 12~

B+B M+X B+B M+B*+B* (n =14)

B +B M+M*+B*+B* (n =16)

q+ (qq)~M+B +

q+B ~q ( M+q) +B"
q+B M+q +B *
(qq) +B M +B *+qq
B +B M+B *+8*

M +q M+q
q+q-q (-M+q)+B *
q +q M+B*+q
M+B M+B +

(p 2) -6~ 5

2) -6&5

(p 2) -8~ 3

(p 2) -10~1

(p 2) -12~ -1

(p 2) -4~ 9

2) -4&9

(p 2) 6g 7

2) -8& 5

B +B M+M*+M*+B*+B* (n =18) q+q M+M*
q +M q ( M+q) +M*

2) -4& ii

(p 2) 4q 11

B +B-B+6 *+B*+B* (n = 18) q +q B*+q( B +qq)
q +q B*+B+qq
q+ (qq) B +B*+B*

(p 2) 4~ 11

(p 2) 8~7

2) -10&5
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TABI Z II. The expected dominant subprocesses for selected electromagnetically induced
reactions at large transverse momentum. (See Table I.)

Inclusive process

y +B y+X

Exclusive-limit
channel

y+B y+B* (n =8)

y+B y+B*+M* (n =10)

y+B-M+B* {n =9)

y+B-M+M++B + ~n = &Z)

y+B-B+M* (n =9)

y+B -B +M*+M* (n =].&)

e+B e+B* (n =8)

e+B g+B*+M*+M* (n =12)

Subprocesses

q+ (qq)-B*+y
q +B~B++y+q
q+q M+y
y+ (qq) -B*+y+q

y+q ~M +q

q +B~M +qq
y+B M+B +

y+ (qq) B*+M+q
q+q ~M+M+
q + (qq ) ~M +B *

y+ (qq) B+q
q +B ~B+q
y+B B +M*

q +q~B +q
y+q -B +qq
q + (qq) B+M*

e+q e +q

+q~8+q

do'
(0 - 90')

(p 2) +3
(p 2) -5~0

(p 2) -6~ -i

{'p 2) 5g 2

(p 2) 7g 0

(p 2) -3~ 4

2)-6& i

(p 2) 3g 3

{p 2) 6g 0

(p 2) 7g -i

V~') 7~'

(p 2) 4g 4

(p 2) 6g 2

V~2) 5~'
2)-6& 0

I'p 2) 7g i

2) -4& 4

(p 2) 5g 3

(p 2) 6g 2

(p 2) 2g 3

(p 2) Q 7

annihilation. Finally, as illustrated in Fig.
4(c), we note that the hadron C can be emitted as
a decay product from a hadron c of higher mo-
mentum. However, this should be less probable in
high-momentum processes since the required sub-
process must occur at a larger 8„,and the cross
sections have power-law falloff in s,& at large
angles. The G, t~(x) are also required at even
larger values of x.

By using dimensional counting, the power-law
behavior of the inclusive cross section can be
related to the number of constituent fields involved
in the basic large-transverse-momentum event.
Representative lists of dominant subprocesses
are given in Tables I and II, together with the
associated power-law behavior. Several of the
subprocesses have been discussed in detail in
Hefs. 9, 10, and 12.

These tables are constructed in the following
manner. For each inclusive process A. +B-C+I
we first list the minimal exclusive channels X=D
(e.g. , X is a baryon resonance or baryon B*for
M+B-M+X). Using dimensional counting at the
exclusive boundary (K' fixed, Pr'- ~) we have

d -dII, = (Pr')' "f(t/s), —

where n is the number of elementary fields in

A, J3, C, and D. We next identify the leading
CIM subprocesses (allowed by the exchange or
interchange of quark fields using the elementary
two-field meson and three-field baryon wave func-
tions) which can connect to the exclusive-limit
channel (e.g., M+q-M+q for M+B-M+B) For.
each subprocess we have the contribution (Pr'-~,
e =K'/s fixed)

d(x $' do'

d~P g dtdSK

1~
( a)n

where %+2 is the number of fields in the sub-
process a+b-c+d*, and for 8, fixed (-90',
for example)

P =g(a/A) +g(b/B) +g(c/C) + I
= 2sspect, 1

where n,~„,=n(aA) +n(SB) +n(c C) is the number
of "spectator" fields. Note the identity"

%+I' =n —3,
which is the realization of the correspondence
principle. The smooth connection between the



R. BLANKENBZCLEH A ND S. J. BHODSKY

exclusive cross section (fixed Ka) and the e-0
limit of the corresponding inclusive cross section
also can provide a rough normalization of each
subprocess contribution to inclusive scattering.
Note that the final-state hadrons in the exclusive-
limit channel may recombine, but the resulting
contribution is nonleading for this simpler process
because it retains its overall scaling law (Pr')a ".

Table I describes hadronic processes and Table
II gives typical electromagnetic processes. The
entries that are underscored are the leading' sub-
processes for Pra-~, at fixed Ka/s. In the purely
hadronic reactions, the leading subprocess have
N =4. Meson photoproduction has N= 3 and Comp-
ton scattering has a scale-invariant contribution
with N=2.

Generally, we expect that for & not near 1 the
dominant subprocesses are those that contribute
to the exclusive-limit channels with the minimum
value of n. For example, if this conjecture is
true, the process B+B-B+Xwill have a small-
(P&') ' contribution which arises only from the
subprocess q+g -B+g. Another particularly
important example to check is the process
B+B-M +X; We emphasize that for ~-0 (e.g.,
xr-1 at 90') a nonleading term in Pr' may be-
come the most important because of a slower fall-
off near &= 0. For B+B-M+X, we have two
main contributions at 90'

1 9 2 5 -16
(p a)s ~ +

(p a)s & +0(pr ) .

Higher powers of & are predicted in certain cases;
e.g. , if M=& . The second contribution, which
has a smaller sum N+I', becomes relatively more
important as we move toward the exclusive limit.
This could readily account for why the FNAL mea-
surements' of PP- m'X show a value E-5.5 for
x~&0.4, whereas the CERN ISR measurements
at x& & 0.4 for PP -w'X give the value N-4. We
discuss this further in Sec. IV. Notice that for
the second contribution, a baryon system takes
up the recoil momentum of the detected meson.
For the dominant contribution which involves the
subprocess M+ g-M+@, the recoil momentum is
distributed in a "quark jet." Therefore it may be
possible to separate these experimentally by ex-
amining the details of the final states and com-
paring with the final states in electroproduction.

Similarly, in inclusive meson photoproduction
and inclusive Compton scattering, nonleading
terms in P~ may be important in the small-E
region (see Table II). The vector-dominance con-
tributions are contained in the nonleading pro-
cesses where the photon acts as a quark pair
rather than a single elementary field. No specific
references shall be made to these processes, but

all our formulas can be applied to them by using
Table II as a guide.

C. Hadron and hadron-decay distributions in a general frame

Although the function G,g~(x) describes the frac-
tional longitudinal momentum probability distribu-
tion in a frame in which P~ -~, in fact, it is pos-
sible to determine some important features of G
from measurements in a general frame, including
the rest frame of 4. This technique may be of
considerable interest in the study of the decays
of systems with a large Q value, such as the time-
like photon in e e annihilation, "the (hadronic)
system produced in NN annihilation, "and perhaps
the decay of massive coherent states produced
by diffractive excitation processes. The function
G, y~(&) is introduced to describe the breakup of &
into off-shell states which include & and the re-
mainder X(&A). However, the decay of a very
unstable system can reflect many of the properties
of G, in particular, the threshold behavior.

In the general case, one can introduce the dif-
ferential decay rate of particle A. with mass A
for the process A. -a+X, expressed in terms of
the familiar c.m. variable ~ =2k', /A, as

dI'—=- d.y~(~) .

The decay is of course angularly symmetric in the
rest frame of A. In order to bring about a closer
analogy to the infinite-momentum-frame distribu-
tions„ it is necessary to introduce an arbitrary
(but fixed) z axis and to define x=(k, +k', )/A. The
decay distribution in this variable is

dr'—=—D, g~(x)dx

dy~m 8 m —x-

The x distribution is peaked at x= a/A, and van-
ishes if x is too close to 0 or 1.

The function d, y~(e) is clearly the optimum dis-
tribution to measure experimentally, but, as we
shall show in detail, Dy~(x) is in closer analogy
to the infinite-momentum-frame distributions,
such as G, y„(z),which are used in scattering
processes.

Rather than discussing a very general model of
such unstable systems, the physical point to be
made here can be best illustrated by constructing
a representative analytic function for the prob-
ability distribution using the form-factor diagram.
The probability function is defined by (see Ref. 10
for details)
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I
2p„" dx G,g„(x)

0

2k" gP(k2 —a') p(b')
[k2 a2] 2 [(P k)2 b2] P

where the spectrum of "core" masses b' is chosen
to reflect the Hegge behavior of the forward am-
plitude aA. -aA, i.e. , p(b') -(b')", and p(b') van-
ishes for b'& p,

' but is finite at b' = p.'. The sim-
plicity of this model arises from the assumption
that the falloff of the vertex function Q does not
depend on b'.

We now introduce the general frame' "
P =(P+A'/4P, O, P-A'/4P),
k = ( xP + (k' +kr')/4xP, kr, xP —(k'+ kr')/4xP),

which, proceedingasbefore, becomes [S =S(kr, y)]

I'(x: Im d'kr db' p(b') P'(yS) [yS ]
dp

If Q is chosen as before, then the kr' integration
can be performed and taking the imaginary part
(A' -A' —ie) yields

db' p(b') (-)'" '
2

)& b(2)) 3) (S(Q y)}

where the (2n —3) derivative of the & function must
be evaluated. The argument of the & function
allows the identification of y as the familiar (cen-
ter-of-mass) variable &u, i.e., y=&u=2E, /A. Then
the differential rate is

and (18) (2.-3) &2 (19)
d~k — d2k

2)xi

where A is the mass of particle A. This defines
an arbitrary frame under the restriction that A
is moving in the z direction, and y = In(2P/A) is
the rapidity of A. The rest frame of A is given
by & = zA and the infinite-momentum frame by

The k' integration can be carried out and
one finds

G, y„(x)= 1
d'kr db'p(b') p'(xS) [xS]

where x must be between 0 and 1 and

S(k ) A, a +k ' b'+kr'
x 1 —x

This is the distribution function in x, where
x—= (k'+k')/(P„'+P~), in the arbitrary frame defined

by the parameter &.
If the vertex function is taken to be Q(K') =(&')' ",

then the Rr integration can be carried out and one
finds

The limiting behavior of 6 is then found to be

G-(l —x)'" ', for x-1
for x-0

which is of the correct form and leads to the iden-
tification n=n(aA), as defined in Eci. (8).

The decay distribution function is most easily
computed by evaluating the absorptive part of the
self-energy diagram. The total decay width is
proportional to

I' Imf d~k db'I ~ Im1 d k b
[k2 2] [y k)2 b2] p

where b'((()) -=(1 —to) (A' —a'/(p)) ~ p,
' and the (2n —3)

derivative of p(b') is needed. This threshold be-
havior is not the same as G,~„(x)because the ~
variable is essentially a radial variable in the
spatial momentum of particle a. It may be inter-
esting to fit data with the model form of E(I. (19)
which predicts relations between conjugate values
of ~, i.e., those values of ~ which produce the
same value of b'(u&).

One should also note that if the distribution p(b')
has a ~-function contribution (corresponding to a
two-particle decay mode) the corresponding value
of w is fixed kinematically so the above distribu-
tion function is not interesting. We are assuming,
in effect, that there is an extended type of
"duality, " in which there is an effectively smooth
mass distribution function p(b') which describes
the decay at any fixed ~ value. This assumption
clearly improves as the ratio (A/g) increases,
which allows many particle decay modes to occur
and to dominate.

The corresponding infinite-momentum-like dis-
tribution is achieved by defining as axis arbitrarily
and projecting all events onto this axis. Introduc-
ing the variable x as before, the differential rate
is (neglecting final masses for the moment)

dr ' d(u—= D, gg(x) - —d, )'~(e)dx x cL}

and one finds that as x-1,
D, yg(x) -(1 —x)'" ' . (20)

This is the same threshold behavior as we found
for G, )z(x). The Hegge behavior of p(b') may not
play a role here because the maximum value of
b'(a) that can be reached occurs for e =a/A, and
b,„'-(A —a)'. This may or may not be in the
R egge r egion, depending on the dynamic s involved.
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One sees that a measurement of the decay func-
tions d. i~(o)) and D, i~(x) can provide important
information on and confirmation of the dynamical
assumptions used in the CIM. For example, the
prediction for the process NN - )TX in n(mNN) = 2,
and hence D, l~)7(x} -(1 —x)'. The prediction of
the process e' e - "y"-((Xis n(my) = ~ if the photon
is regarded as an elementary field, and n()(y) = 2

if the photon is completely described by vector-
meson dominance. The (d distribution d~i&, (d) is
predicted to vanish as (1 —(d)', which is the ex-
pected behavior in a parton model for vW, ((c). We
note, however, that the threshold behavior can be
modified by spin effects. Various model calcula-
tions for v8'," have been reviewed by Ezawa. "

III. THE EXCLUSIVE-INCLUSIVE CONNECTION

dO' S do'

d'p/E )( dtd3It'

the contribution

(21)

1 s' do—xG,l, (x) —„,(W+q-C+q), . „,. (22)
p s+u ' dt I

In this section we shall investigate the connecting
links between the exclusive cross section and low-
missing-mass inclusive processes. Further, we
will derive correction terms to the usual triple-
Hegge formula mhich are required in order that
the triple-Begge cross section will have the cor-
rect exclusive limit at any momentum transfer.

Let us consider the inclusive process A +B-C +X
near the exclusive limit (c = K'/s « I), of the
Peyrou plot, and we will choose xI.&0. Thus we
can ignore hadronie bremsstrahlung from A. ; only
the contribution G, igl oo(),„()(1—x) needs to be con-
sldel ed.

Let us first consider the case of large trans-
verse momentum with &«1, xL, &0. Of the sub-
processes shown in Fig. 3, the simple interchange
subprocess of Fig. 3(a) based on &+q-C+q is
generally most important. Using Eq. (4) we have
for

xG, la(x) -F, (xe) =xi s(o) (1 —x}2s-z (2'-)

with oe(0) -1 representing the Pomeron behavior,
and the threshold behavior given by the Drell-Yan
relation for the form factor

Dimensional counting gives the value of B: 1 +B
=number of quark fields in the simplest configura-
tion in the state B.

The inclusive cross section then becomes

s' 2(tb
xz ns(o) y -( )

( pa&c(t)
(((s +u) Slt' —t {xs)'

a+n&(o) &2 t F2

+nc) and y(t), y(t) become asymptotically con-
stant. For example, for quark-meson scattering,
we have the limiting behavior o. '(- ~) = a '(- ~)
= —1. (Alternatively, as developed in Hef. 8, we
can obtain the asymptotic trajectories of the
q+A -q+C amplitude from the power-law behavior
of the form factors of & and C, assuming a quark-
core bound-state model for the hadrons. ) As the
momentum transfer becomes smaller, the con-
tributions from virtual hadronic bremsstrahlung
j as shown in Fig. 3(c)] Heggeize the amplitude and
move the trajectories and residue functions away
from their asymptotic value. This effect has been
computed and examined in detail in Ref. 17. The
detailed manner in which the o.(t) and y(t) ap-
proach their limiting values, although not needed
for our discussion here, can be computed. The
effects due to the coupled-channel effect of the
Beggeization process is sometimes important,
especially for the eases in which A. and C are both
baryons. In general, we can treat o~c(t) as an
effective trajectory, constrained to fit its experi-
mental value at t=0 as required by the analyses
of exclusive processes, and its asymptotic value
at I;- —~ determined from constituent structure.

For the form of the quark structure function, we
use the simplified structure

(A summation over contributing quark types is
assumed. ) The function G,is includes the reduc-
ible contribution from the fragmentation of the
target B.

As we have noted, the quark-hadron cross section
in the CIM takes a simple Hegge form (s'

oO)

4x—(q+A -q+C)dj

-ly(t)(-u') xc ' +y(t)( —s')"&c
l /s', (23)

where for large —t, the trajectory function a~
approaches the negative integer u~c(- ~) = 1 —o~(n~

~)t~(o) -2&&&( &)

(X
SPT

where for simplicity we only display the
y(t) (-u')""c contribution. Note that A„gives
the Begge1zed lneluslon cross section including
the reducible contributions from the target B, but
contains only the virtual hadronic bremsstrahlung
contributions for A. This is, of course, the same
as the single-diffractive scattering terms in ordi-
nary Mueller-Regge analysis.

In the triple-Regge region, defined by the con-
ditions s - jul»K'&

I tl, Eq. (25) achieves the
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where

r ( ) ( t)2Ã„c(&).Rs(0)2(~i

familiar form

(0 -2f)t&&(t)
R -s "s ' p(t)(r s

(26)

cg2 n(t )
~-0 (28)

example of how a power-law falloff of amplitudes
in the deep-scattering region forces relations be-
tween the residues and trajectories of the leading
and nonleading R egge contributions.

Note that for fixed%' and t, with s-~, the
threshold dependence of A„,

Note that in the triple-Regge limit, the threshold
behavior of F»(x) is irrelevant since

is related to the leading Regge behavior in the
XC channel:

In contrast, the exclusive limit of A„is attained
by integrating over a finite range of small values
of the missing mass %. In this region, the thresh-
old behavior of E»(x) is crucial, and one finds

do—= r d3R2
dt S2

n(t) = o,,(0) —2c(„,(t)
—= 1 —»~c(t)

This is in agreement with the t =0 result obtained
by Feynman, "Mueller, "and Bjorken and Kogut. "

2(]5r ( ) F 2(t) ( )2n~c(&)B (27) IV, THE INCLUSIVE CROSS SECTION'

IN THE INTERIOR REGION
This gives the correct exclusive Regge form and
the correct large-angle limit for the exclusive
cross section. The complete signatured Regge
trajectories are restored when we include the
y(t)(-s')""c(') terms in E(I. (23).

This smooth joining of inclusive to exclusive
scattering is the strong interaction analog of
Bloom-Gilman duality as was discussed in Refs.
8 and 16. This kinematic region requires values
of x near 1 and hence depends sensitively on the
threshold behavior of E,s(x). Since the triple-
Regge limit does not retain this behavior, it will
not join smoothly onto exclusive scattering. To
clarify this point, note that if we expand the struc-
ture function of the target,

t=1+(2B—1), + ~,

then we see that this correction factor gives rise
to contributions to the triple-Regge formula at
ns(0), ns(0) —1, o.s(0) —2, . . . , with residues in
the ratio 1, (2B —1)t, . . . . The proper threshold
behavior is then seen to require the cooperative
effort of at least 2B trajectories. These correc-
tion terms are important in the small-%', large-t
sector of the triple-Regge region. This is another

Except for the limited region where e-0, that
is throughout the entire central region of the
Peyrou plot, the effects of hadronic bremsstrah-
lung from both the projectile A and target B must
be taken into account. We can write the full cross
section in the form

R, (A +B C +X)
~' dz G„,„(s)R„(a+B—-C+X)

H 0
S =ZS
M'=u; t'=zt

(29)

where z, = —u/(x+t), and R, is the cross section
discussed in Sec. III for the scattering of the had-
ron-irreducible states H. The subscript c indicates
the central-region cross section. Note that the
symmetry between the particles A and B is not
explicit in E(I. (29). However, in the forward
direction, this is convenient form since. it allows
an expansion in the natural Regge trajectories in
R„(H+B-C+X'). In the backward direction, one
must interchange the roles of A and B. Both ex-
pressions must be used and will smoothly merge
in the region near 90'.

Using E(I. (25), which is based on the underlying
subprocesses of Figs. 3(a) and 3(c), we have for
xl. &0 and pT' large

S "B{') ' dz 2B 1 g (XB(0) 2(XHg(zt)
R,(A+B-C+X) =Q, x,""s( (1 —x )' ' —,Gsy~(s) ' ' r (st)

H Zp 1 zpT

(3o)
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where the dimensionless variables are defined by

x, =-u/s, x, =-t/s,
xlz = ' e=K'/s =1 —x —x .

(1 x)'
As usual, the particle masses have been ignored.
The longitudinal fraction x~ (Feynman x) and xr
are given by

Xg X X2 XT 4X]X2
2

e =1 —(xr'+x~')'~',
and the inverse relations are

(31)

2x =(x 2+x 2)&~&+x

2x, -(xr +x~ ) —x~.
Let us now examine R, in several kinematic

limits in order to compare the behavior of the
various contributions. In the central Regge or
pionization region defined by

x„x,0

M+q .
The total result is of the form

dO' 1 1
=p 8 (x ~. .)+p If (x t . .)

(33)

l.e.~

PT' —constant,

we obtain for large pT'

g I. o'~(0)+ &B(0) j/2

C 2 1+ '[O'.&(0)+ a (0) ]/2-2& Ht Iy c.m.r!x 8, )
B

H

(32)
where &, =tan '(xr/x~) is the center-of-mass
scattering angle and the trajectory asc = usc(zt)
has been evaluated at some average point Z of the
integral (7( t (

& x~ ~
t

~

—pr'). The fragmentations
of both 4 and B contribute equaQy to the Regge
behavior of R, -8 " ' ' ' ' -8', as expected.

The leading contributions to R, for the process
P +P - m +X will be the quark-meson scattering
subprocesses (see Table I) with

nsc(-") = (('z.(- ")= —1 .
The inclusive cross section also includes back-
ground terms arising from the subprocesses

q+(qq) -M+B*

which for 8, m -2 m and xT -1 has the behavior

dO 1 g Q 1E d, -, (1-xr)'h + „(1—xr)'PP .
PT PT

Detailed calculations" for these subprocesses
have been carried out using the Predicted form
of G~y~(z) o-z '(1 —z)' and E»(x) o-(1 —x)'. These
results for 0, -90' are in excellent agreement
with the recent CERN ISR data' and in reasonable
agreement with the FNAL data. ' The only impor-
tant undetermined parameters in this prediction
are the overall normalizations. There is an addi-
tional mass parameter M' -0.71 GeV' which occurs
in the assumed meson form factors, but the pre-
dictions for Pr &1 GeV/c are independent of its
value. At angles other than 90', we must include
the other topologically different contributions,
including the full angular dependence of the quark-
meson amplitude. That is, both the (ut) and (st)
diagrams must be included in the R„amplitude.
Reasonable agreement can be achieved with the
above form from 25 GeV/c, 0& xz & 0.5, up to the
CERN ISR data atxL, =0.

It is strongly suggested by the lower-energy
inclusive data' ' that there are important con-
tributions for large xT which fall as PT ", as
does the second term in Eq. (33). As we have
emphasized in Sec. II B, these terms may be con-
tributing to a substantial fraction of the measured
rate at the large xT's of the FNAL data. More
extensive data at lower energies would be useful
in separating these two types of important sub-
processes.

By exposing the internal quark lines and the
underlying quark-meson scattering subprocesses,
one obtains the minimum falloff in pT at fixed e.
Conversely, for fixed pT, with &-0, graphs with
the least possible fragmentation are favored. Thus
the direct large-transverse-momentum processes
involving the incident hadrons can be important,
but at the expense of a larger falloff in pT. The
large-xr (or small-e) limit can therefore be quite
different from the large-pT limit. Let us thus
examine the behavior of R, in the threshold limit
in order to establish counting rules which will
allow us to enumerate the leading contributions
in the various kinematic regions.

The leading threshold (e-0) behavior of A, will
depend critically on whether x, is large or small,
as was the case for R„.By changing the integra-
tion variables to z =z, +y(1 —z,), where z, =x,/
(1 —x,), 8, becomes

x i+ aB(0)
nB(P) z )~+»(1 x )»-&

C
P '+M' 2

H

x dy
(1 y)s y

s [x z +$(1 —z )J
ns(o)+1 2R»

[1 (1 z ) (1 y) J
2(1 c)+ u~(0)+ Nz(o) [p 2 +M2] Ixs 2cf. (34)
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with Gff/A -(1 —z)g/z, and o. = a«(zt). Using the mean-value theorem, 8, can be readily estimated; the
controlling factors are [aB(0) = 1]

XX +-E 2(1-a-B) X +6 2(l-n)
(~2 +P 2)2(ix-1) ~2B+g (1 z )2(1-R-B)(1 z )1-g 1 2 1 1

C

H
T 1 2 Xx+1 2 X +yC1

(35)

where u= {2(Zt), M is a mass characterizing the
form factor of particles H and C, and we can
estimate y =2B/(2B+g+1), z =(x„+ye)/(1—x2).
More generally, the contribution of any irreducible
subprocess a+ 5 -C +a* for x~ & 0 is given by

s eg(&/A)+g(2/B)+1 f 1 2 —
) 1 (g2-/B)- 2'

(g XZ +yE'

Xf(Pr, ()~m ) 1

where the large-pr power dependence of f can be
obtained via dimensional counting. If x, is large,
which is the case in the transition and deep scat-
tering regions, then as e-0, ~ x~2»y&, and

~ S Eg( /A2) (+2g/B) lf+(P 2 g )C F p c.m.

Both a and b carry a large fraction of the incident
hadron momenta in this kinematic region. On the
other hand, for x&'«4y&, which is required in
order to approach the usual triple-Regge region,
only particle & needs to carry a large longitudinal
momentum and

~S E[g{a/A)+2 2ngC)fy 2)

This can be interpreted as a triple-Regge formula
with an effecitve trajectory

{2 ff (t) = f2,c(zt) —2 [1+g(a/A)]

where Z=xf, +y(1 —xf). Notice however, that {2,«
corresponds to a disconnected cut contribution to
the inclusive cross section (see Fig. 6) and has
no analogue trajectory in an exclusive reaction.
Note also that in the small-missing-mass region,
these hadron-reducible contributions of A, give
rise to nonleading contributions to the exclusive
cross section at fixed ~,

We have now identified two potentially important
contributions to the triple-Regge formula; one is
important at low missing mass (and provides the
correct extrapolation to the exclusive limit), and
the other, the double-bremsstrahlung contribution
A, is important at large missing mass (and pro-
vides the correct extrapolation into the central
Regge or pionization region). The situation is
schematically represented in Fig. 1, where the
various regions are labeled by the dominant con-
tribution. Some applications will be discussed in
Sec. V.

Note also that E{l. (35) predicts that the powers
of Pr' are not fixed but should vary with a(Zf )
(which approaches a negative constant only at
sufficiently negative values of its argument). For

example, if the region near the lower limit on the
z integral dominates in E{l. (30), then (7~ ().'(- pr'/
(1-x2)), and this may be considerably larger than
its asymptotic value. Thus the data are expected
to show a variation in effective power of P~'
not only from the above effect at small P&', but
also from the sum over H which will contribute
differing powers of P~' and &.

Finally, we note that the hadronic bremsstrah-
lung model and the predicted form for G(z) allow
one to understand in detail the almost kinematical
origin of the approach to Feynman scaling. For
example at xf, =0, E{l. (37) for A, can be expanded
at fixed pr in inverse powers of 1/s, and one finds

B,-QSP (" ') 1 —(g+2 —2Z) + ~ ~ ~
2pz

H

The first term scales in the Feynman sense. The
second term can be interpreted as a nonleading
Regge contribution and one sees that it has a very
large residue. For example, in the reaction
pp- nx, g+2- 2a =9. The leading trajectories
in exclusive and inclusive scattering must be equal;

I

I

I

I

I

I

I

I

I

I

(a}
A-

FIG. 6. The disconnected cut contributions to the in-
clusive cross section @which arise from hadronic brems-
strahlung from both projectile and target. The nature
of the final state is shorn in Fig. 6(a). Aiternatively,
the inclusive cross section can be expressed as a Mueller
discontinuity of the amplitude illustrated in Fig. 6(b).
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the importance of secondaries can be quite dif-
ferent, however, and the resultant approach to the
expected leading Regge behavior can be vastly
different in the two cases. The above type of kine-
matic corrections, that control the approach to
ultimate Regge power behavior, should occur in
elastic scattering as well as inelastic, and may
well be important there also.

(b)

V. APPLICATIONS TO LOW-MOMENTUM

INCLUSIVE REACTIONS

where

- (1 —xz)s (x~ -I),

which has the same threshold dependence as R&,).
In Fig. 7(c), the initial projectile emits C along
the beam direction and the remaining fragments of
A diffractively scatter from the target B. Again
this gives the same result

As we have noted, the R, term, which allows
for hadronic bremsstrahlung from the projectile
A, plays an important role throughout the entire
central region, both in the pionization region of
fixed momentum transfer [xz, x~-O(1/us )], and

in the large-transverse-momentum domain
[pr-O(&s), e =K'/s fixed]. Since the normal

triple-Regge formulas ignore projectile fragmen-
tation, it is a natural question whether the reduc-
ible processes play a significant role in the triple-
Regge limit (xz-0, e-1 —x~ fixed) for inelastic
processes. As we have shown in Sec. IV, the R,
cross section corresponding to Fig. 7(a), which is
based on the irreducible subprocess H + B—C + X',
has the threshold behavior e~&"'")"(' Hc). For the
diffractive case with H = C, we have at t-0,
R&,)-e~& ). The threshold dependence of the in-
clusive cross section thus directly depends on the
threshold behavior of G«„(z)."

In addition, at small t we must also consider the

processes illustrated in Fig. 7(b) and 7(c). In

Fig. 7(b), the projectile A diffractively scatters
into a state H = A, which then decays into particle
C. In this "diffractive excitation" process the
probability of diffractive scattering with fractional
momentum z is (1-z)"& '"»&'&, and the probability
of decay to C is Gc&„(xz/z). Hence the overall be-
havior is given by the convolution

Equation (38) for the threshold dependence of
diagram 7(a), can be interpreted as yielding an
effective trajectory

o. „=a„c——,'[1+g(H/A)] (40)

in place of n~c in the triplet-Regge formula. Al-

though the dominant contribution at t- 0 usually

arises from the term with H = C, so that o.cc(0) = 1

(Pomeron), one may have to pay the penalty of a
large value for g(c/A). For example, in the reac-
tion pp -K X, the choice H = K = C yields a more
rapidly vanishing contribution (lower n «) than does
the choice H = 7t, using the leading strangeness
changing o,„(presum ably K*) trajectory, since
g(K /p) is four units larger than g(w/p). Notice,
however, that the particle which balances strange-
ness is expected to show up in different hemi-
spheres for these two terms, so in principle they
can be separated experimentally.

Let us now look at the experimental situation.
We shall use the phenomological analysis of the
data' from inelastic pp rea.ctions at 19.2 GeV/c
and 30 GeV/c which was carried out by Chen,

Wang, and Wong. " The comparison with the ex-
perimental values for the effective trajectory at
t = 0 is shown in Table III. It should be stressed
that inthese'data the ratio %'/s was not small,
and hence one should expect corrections to the

type that we have been discussing. The values
given for n~c are the usual predictions of the
triple-Regge formula R„assuming the conventional
trajectories of exclusive processes. The predictions
for n, ff are based on the diffractive contribution
to R„

(c)

FIG. 7. The three major fragmentation contributions to
the inclusive cross section A+B-C+X for xz, -1which
are discussed in Sec. V.

in the threshold region and at t-0.
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as determined by dimensional counting (see Sec.
II). Nonleading Regge terms, such as the p under
the Pomeron, will also contribute, as always.
The value a,«- -3 in the table for pp-K p is the
prediction assuming e,~- = 0.

Thus we find that the effective trajectory ex-
tracted from the data lies between the expected
triple-Regge value a~~ and a,«, and the predic-
tions for the exotic channels are in good agreement
with the predictions of the CIM. We therefore
infer that the nonleading terms discussed above
are of the same order of magnitude as the expected
triple-Regge terms in this kinematic region.
Clearly, a more extensive analysis over a larger
energy and %' range is needed before any definite
conclusion can be drawn.

Finally, it should be remarked that the correc-
tion to the triple-Regge term in the small-missing-
mass region [see Eq. (25) and the following dis-
cussion] introduces a dependence on momentum
transfer. This can affect the effective trajectory
that describes the missing-mass dependence and

may be quite important. This should be taken into
account in analyses of inclusive data at only one
energy (or a narrow range of energies) even for
quite small values of t/M2.

VI. DISCUSSION AND CONCLUSIONS

In this paper an attempt was made to unify the
description and treatment of single particle in-
clusive scattering throughout the entire Peyrou
plot. Important (nonleading) corrections to the

TABLE III. Regge behavior for the inclusive process
p +p C +X. Column II gives the expected dominant
Regge exchange at t = 0. The predictions of the CIM for
the exotic trajectories n&~- and e&& are given in paren-
thesis. The quantity O. eff as computed using Eq. (40),
describes the behavior of R~ . The final column gives the
experimentally observed effective trajectory as analyzed
in Ref. 29.

10'rom=1 2 o
G.'~ ——0.4
ep =+0.2
~ (--1)
exotic (& -3)
exotic (& -4)

eff

-5

+exp (Ref. 29)

-0.1
-1.3
-2.0
-1.1
-3.6
—5.7

leading Mueller-Regge analysis were identified
and described. These terms serve to join smooth-
ly the various regions of the Peyrou plot. Two
important results are (a) the correction at large
missing mass in the triple-Regge region arising
from the terms that dominate the central region
and vice versa, and (b) the corrections at small
missing mass in the triple-Regge region that
allow the amplitude to join smoothly onto the ex-
clusive scattering. This connection is valid at
fixed angle or at fixed momentum transfer.

The above remarks are perhaps most easily
summarized by our formula for the inclusive cross
section (A + B- C + X), which in the triple-Regge
region has the typical form

da $g 2 t 2{n—n} gg P l+g{g/g}

where n = n„c(t), n = n,c( zt), and for large pr'

Ha(p 2) (t(f2 + p 2)2(R-1)

P (p 2) (M2 + p 2)2((x 1)

Cross terms between different Regge trajectories
and signatures have been ignored and only PPP
and RRP terms are retained. The trajectories and
residues must satisfy the limits described in Sec.
II. There is some evidence from an analysis of
inclusive data" that there are important contribu-
tions that increase rapidly as 3R'/s (= 1 —x~) in-
creases (x& 0.7, say). These do not seem to be
easily accounted for from the standard PPR, PPR,
RRP, RRR, mP, and mmR terms. It would be in-
teresting to see if the additional contributions
are consistent with (41) and extrapolate to small
x~ and to large p~ with the proper normalization
required by the data in these regions. It should

be noted that for very small t and 1 -x~, our ap-
proach is not incompatible with conventional
duality arguments for inclusive processes. Duality
for exclusive processes is discussed in Ref. 17.

To amplify our general result, the inclusive
cross sections, at large angles in the center-of-
mass frame, for the processes pp -Cx, where
C = m, p, p, K, p„.. . , are expected to be of the form

Z„,= (m'+ p,2)-'H, (x„e)d'p

+ (n. 2+pr2) 'H, (xr, 8)

+(m'+pr') 'H2(xr, 8)+ ~ ~ ~

where the variable dependences of the H's are
predicted by the theory and can be read off from
formulas given in the text for large x~. H, is ex-
pected in general to vanish less rapidly than H,



2990 BLANKE NBE C LEH AND S. J. BHODSKY

as c -0. At fixed x~, the second term will vary
as -s ' while the first term varies approximately
as -s '. The presence of these types of terms
will show up clearly by comparing experiments
done at Serpukhov, FNAL, and CERN ISR energies.
Note also that the correction terms in the triple-
Regge region given in Eq. (41) are the same terms
that dominate the large-p~ region. Hence one
should be able to normalize them in one region
and test this aspect of the theory in the other kine-
matic domain. The above form for the inclusive
cross section, with the c dependences for H, and

H, as predicted by dimensional counting, give a
good description of the inclusive data. from

p~
- 25 GeV/c to the CERN ISR range for pr z 0.7

GeV/c. The x~ dependence of the lower-energy
data is also reasonably fit in the range 0&x~ & 0.5.

One property which is unique to the CIM is the
prediction on the basis of quark counting that all
"similar" processes should have approximately
the same differential cross sections at fixed angle;
for example, all meson-baryon cross sections
should be of the same order of magnitude at 90',
that is,

d&r(wp -mp)

=do�

(w'p -K'Z')
=d o(kp -Kp )

=do(mp- pp)

=do(wp-w'n)

=do'(pp-mm)

= d o(pp -KK), etc.

It therefore follows that the inclusive production
of various mesons and the low rnesonie resonance
will all be of the same order of magnitude in pp
collisions, away from the exclusive limit which is
controlled by the threshold behavior of the G(r)
functions involved. The decay of resonances can
provide an important source of lower-momentum
pions as discussed by Bjorken and Farrar. "

In this paper a general treatment of the probabil-
ity functions G,~„(g)was given based upon dimen-
sional counting and the concept of reducible and
irreducible graphs. The predicted properties of
the G's can be tested experimentally by measur-
ing the inclusive cross sections near their exclu-
sive limit (including the fragmentation region), by
measuring the particle ratios in the same region,
and by me3. suring the single-particle-decay spec-
trum of very unstable systems (such as BB and
e'e ). The important subprocesses which control
large-P& reactions can be further identified by
measuring the assoei3ted multiplicities and the
distribution of quantum numbers in the final states.

The structure of our formulas for inclusive
cross sections has a simple physical basis and

interpretation. The leading power, N, of p~ '
measures the minimum number of elementary
fields that must be involved in the basis high-p~
subprocess. The leading power of e, on the other
hand, P, measures the "degree of forbiddeness"
of the transition —that is, the amount of brems-
strahlung that must take place in order to pro-
duce the observed final particle via the given
subprocess. These two powers are not independent
in the CIM since they must satisfy the relation
N+P=n —3, where n is the minimum number of
fields in the corresponding exclusive-limit chan-
nel. The system of counting rules provided by the
CIM plus dimensional counting yields the simplest
possible formulas which are consistent with the
observed power laws and the constraints of con-
tinuity with low-p~ processes, exclusive processes,
etc. The theory thus sets a pattern for the ex-
pected behavior of strong-interaction processes
throughout the entire Peyrou plot, and predicts in
a precise way that inclusive cross sections will
depend critically on the quantum numbers of the
detected particle and the beam particle.

One of the main virtues of the CIM is the large
number of testable predictions that follow from
its calculational rules. However, it should be
stressed that the CIM is a model and its caleula-
tional rules were introduced such that they are
both simple and definite, and in addition, are
reasonable in terms of more familiar theories.
These rules need to be derived from a more funda-
mental theory of hadronic matter which incorpor-
ates a mechanism for permanent quark binding.
We assume that the very unusual property of the
force that will not allow the constituents to escape
will also explain the rule that constituents of
different hadrons do not interact directly. '

This rule may be difficult to derive from a con-
ventional standpoint. However, it is necessary
empirically in order to remove possible "hard"
vector-gluon exchanges from the theory which
could predict a s behavior at fixed x~ in the in-
clusive cross section. It was originally introduced
to explain the differences in the behavior at large
angles of the differential cross sections for pp and

pp, and also E'p and K p at quite low energies.
In any case, the constituent-interchange graphs
must be present in any constituent theory. We
assume that they dominate the amplitude and
thereby achieve a model with considerable predic-
tive power.

Recently Landshoff" has noted that in models
which allow gluon exchange between hadrons, the
multiple (Glauber) scattering of nearly-on-shell
quarks will dominate hadron-hadron scattering
processes at fixed angle. If gluon exchange be-
tween the quarks is scale-invariant, then this am-
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plitude leads the dimensional-counting contribu-
tions by the power (Ws)" ', where N is the number
of on-shell quark scatterings. However, in the
CIM, gluon exchange between quarks of different
hadrons is not allowed, and these contributions do
not arise. A very interesting argument has also
been presented by Polkinghorne. '~ He notes that
in neutral-vector-gluon-exchange models, higher-
order graphs give an exponential factor
exp[- oln'(s/A. ')] which suppresses on-shel) quark-
quark scattering. However, the interchange graphs,
since they involve off-shell wave functions, may
still obey dimensional counting in this type of
model.

In summary„ the main physical predictions of
the CIM basically arise from the power falloff of
the hadronic wave functions. " In contrast to the
typical exponential behavior of conventional Regge

amplitudes, this allows us to continue simply
from one Regge region to another, and to the
region of large transverse momentum in both in-
clusive and exclusive processes. The CIM ap-
pears to reflect correctly the behavior of hadronic
matter at short distances and its essential degrees
of freedom. Further experimental tests are nec-
essary in order to define precisely the limits of
validity of the model.
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