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Strong anomalies in the partial conservation of the axial-vector current involving the vector-meson

nonet are used in an effective-Lagrangian approach to determine the over-all normalization of the

pseudoscalar-vector-vector (PVV) vertex. The result is model-dependent. However, SU(3) symmetry of
the VPP vertex leads to nonet symmetry for the PVV vertex and agrees with the experimental data.

Earlier this year, Freund and Nandi' suggested
the interesting possibility of equivalence between
the vector-meson-dominance method' and the
fermion triangle' or the PCAC (partial conserva-
tion of the axial-vector current) anomaly' method
of calculating the matrix element for m'- yy. In
this note we derive the pseudoscalar-vector-vector
(PVV) vertex induced by the PCAC anomaly due
to non-Abelian gauge fields. ' The above-mentioned
equivalence occurs naturally once the vector-me-
son dominance of the electromagnetic current is
invoked.

Let g be a spinor representing 1V SU(3) triplets
of quarks. The vector and axial-vector currents
are given by

J~ (x) = gy„(I;/2)q+ ~ ~ ~,

J'„'(X)= Py„(l;/2)y, g+ ~ ~ ~ .

The I; are nine SN-by-3N matrices equivalent to

e~Z' =D'
p

BP~i5 D$5+ Gf
P

(3)

The quantities D' and D" are the divergences
derivable by manipulation of the equations of mo-
tion, and G' is the anomaly due to fermion loops
given by'

the Gell-Mann ~, matrices, ' repeated N times
along the main diagonal. ' The ellipses refer to
the pos-sible contributions of boson fields- which

may or may not be included in the fundamental
Lagrangian with g. According to the work of Ref.
5, closed fermion loops give rise to an anomaly
in the conservation of the axial-vector current.
Specifically, if external vector and axial-vector
meson fields V& and A.

&
couple via the interaction

Lagrangian

2, = J'„V", + J'„'A", ,

then

G (V 2)= a t ~ [~ V& "V"+ —'A'"2" + —' i(4'2 "V"+ V" 'A'A'+2" V"A')- —'A'2 "A "4'II1 F
4&2 Ivor 12 3 3

(4)

V~ = 2 I') Vp,

A.p
= 2 I']A.p~,

Vq„=sq V„-B„Vp i[Vs, Vp-] i[Aq, A„—],
Aq„=&~V„-s„Ap-i[Vs, A„] i[Aq, V„] . -

(5)

%e suppose that the well-established pseudo-
scalar and vector-meson nonets are bound states
and resonances formed by the N fundamental trip-
lets. Let P, and P", be phenomenological fields
representing these states. If the P, and Q", are not
allowed to participate in closed loops, then, as
far as the fermion loops are concerned, P' and

Q", behave exactly like the external fields of Ref. 5.
Thus one obtains Eq. (4) with V", replaced' by
gP", . We will assume in harmony with Eq. (5) that
Q", couples universally to the U(3) current, as is
appropriate for a gauge field. It is important to
adhere to the tree approximation since closed
loops involving Q'„cause trouble through new di-
vergence difficulties' and a strong violation of the
Goldber ger -Treiman relation. '

For simplicity, we do not include scalar mesons
in the model; thus the P, 's transform according to
a nonlinear realization'o of U(3) && U(3) .

Wess and Zumino have calculated the terms in
the effective Lagrangian implied by the anomaly
of Eq. (4) in the case of the exponential realiza-
tion".
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1 ', t
d t P' exp —— d'xP~y,

TABLE I. Meson decay rates for g2/4r =3.27,
g=37.3', y=-10', and E~=94 MeV.

xG)(V, A, ) . (6)
Decay mode Model (keV) Experiment (keV)

The quantity +, is the charged-pion decay constant
(= 94 MeV), and y, is a functional differential op-
erator for axial-vector transformations:

Alk+p (+) 6yll ( )

The desired PV V vertex follows from the first
term in the exponential operator since higher-or-
der terms involve two or more P's:

h,T
j p u o r=

l6 2P &Pva. %gap 8 Aye Aa .
'll

7r

Anticipating %=3, the PVV vertex is now' deter-
mined by relatively mell-known quantities. " In a
quark model, it would be unnatural for the 1
mesons to mix according to the current-mixing
formalism" and the 0 ' to mix according to the
mass-mixing formalism. " We adopt mass mixing
for both. In that case the VPP and PVV couplings
are U(3)-invariant and we take g=g&„,.

In terms of the &u-Q mixing angle 8 one finds

g,~„= Ng'cos(8-, -8)/Bm'&„

g, & e = -Ng'sin(8, 8)/Bm'E„,—

1. p ~'ll7l

2. K*-Km

3. Q KK
4. P K~K~

5. p ll

6. (d l l

7. Q l l

171x 103

48.9 x 103

2.05x 103

1.35 x 103

4.2

0.52

1.17

8.

9, co~~
10.

11. p ~ 7l''j/

12. K*'-K'y
13. K*0-Koy

7.47x10 3

2.6

220

14.

15.

0.364

177

17. G0 'gp

18.

19. q'-yq
20. g ~ (d'}/

P RY

6.2

6.1

12

56

16. g' yy/q' ~py 0.0506

(150~10)x103

(49.8 + 1.1)x 103

(1.96 ~ 0.14) x 103

{1.45 + 0.12) x 103

7+ 1.4
0.76+ 0.17

1.25 + 0.15

(7.75 + 0.93)x 10

870+ 61

&15

&750

&80

0.352 + 0.135

126 +47

O.O693 ~ O.O120

&50

&80

where 8, = 35.3 is the canonical Okubo nonet or
SU(6) mixing angle.

In contrast to Ref. 1 we have not yet used the
hypothesis of the vector-meson dominance (VMD)
of the electromagnetic current. In fact the present
approach is incompatible' with the algebra of
fields. Thus when we adopt VMD of the electro-
magnetic current we do so in its pole-theory from, not
as a field-current identity. " The vector-meson-
photon couplings appropriate to mass mixing are

Gp~ =em''/g,
r

G z =(em '/g)(sin8/&3),

Ge~ = (em~'/g)(cos8/v 3) .

Equations (9) and (ll) lead immediately, with 8
= 8„ to the ansatz of Ref. 1:

gvMO~D~ =3g,
p

e'/3g'= Xn/3mE„. —

This is the triangle value for %=3.
It is apparent that the calculation of the PVV

vertex is model-dependent. For example, by intro-

ducing symmetry breaking in the VPP vertices,
as in the current-mixing model, one derives sym-
metry breaking in PVV. Another possibility is
that gag&~„since many chiral models allow for
a discrepancy'0 between the two. '~ We should point
out, however, that the result is independent of
the specific nonlinear realization used for the P's.

If Eq. (6) is expanded to second order in P, a
contact interaction of the V PPP form"'" is found.
This result is even more model-dependent than
the one for PVV. Not only is the answer for V PPP
modestly affected by the above considerations,
but also by whether one associates a term -cB P'
with a part of A.

&
or not. This amounts to the as-

sertion that the pseudoscalar mesons couple to g
via pseudovector coupling. Whether this is true
or not depends on the detailed dynamics of the
fundamental Lagrangian. We shall return to ques-
tions of model dependence in a more detailed study.
For the present we examine meson decay rates
that do not involve VPPP.

In Table I, VPP, &$, and PVV decay rates have
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been collected. "'" We do not take g from I'(p-wm)
alone, since this rate has a large uncertainty.
The values of g'/4m and 8 are adjusted to give the
best fit to the strong VPP rates p-mm, K~-Km,

K+K, and Q-K~Xz (lines 1-4). We obtain
g'/4n'=3. 27 and 8=37.3' with a lt' of 6. The large
value of g'/4m is chiefly a consequence of the
precise K~- Km rate. Thus, these parameters
are derived from the experimental VPP rates
without using the main result of this paper, Eq.
(8), or VMD for that matter. Note that from Eq.
(9) we now obtain m„'g„z '/4m= 13.4.

The rates listed in lines 5-21 of Table I are
now predicted, "given values for the q-q' mixing
angle y and I" . For y we adopt the conventional
value"'" -10'. Only the rates listed in lines 14-
21 depend on y. There is some uncertainty whether
to use the experimental value for E, (94 MeV)
or the Goldberger-Treiman value (86 MeV). By
adopting 94 MeV we might underestimate all the
PVV coupling constants by 10%. In addition it is
not at all obvious that I"„.=F„=I"„,which is im-
plicit in our nonet-symmetric PVV vertex.

The overall agreement is quite good, perhaps
better than expected in view of the theoretical un-
certainties. The g' for the 12 measured rates in
Table I is 16, and all the experimental upper

j

bounds are satisfied. The quality of the fit may
best be appreciated by comparing with an alterna-
tive model with the same number of parameters.
If one assumes current mixing for the vector me-
sons and mass mixing for the pseudoscalars the
SU(3)-invariant VPP couplings are multiplied by
~/m& and the PV, V, couplings by m ~ /mz',
where ~ is a vector-meson mass and m& is the
p mass. The best X' that can be achieved by vari-
ation of g'/4m, 8, and y is 38 for the 12 measured
rates. However, this solution implies I'(Q-my)
= 72 keV, violating the experimental upper limit
15 keV.

As mentioned before, this alternative model is
incompatible in spirit with the quark model. Our
conclusion is that various general quark-model
notions such as anomalies, formation of meson
nonets, and unbroken symmetry for vertices are
well supported by the present study.
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Upper bounds on inclusive cross sections are derived using unitarity and general analyticity
assumptions. The bounds do not contain unknown constants and can be tested experimentally.
The bounds are saturated to within logarithmic factors of the energy if the inclusive cross
sections scale at high energy.

There has been some recent interest in the study
of constraints on inclusive cross sections imposed

by unitarity and analyticity. ' ' The important in-
vestigation of Tiktopoulos and Treiman in Refs. 1
and 2 places bounds on partially integrated inclu-
sive cross sections. Their results are that

dpp'f(p, 0, s) &cs' '(lns)',

F(cosg) = w(2ps'~') ' p (2 j+1)(2j'+1)
I

~ g t W

x dmo(g)dmo(g)assi

(5)

where Am, is related to the imaginary part of the
elastic-scattering partial-wave amplitude by

p(c os p) = 2 sf pp p'f (p con S p s inc, s)

&c's' '(lns)" '(sing) ' '~cosg~ ' '
(2)

g A&& =4sImf, ,

and where A, , also satisfies the triangular in-
equality,

(6)

where f (p~, pr, s) is the invariant inclusive cross
section which is defined by

do'
f(p~, pr, s) =z d,dp

(7)

2

F(cos8) 2&as'~'p ' g (2 j+1)M&(6)(lmf,.)' '

(w,", )' (A.;,)(a;, ).
Tiktopoulos and Treiman' use Eqs. (5)-(7) to ob-
tain the bound,

and which satisfies the energy sum rule

1

F (cos g) d(c os 8) = s'~'o, (4)

where M,.(6) is defined by

M,.(g) = max ( d (g) ~
.

(6)

where 0 is the total cross section.
We would like to point out in this paper that the

bounds of Eqs. (1) and (2) can easily be improved
and that upper bounds for the constants c and c'
can also be provided. We also derive some new

inequalities for the derivatives of E(cos g) with
respect to cos6 [denoted F'(cosg)].

The derivation of our bounds starts with the
partial-wave-expanded form of the inclusive cross
section'

The same methods allow us to derive bounds on

F'(cos6). Differentiating Eq. (5) with respect to
cos6 and using Eqs. (6) and (7) we find

F'(cosg) ~4))s'~ p
' p(2j+1)M.(g)(Imf, )' '

j

x g (2j+ l. )1V,.(6)(imf,.)'~
j

where N&(g) is defined by


