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Several new results on the breaking of chiral SU(3) X SU(3) are presented within the theoretical

framework of chiral perturbation theory. (a) The leading-order corrections to the Gell-Mann —Okubo

formula for the baryon octet are shown to be of order e'", where e is a chiral symmetry breaking

parameter. An explicit exact expression is given for the leading-order corrections, which provides a new

development in understanding why this formula works so well. Similarly the corrections to the

Gell-Mann —Okubo formula for the ground-state pseudoscalar octet are shown to be of order ('in&

(including q-g' mixing). On the basis of these exact results it is argued that SU(3) X SU(3) symmetry
is as good as SU(3} symmetry -30% except when one considers electromagnetic interactions. (b) We
examine the g ~ 3m decay on the assumption that it is regulated by a nonelectromagnetic isospin-
violating term of the type c,u, with u, a member of 33 33. The strength e, of this term is related

to the experimental rate including all leading-order chiral-symmetry corrections. This estimate of e, leads

to EI = 1 hadron level shifts about a factor of 2 or 3 too large, although our estimate of e, depends

sensitively on the experimental details. (c) Octet enhancement, an exact formalism to describe q-q'

mixing, and other topics are discussed.

I.. INTRODUCTION

The ideas of current algebra, partial conserva-
tion of axial-vector current, and the approximate
SU(3) classification of hadronic states were ele-
gantly unified by Gell-Mann, Oakes, and Benner'
and by Glashow and Weinberg. ' They suggested
that the strong-interaction Hamiltonian could be
written as

0 0 0 0H Ho+ 60Q 0+Csu 8,

where H, is invariant under the group SU(3) xSU(3),
eouo breaks SU(3) xSU(3) but preserves SU(3), and

e,'u,'breaks both. The unrenormalized operators
I,'and u', are assumed to transform as members
of the (3, 3) +(3, 3) representation (which contains
scalar operators u', , i =0, . . . , 8 and pseudoscalar
operators P,', i = 0, . . . , 8) in analogy with the bare-
mass terms in a quark model.

It was further suggested that, when the explicit
symmetry breaking is turned off, the symmetry is
spontaneously broken so that the vacuum (and
hence the spectrum of physical states) is only
SU(3)-invariant. This is implemented by the as-
sumption (u,'), w0 and (u', ), =0 for e', and e', =0.
Associated with this spontaneous symmetry break-
ing would be an octet of massless Nambu-Gold-
stone bosons, identified as the w, K, and g mesons.

Gell-Mann, Oakes, and Benner then suggested
that the explicit symmetry breaking could be
turned on in two steps. In the first step the param-
eter c—= e,'/e,' is held fixed at c =-v'2. (This corre-
sponds to giving only the strange quark a bare
mass. ) The term e', (uoo-M2u', ) breaks the symme-
try down to SU(2) xSU(2). The K and q mesons are

o 2 f»p» f ~ream
8 ~3 Z 1/2 Z /2

K 7r

(1.2)

where f» and f, are the kaon and pion decay con-
stants (f„-93MeV) and Z»'" and Z, '" are their
wave-function renormalization constants. If one
approximates Z»=Z, and f»= f, [which corre-
sponds to neglecting (u',)„the SU(3) breaking in
the vacuum], then one finds c = -1.25, close to the
SU(2) xSU(2) value.

For later convenience we define renormalized
symmetry-breaking parameters e0 and e, by

1
(2p» +g, ) =-0.21 GeV,

2= ~ (l/,
' —p, ,') =0.26 GeV .

(1 3)

The formalism of the (3, 3)+(3, 3) model is more
thoroughly discussed in Bef. 4, which we shall re-
fer to as I.

We take the viewpoint that SU(2) xSU(2) is accu-
rate' to around 7%, making it by far the best sym-

therefore given small masses, and the degeneracy
of the SU(3) multiplets is broken. In the second
step, c is allowed to deviate slightly from -v 2 .
This breaks the SU(2) xSU(2) symmetry, giving the
pions a very small mass. ' These low-mass me-
sons dominate the axial-vector current divergences
at low momentum transfer (PCAC).

The unrenormalized explicit symmetry-breaking
parameters E'0 and c8 are related to the pseudosca-
lar masses by

o 1 2f»//» fwpw
0 ~g Z 1/2 Z 1/2

K '1r
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metry of the strong Hamiltonian after isospin.
This can be seen roughly by the smallness of p, ,'
compared to other hadronic masses. Other tests
of SU(2) xSU(2), as well as of the (3, 3)+(3, 3) mod-
el of SU(3) xSU(3) breaking, are reviewed in Ref. 5.

One of the aims of this paper is to consider how

good a symmetry SU(3) xSU(3) really is. It is not
enough to know the values of Eo and e„'one must
also know how to implement the chiral symmetry
and hou/ to make quantitative estimates of the de
pendence ofphysical quantities on the symmetry
breaking terms in (I. I).

There have been two major approaches to this
problem. The first approach, pioneered by Glas-
how and Weinberg, ' is based upon the idea of
smoothness. One writes down Ward identities for
the Green's functions of the theory, saturates the
two-point functions with meson poles or reso-
nances, and then assumes that the remaining quan-
tities are "smooth" in their momentum dependence.
The difficulty with this approach is that there is no
u/ay to determine the reliability of the approxi
mations. One cannot argue, for example, that the
dominance of the two-point function (T(u', u,')), by
a scalar. resonance would become exact in the chi-
ral limit, or that the errors are of any definite or-
der in c, and e,.

The difficulty in controlling the extrapolations
explicit in this technique may be seen by the differ-
ing results in the literature due to different meth-
ods of implementing "smoothness. "

The other major approach, stressed by Dashen'
and by Dashen and Weinstein, ' is to do a perturba-
tion expansion in the parameters e', and e8'. Dashen
and Weinstein showed that pion-pole dominance
(PCAC} would become exact in the chiral symme-
try limit. They argued that low-energy theorems
can be interpreted as exact statements concerning
the threshold behavior of massless (on-shell}
Goldstone bosons in an SU(2) xSU(2}- or SU(3)
xSU(3)-symmetric world. Higher-order terms in

~,'and e'8 would be corrections to the low-energy
theorems. Hence PCAC is a consequence of sym-
metry.

It was later pointed out by Li and Pagels' that a
perturbation expansion in Eo and e'8 must contain
nonanalytic terms. This is due to the fact that
Goldstone bosons become massless in the chiral
limit, producing a long-range component in the
strong interactions. Because of the Adler zero the
associated infrared singularities are usually fi-
nite, but they lead to nonanalytic terms such as
c inc or c'" in the expansion. These nonanalytic
terms are often the leading corrections to the chi
~al limit, and because they are due to a finite num-
ber of diagrams, they can usually be calculated
exactly u/ithout assuming any knouledge of the

where p,
' =0.17 GeV' is the average pseudoscalar

mass, and A' is some cutoff (e.g., 4m„'). Chang-
ing A merely changes the O(e9) part of (1.4). For
ln(A'/4t/2) = 2, (1.4) predicts fE/f, = 1.22, as com-
pared with the experimental value 1.26 + 0.02. An-
other result' [which depends on the (3, 3) +(3, 3)
model] is

Z 1/2 (~ 2 ~ 2) A2"„,-1= z
2 „",ln4, +O(e9) =0.025,

(1.5)
1/2 1/2-1=~ 1z &/2 3 z. 1/2

One may utilize (1.4) to eliminate the logarithm,
yielding

Z 1/2

Z 1/2 9 f-1 =-' ~ -1 +O(e ).8 (1.6)

In various other applications the singularity is
O(1/z), O(e"'), or O(e"'). The arbitrary cutoff A

that appears for the logarithmic singularities is
absent in these cases, so the scaling ambiguity is
not present.

In I we developed a set of techniques to enable
one to determine the leading nonanalytic terms in
8-matrix elements and other quantities, including
such technical difficulties as renormalization and
mass-shell constraints. A fairly complete list of
applications of these ideas may be found there. "

These nonanalytic terms are frequently the for
mally leading terms. Whether they are numerical-
ly dominant over the higher-order analytic cor-
rections (which cannot be calculated without a de-
tailed knowledge of H, ) is an open question. We
make the optimistic assumption that they do in
fact dominate in most cases." However, ou~ at-
titude is to use these calculations move as an esti-
mate ofhou/ good the zero order (chir-al-symmet-
ric} terms are rather than as a numerically accu
rate estimate of the perturbations. These remarks
apply particularly to those cases for which the
leading correction has a logarithm. For those
cases for which the leading term is O(e'/2) or
O(e"') we have more confidence.

The nonanalytic terms are usually due to the di-
vergence of a dispersion integral at the lower limit

structure of the symmetric Part of the Hamilto
nian, 0,.

One can therefore make quantitative statements
about the dependence of physica/ quantities on e,
and e8. For example, one can prove' the model-
independent result

f// 3(Pr I/2 )
f—-1=

64 'f,' ln4, +O(e,),
(1 4)
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of some two-meson cut. In those applications in
which the leading terms are ana/ytic, one cannot
prove any exact theorems, but one might hope that
the dispersion integrals are still approximately
dominated by the thresholds of the two-meson
channels. Li and Pagels applied this idea to the
meson and baryon mass differences" and found
that octet enhancement for matrix elements that
vanish if SU(3) is exact emerged naturally. They
reproduced all of the tadpole-model results of
Coleman and Glashow, "plus an additional result,
and gave a possible solution to the puzzle raised
by Dashen' of how to understand octet enhance-
ment in the chiral-symmetry context.

In Sec. II of this paper we will present some new
results on nonanalytic terms including the leading
corrections to the meson Gell-Mann-Okubo (GMO)
formula. For this we discuss g-q' mixing and the
existence of a mixing angle. Also considered are
matrix elements of the u,' operators between sin-
gle-meson states, and the (3w ~u, ~q) matrix ele-
ment. When these results are combined with old
results a rather definite picture emerges: SU(3)
x SU(3) is reliable to within 30% except when com-
puting matrix elements of the effective electro
rnagn etie Hamiltonian. Its accuracy is comPaxable
to the accuracy of SU(3).'

We then generalize the Goldstone boson pair
mechanism of Ref. 12. We find that from M„—M~
and the meson masses, all of the other baryon
medium strong and I=1 mass differences can be
roughly predicted, supporting the idea of threshold
dominance.

It is well known that in the current-algebra ap-
proach to symmetry breaking the corrections to
the GMO formula for baryons can be represented
as a continuum integral. However, one cannot
achieve quantitative control on the integral. From
the framework of chiral perturbation theory, how-
ever, the corrections can be shown to be of order

and hence one may calculate the leading-or-
der term exactly. We obtain the exact result

i(M ~M ) gx (pr tom )(vs pm)
4 A 4 Z 2 N 192 f '

x (3 —6n + 2n'), (1.7)

where (f/d)„=(1—n)/n is the (f/d) ratio for axi-
al-vector baryon 8 coupling. The right-hand side
is very small for the experimental value of a = -',

but could be large for other values, suggestive that
the observed octet enhancement is a consequence
of the dynamics of the symmetric world or a higher
symmetry which determines n.

In Sec. III we consider the g- 3~ decay. It has
long been known that the decay width is much too
large to be electromagnetic in origin. This is still

true in spite of the new Cornell experiment" which
has reduced the width by a factor of 3. The theo-
retical problem can be summarized by Sutherland's
theorem, "which states that the electromagnetic
amplitude vanishes in the SU(2) &SU(2) limit.

It has often been suggested"'" that the decay
might be explained by adding a small isospin-vio-
lating term e,'u,' to the strong Hamiltonian (1.1).
The relevant matrix element of u,' does not vanish
in the SU(2) x SU(2) limit. In Sec. III we make a
careful study of whether such a scheme can, in
fact, work Iin the (3, 3)+(3, 3) model]. The matrix
element (3z ~u,'~q) is calculated in an SU(3) XSU(3)
expansion up to O(e Ine) and is found to be reliable
to -30%%uo. The value of e, needed to explain the de-
cay is determined. This value implies an e,u, con-
tribution to the kaon and baryon I=1 mass shifts
that is a factor 2 or 3 too large to be easily believ-
able. However, the result is very sensitive to the
experimental 7l-decay parameters (the combined
experimental and theoretical uncertainty in our de-
termination of e, is 250%), so the u, explanation
(perhaps with a different representation for u, )
cannot be definitely ruled out.

In our conclusion we suggest some other possible
applications of chiral perturbation theory, and in a
technical appendix we describe an exact formalism
to treat q-q' mixing.

II. MASS FORMULAS AND THE ACCURACY

OF SU{3)X SU{3)

A. Nonanalytic terms

In this section we will present a few new applica-
tions of chiral perturbation theory and mention
some old ones. Our main goal is to get an idea of
the accuracy of SU(3) &&SU(3). Methods of deriva-
tion may be found in I and in Appendixes A and B.
We list results in decreasing order of singularity.

(a) [O(l/e, )]. We have shown" that the leading
renormalization of the (zero momentum transfer)
form factors of the K' vector currents is of order
e,'/e, and is exactly computable. The result for
meson form factors (including a generalization due
to Wada") is

f, (0)=1-, , (~-61n~3)+O(e'~') -0.97,64m'

(2.1)

where we have set the pion mass equal to zero for
simplicity. For baryons, the renormalization is
less than 13%.

(b) [O(1/co"')]. The leading corrections to the
baryon Gell-Mann-Qkubo formula are discussed
later in this section. They are of order e,'/e, '"
and represent a 3-MeV correction to the GMO for-
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mula.
(c) [O(e 1ne)]. The meson decay constants and

renormalization constants are renormalized' from
their SU(3) xSU(3) values by 10-35% (see Appendix
A). The ratios f»/f, and Z»"'/Z, '" [Eqs. (1.4)
and (1.5)] are 1.22 and 1.025.

The parameter a=e'8/e', [see Eq. (1.2)] is often
estimated to be -1.25. Cornwell" has computed
the leading corrections, yielding c=-1.29, a 3%
effect. This result can be easily rederived from
(1.4) and (1.5):

/l/

1+ate „'/2l »' (2.2)

(3} ~0 ~ ~8 Z 1/2 (3) ~8 Z 1/2
8g 8$

(2.3)

Z 1/2 =1-&(/* -1)+0(eJ=-0000.

Now, consider the Gell-Mann-Okubo (GMO} for-
mula for the pseudoscalar octet. In addition to
the defining equations (1.2) there is a third relation
between e'„e'8and physical quantities (Appendix A):

where Z;„'"=-(0~$,'. ~g), i =0, 8. [The quantityZ„"'in (1.5) is the same as Z,„"'.] Combining
(1.2) and (2.3) one can prove the following relation,
which is exact in the Gell-Mann, Oakes, Renner
model:

3 f P„' 2 " @8Z88 f 0l/0 f»l/» 0
4 Z '"' 3 Z '" '4Z"' Z'"

8'g 8 'fj fr K

(2.4)

The term involving e',Z«'" represents the q-q'
mixing effect. In Appendix A, e'8Z«'" is calcu-
lated and shown to be of O(e8'inc, ). If one sets
f» =f, = f„,etc., in (2.4} one obtains the GMO
formula:

(2.5)

This relation works quite well. The left-hand side
is -0.017 QeV', as compared with the average
pseudoscalar mass, p,

' = 0.17 GeV'.
The leading corrections to (2.5) can be deter-

mined using (1.4), (1.5), and the results on
~OZ 1/2 ~

8 01)

(2.6)

The first term in the brackets is due to q-g' mix-
ing; the other terms are from the ratios of the f 's
and Z's (the vacuum symmetry breaking). Putting
in numbers, we find

(-0.017 -0.038+0.013) GeV' = -0.042 GeV'

= O(~8'),

where -0.017 is the QMO combination, -0.038 is
from the mixing, and 0.013 is from the vacuum
symmetry breaking.

The corrections have made the formula u/orse,
although (2. 5) is still small compared to l/2 =0.17
GeV'. What could be the source of the difficulty'P
It could be an indication that the (3, 3) +(3, 3) mod-
el (or the whole chiral-symmetry scheme) is not
correct. Our suspicion, however, is that in this
application the c inc terms are not correctly esti-
mating Z,„'".

It is amusing to note that (2.6) can be rewritten
2 22 2

3 2 1 2 2 (I/'» l/0 2+-, g, -p, = + ', ln, +O(8, )
1r

+Or, ' .

(2 7)

Equation (2.7) shows that the formally leading-or-

der contribution to the ratio of 27- to 8-dimension-
al components of the pseudoscalar masses is

K

which numerically is around 0.1. This contribu-
tion to the ratio is reasonably small, but it differs
in sign from the true ratio.

We would like to comment on the standard mix-
ing angle formula

8 (p,„'cos'5 + y,„'sin'8) + 4 p„'- p»' =O(e8').

(2.8)

Can such a formula (which has no predictive pow-
er) be theoretically justified'? One can certainly
define 8 as the angle which satisfies (2.8). How-
ever, it is shown in Appendix A that 8 can only be
interpreted as the angle which rotates the q' and g
states into "singlet" and "octet" states if one turns
off all strong interactions. This interpretation
cannot be justified by dominating any dispersion
relation by a pole or by keeping the leading sym-
metry-breaking terms. In other words, a mixing
angle is appropriate for the bare-mass terms in a
Lagrangian, but not for physical hadron states.

Even if one does ignore the strong interactions
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and introduce a mixing angle in terms of a rotation
of the q' and q, one can only obtain (2.8) by ignor-
ing vacuum symmetry breaking. Finally, the QMQ
formula is supposed to be correct only to order e„
so there is no justification for keeping the term

sin'et/, „'in (2.8) which is of order e,'.
In Sec. III we will need the matrix element of u,'

between single-meson states. Up to 0(sine), the
perturbation of the matrix elements around SU(3)
xSU(3) is

(Z' fu,'if~') =-(Z'/u, ' fZ')

Z, "'(0)
1

(-', )"'co ln(A'/4P, ') 7 1 eo ln(A'/4P')
2f//(&) 32&'f, ' 12 W3 32rr'f,„'

(1 06)
2fr(e)
'"'( ) (0.87),2f, (e)

(2.9)

where fz(e) and f, (e) are the physical values of the decay constants, and Z, ' '(0) is the value of Z,' ', Z„'/',
and Z,„'' in the SU(3)xSU(3) limit. Similarly,

o~ o~ )
Zs (0) 1 (o )z/o o ( /
W3f„(e) ' 32m'f '

Z, '"(0)
(0 94)

Z 1/2 (0)
(0 7 3.)

11 e, ln(A'/4 p,')
6M3 32m' f,'

(2.10)

We see that these matrix elements are changed by
less than 30% by the leading symmetry-breaking
terms Form. ulas (2.9) and (2.10) are exact to
leading order. They incorporate a/l effects, in-
cluding internal dynamics, mass-shell constraints,
renormalization, and vacuum symmetry breaking.

In Sec. III and Appendix 8 we consider a still
more complicated matrix element: (37/~u,'~q).
The leading corrections to its SU(3) xSU(3) sym-
metric value are -34%.

Finally, we mention the one known example in
which the perturbation expansion completely
breaks down. Dashen' has shown that in the SU(3)
xSU(3) limit the electromagnetic contributions to

p, &+ —p.&o and p, „+—p, „oare equal. That is, the
ratio of the octet part of the effective electromag-
netic Hamiltonian (t/, ~+' —t/. ~o') to the 27-dimen-
sional part (t/, ,+'-

l/, „o')becomes a Clebsch-Gor-
dan coefficient (unity) in the SU(3) xSU(3) limit.
Hence, the tadpole mechanism" (tadpole is used
in its original meaning: a dynamical enhancement
of the octet part of H, ) cannot occur in the chiral
symmetry limit.

Since, in fact, octet enhancement does occur
(t///+' —t/&o' = -0.004 GeV' while l/, ,+' —p, ,o'

=+0.0013 GeV'), Dashen concluded that the pertur-
bation expansion must break down in this applica-
tion.

This was shown explicitly in Ref. 21; the leading
e inc corrections to the electromagnetic mass

shifts were computed and shown to be larI, er than
the leading term (The la. rge corrections were due
to the internal meson loops, not the off-shell ex-
trapolations of the external particles. ) Hence the
SU(3) xSU(3) perturbation expansion breaks down
in this application, "and the Dashen theorem does
not correctly estimate the electromagnetic mass
shifts.

The meson mass shifts therefoxe provide no evi
dence fox or against the existence of an exPlicit
E3u3 term in the Hamiltonian. The origin of octet
enhancement is left unexplained.

The conclusion to be drawn from all of this is
that regardless of the order of the leading coxxec
tions, SU(3) x SU(3) is reliable in almost all cases
to around 30% ox better, making its accuracy corn
Parable to that of SU(3). The only exception seems
to be the matrix elements of the time-ordered
product of two currents.

B. Octet enhancement

We have seen that octet enhancement cannot be
explained as a chiral-limit theorem. Li and Pagels
have shown'" that octet enhancement for quanti-
ties which vanish in the SU(3) symmetry limit
emerges naturally from the assumption of the
Goldstone boson pair mechanism. This assumption
is that the dispersion integrals for (a ja V~b) (V
is a vector current) are dominated by the thresh-
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olds of the two-meson cuts. For mesons, the
GMO relation (2.5) and the (octet) Coleman-Glas-
how formula

M, - M, = A (y, , ' - p» ')
J

dt v t /t
~v&+uy~'

~3&m' q
—4»+ (2.11) = 4&(V.'- V. ')A, (2.12)

follow without any assumption concerning the origin
of the symmetry breaking. Moreover, the 27-di-
mensional p.„+'—p, „o'is predicted to vanish.

When this idea is extended to the baryons, the
GMO formula, the Coleman-Glashow formula, and
the tadpole results" all follow. Baryon mass dif-
ferences are given by formulas like

where A is a cutoff, A is a constant, ;and p., and
p,„aremeson masses. Here we would like to ex-
tend these results by retaining the e"' terms as-
sociated with the lower limit of (2.12). We obtain
a one-parameter fit to all baryon mass differ-
ences. The results are

2M„-Mz =1,(p»' - p, „')[(2A—g» —p„)(15-48n+28m') +(2A - g» —p. „)(3-Bo. +4o. ')],
2

MP —M. = " 2(~»' —~»")t(2A —2l »}Y(3—4~')+(2A —u. —~, )-,'(3-4~)],
(2.13)

and similar formulas for m z - m-. , mA - m, m &+
—m&-, and m3, - —m-o which can easily be in-
ferred from Eq. (4.1) of Ref. g. The cutoff A is
chosen to be 705 MeV, to fit m~ - m ~, g„is 1.24,
and (f /d)„=(1-n)/n is the f/d ratio for axial-
vector-baryon couplings. Experimentally, 0. = 0.66
a 0.02. Using n = -', and the experimental meson
masses, the predictions for the baryon mass
shifts are given in Table I.

These numbers are in rough agreement with ex-
periment, supporting the vier' that the two-meson
thresholds are dominating the dispersion inte-
grals "Seve.ral comments are in order: (a}These
predictions are not exact theorems of the type dis-
cussed earlier. (b} The results are independent of
the origin of SU(3) and SU(2) breaking. (c) The
numbers are rather sensitive to the value of n used
and to the validity of the meson Coleman-Glashow
formula, (2.11). (d) The I=1 predictions probably
do not properly include the electromagnetic Born
terms (for M~ -M„ the Born term is 0.8 MeV).

Although the contributions of order e, to (2.13)
are only approximate, the pieces of order e,'/e, '"
are in fact exact land independent of the (3, 3)
+(3, 3) model]. Forming the GMO combination we
find the leading corrections (which can also be
found from the methods of I):
3 M iM i(M M )

g~ (P» V~ )(Pn
4 A+4 z T»+ Ig2

Mp- M„+My-—Mp+ +M3,o —M~- =0, (',2.15}

which is satisfied to within experimental erro. rs,
does not have any e,/e, '" corrections even thorough
the individual mass differences in (2.13) do. 1'he
corrections are of order o.e, inc, (here, o. is the
fine structure constant).

In summary, SU(3}xSU(3) seems to work wel:I

TABLE I. The baryon mass differences predicted
from the threshold dominance relations (2.13).

Quantity P redicted value Experimental value
(Me~ (MeV)

that the GMO formula works so well. Th&. leading
correction (2.14) is a large number times a func-
tion of n which nearly vanishes due to an apparent
accident' of the closeness of a to 0.63. It~ appears
that the success of the octet formula is bei' ng gov-.
erned by the value of n, which can only be under
stood on the basis of the dynamics of the SU(3)-
symmetric interactions or a hi gher symmek'ry,
such as SU(6).

The e"' terms in (2.13) are almost purely octet
and they work fairly well (Table I). It is only the
tiny 27-dimensional piece in (2.14) that is of the
wrong sign" if o. &0.63.

The Coleman-Glashow formula

x (3 —6n +2o.') +O(e,') .
(2.14)

The left-hand side is experimentally 7.5 +5.0 MeV,
while the right-hand side is 28 MeV x(3 - 6o. +2m')
=-3.1 MeV for n =-', . The correction is tiny and of
the wrong sign. It is interesting that 3- 6n +2m'
vanishes for n =0.63. It has always been puzzling

M~-Mz

Mg-M@

MA-M=

Mp -M„
Mz+ —Mz-

M-„-—M-„p

-252 (input)

-188

-235

-2.3
-5.6
+ 3.3

-252

-123

-199
-1.3
-7.9
+6.6
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in most cases. Octet enhancement is predicted
from the Golc!]stone boson pair mechanism, but its
extreme success in the baryon GMG formula seems
to be an accident of the value of e. The leading
corrections t:o the QMG formulas for both the me-
sons and the baryons are predicted to be small,
but of the wrong sign. "

III. THE@~3m DECAY

The largf. . experimental widths for the principal
decay mod&; s of the q have long been a puzzle.
The g-2y width was a factor of 5 greater than
expected" from SU(3) and the n' decay rate
Similarly, the g -3z rates seemed far too large
to be compatible with electromagnetism.

A recent Cornell experiment' has reduced the

2y rate b~p a welcome factor of 3." Since the 2y

decay is used to determine the total width, the

g -3z rates are also reduced by a factor of 3.
Neverthe. less, the 3v widths are still two orders
of magni. to.de larger than expected from electro-
magneti sm. "'" The basic problem is summarized
by Suthc. rland's theorem": The electromagnetic
amplitu. de vanishes in the SU(2) x SU(2) limit.

Vari(&us authors"" have suggested that the de-
cay coo.ld be explained by adding a small isospin-
violating term e,'u,' to the strong Hamiltonian
(1.1). The decay amplitude due to this term need
not va.nish in the SU(2)x SU(2) limit. The u,' term
can b~e thought of as a difference between the bare
masses of the nonstrange quarks or as a Coleman-
QlasIiow tadpole. " It could also be the effect of
new interactions, such as the neutral. gauge bosons
used in some gauge theories to cancel the diver-
genc. es associated with electromagnetism.

In order to predict the q decay rate one must
kno w e', and must compute the matrix element
(3w iu,'iq).

A typical approach" has been to estimate e',

frc)m the observed mass difference p, ~+ —p, ~p, as-
suming that the purely electromagnetic part of the
splitting is given by Dashen's theorem' (see Sec.
II). As we have shown" that Dashen's theorem
does not correctly estimate the electromagnetic
mass difference, this approach must be abandoned.

The calculation of (37T~u3~q) involves going to the
'SU(3) x SU(3) limit andpossesses some subtleties. "
In Sec. IIIB we will compute this matrix element
[in the (3, 3) + (3, 3) model] in an SU(3) x S'U(3) ex-
pansion correct up to O(e inc). These leading cor-
rections are reasonably small (34/p), so the chiral
calculation is fairly reliable. We then determine
e, from the observed decay parameters. Unfortu-
nately, the number obtained depends very sensi-
tively on the experimental numbers. In Sec. IIIC
we use this value to determine the e,u, contribu-

tion to the proton-neutron and other mass differ-
ences. They turn out to be uncomfortably large
(for example,

gpss~
—~„~„,--7.9 MeV), although

the combined experimental and theoretical un-
certainty in this number is at least 50%%uo. The im-
plications of this result are then discussed.

A. Experimental results and electromagnetic contribution

The branching ratios for the 3m' and the v'p p'
decays are I'„,/I'„,= 30.0+ 1.1 a.nd I", ,/I"„,
= 23.9 ~ 0.6, where" I"„,= 0.85 + 0.12 keV.

Experiment is consistent with a linear form for
the m+p p' matrix element:

T+ p
= A+ BEp, (3.1)

where Ep is the energy of the z'. Experimentally, "
the slope parameter B/A is around -2/p, „.

It is usually assumed that the final state has
isospin one. This is partly a theoretical preju-
dice: If the decay is electromagnetic, then only
the I= 1 part can contribute because of Q parity.
Qf course, an c,u, term is also I=1.

If the final state is I=1, then from Bose sta-
tistics

Tppp T+-p+ T-p+ + Tp+—

(3.2)

The widths for the 3n' and n'z p' decays are
then given by"

I'«0 = 82~13A+ B9

I"+,= 489 ~3A+ Bp, „~'[1+0.02y(1+y)] eV,
(3.3)

r, ,„=-(iqh (II„„)7)), (3 4)

and the quantities A a.nd B of (3.1) and (3.2) are
functions of the chiral symmetry breaking param-
eters e, and e, . In the SU(2) x SU(2) limit both
T p and Tppp mus t vanish whe n the four -mome n-
tum of the (on-shell) v' goes to zero, because"

7;,, = —(ijJ['F„II„„,]]7i) =0 .
0~0~ 0

But for p p = 0, T, ,= A and Tp« = 3A+ Bg„.
Hence, in the SU(2) x SU(2) limit

where y =(p, „—3p, )/(p, „+3A/B).
Using the experimental value B/A=-2/p, „one

can then predict that I", o/I'«o=0. 59. (The pre-
diction would be —,

' if one neglected the p'-w'
mass difference and set B=O. It is not very sensi-
tive to B/A. ) Experimentally, I', ,/I „,= 0.80
+ 0.05. This is in crude agreement with the I=1
assumption, but an I~ 3 final state clearly cannot
be ruled out. "

Consider the possibility that the decay is elec-
tromagnetic. Then the amplitude is
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A=B=0, (3 6)

so the electromagnetic decay is suppressed by a
factor of p, ' (or p, , lnp„'). This result is indepen-
dent of any detailed model and depends only on
the assumption that neutral axial charges com-
mute with II, (up to anomalous terms which are
higher order in u =»~) and that SU(2) x SU(2) is a
good hadron symmetry. This is Sutherland's the-
orem" stated as a chiral-limit theorem. (The
original statement was that T, , and Topp must
vanish at the off-mass-shell point P op= 0.)

Various authors" "have tried to estimate these
p, ,' terms by assuming linear extrapolation form-
ulas in the masses of the three pions, which they
vary independently (via PCAC). In this approach
the slope B/A = -2/p.

„

is predicted correctly, but
the magnitude of A always comes out far too
small. Dittner, Dondi, and Eliezer, "for ex-
ample, find I', ,= 0.6 eV in the (3, 3)+ (3, 3) model
and similar results in other models [one must
make a model-dependent SU(3) x SU(3) calculation
to compute A].

Therefore, the vanishing of A in the SU(2)
x SU(2) limit seems to rule out the possibility that
the decay is electromagnetic (unless, perhaps,
there is some unexpected very strong final-state
enhancement of the amplitude).

T, .=Ao', )() — ')

ooo= ( 0) .
(3 6)

To determine A we must go to the SU(3) x SU(3)
limit (always maintaining the ratio e,'/e',= -W).
The ratio E,/1J,

„

is ambiguous in the chiral limit,
so rather than work directly" with T, , we will
utilize the exact result that for P,p 0,

T, ,(P„.=0, e', ) =A(~', )

'
&+ -I['&.ul]ln&

SU(3) x SU(3) limit. Throughout we will assume
that uoo, u'„and u,' belong to the (3, 3)+ (3, 3)
representation.

We must compute the matrix element
T;,„(P;,P&, P»; eo; es) = -e',(ijklu, lq), assuming the
form (3.1) for T+ o. Now, in the SU(2)x SU(2)
limit, T, , vanishes when P, + =0 because
('F„+,u,'] = 0. But E, = y, „/2when p, + ——0, so from
(3.1) the slope B/A is correctly Predicted to be
-2/p,

„

in the SU(2) x SII(2) limit. We have argued
in the Introduction that SU(2) x SU(2) results are
valid to -7%, so we will work in the SU(2) x SU(2)
limit from now on. From (3.1) and (3.2) we have

B. Addition of an e3 u3 term

Due to the failure of electromagnetism to ac-
count for the decay, it has been suggested"'
that one should add an I= 1 term to the strong-
symmetry-breaking Hamiltonian. Then (1.1) be-
comes

H =Ho+ Eouo+63u3+ 68 (3.7)

where, one hopes, le', l ((le,'l, lie,'l. In contrast to
the electromagnetic case the uz contribution to the
71 -3v decay does not vanish in the SU(2) xSU(2)
limit, so it appears to be a good candidate to ex-
plain the decay. In this section we will calculate
the parameters A and B in an expansion about the

(3.9)
where the goo and (t)»o operators carry zero mo-
mentum. Notice that if the underlying symmetry
group were U(3) x U(3), as is naively expected in
quark models but not present in fact,"then (t', and

Q,
' could be written as linear combinations of

S A, and 8 A, so that A (and B) would vanish in
the SU(2) x SU(2) limit.

We will evaluate (3.9) exactly in the SU(3) x SU(3)
limit. In Appendix B we sketch the calculation of
the leading e inc corrections.

A(0) is determined from the following unambig
uous prescription:

(a) Define the off-mass-shell Green's function

O(p„',a,)—:—' 0 xe'~ '*( +0„')+ — (O„(x) O(
—,')O'0', (0)+ O, (0) (0).

0
(3.10)

A suitable interpolating field @„(including the effects of q-rl mixing) is defined in Appendix A.
(b) Approximate A(eo) =G(g„',e,') by G(0, F00). The error induced is of O(eolneo) and is calculated in Ap-

pendix B.
(c) For e', oo0, use the exact Dashen-Weinstein" method for SU(2)xSU(2) to evaluate G(0, e', ):

'o, '0 -, 0 I(-;)' 0„(*)o'.(0)+ —' o„(~)o',(0)
( 0) (3.11)
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where ['E, ['F, T( )] ] is a shorthand notation mean-
ing to keep the various equal-time commutators.

(d) Drop all terms which vanish as e', -0. The
result of all this is

W 8'g

+O(e in&) . (3.12)

1.19x 10 2 GeV'
3 =

f, 0.97x10 ' GeV', (3.15)

respectively. This is to be compared with the
SU(3) x SU(3)-breaking parameters e,/f, = 0.26
GeV' and e,/f, = -0.21 GeV', and the SU(2)
x SU(2}-'breaking parameter" e/f, = -p„'
=-1.8x 10 ' QeV'.

But the propagator in (3.12) is just iZ-«/y„',,

where Z,
„

is defined after (2.3), so we have

4e,Z '~ 4e
A(0) =G(0, 0) = — ' '", =- — ', . (3.13)

For e, =0, Z,„'' is equal to Z, 't'(0) defined in
Appendix A, and we have defined the renormalized
e, as e',Z, '~'(0).

In Appendix 8 we calculate the E'Dine, corrections
to A(0) exactly Th.e result is

4c,
( P) 3~f 3( )

,(.). . . ( '/ u')
( )3 32 2 3 0

(3.14)

where e, is still defined as e,'Z, ' '(0), and f,(e) is
the Physical value of the pion decay constant. For
ln(A'/4g') =2, the correction term is —34%, urhich
indicates that SU(3) x SU(3) is reasonably depen
dable in this application.

From (3.3) and the experimental width I", „one
obtains" ]A~ =0.703 for B/A= -2.08/p, „and [A~
=0.572 for B/A =-1.87/y.„.These numbers would
be reduced by 15/0 if I"„,were used instead of
I", , These two values yield

the e,'u,' baryon mass differences can be predicted
from the medium strong differences:

(M, M-.)l. , =E[(f/d) +I],
(Mr+ —Mr -)~„,= E[2(f/d)s], (3.16)

(M-. - -M:)~„,=E[-(f/d), +1],
where (f/d)s--3. 29 from the medium strong dif-
ferences, and E =- We, (Mr M-A)/2e8Z, '~'( 0) T.he
small deviation of e,'Z, ' (0) from c, can be deter-
mined from Appendix A. The numbers predicted
from (3.16) are given in Table II.

We see that the uq contributions predicted for
the mass differences are Probably too large to
be believable, although these is no x'eliable svay to
calcuLate the electxonsagnetic cont ibutions.

What are the errors in the numbers in Table II?
The numbers are uncertain by 20/p because of
B/A. They would be reduced 15% had we usedI'„,rather than I', , to determine e, (old values
for the widths would increase the numbers by
vY). There is also a 15/p error due to the quoted
uncertainties in I'

f.,&, the branching ratios, and
the baryon masses. Finally, if the c inc correc-
tions in (3.14) had been ignored, the numbers in
Table II would be reduced by a factor —', . Hence,
the uncertainty in the numbers is at least 50/p.

What can be concluded from all this? The decay
seems clearly to be nonelectromagnetic. Also,
an e,u, term in the (3, 3) +(&, &) model probably
cannot account for the decay" using the present
experimental parameters. The problem cannot
be blamed on the SU(3) x SU(3) extrapolation; the
corrections are -30%.

The numbers predicted from the e,u, term are
in error only by a factor of 2 or 3, not an order of
magnitude. Also, they depend sensitively on the
dynamical details. Perhaps u', is not a member
of the (3, 3)+(3, 3) multiplet, or contains a piece
which is not. If the u, term is the effect of some
neutral gauge bosons, for example, it may not
have simple SU(3) x SU(3} transformation proper-
ties. This could account for the failure of the
prediction on F, ,/FOOD [after (3.3)] based on the

C. Implications of the e3 ua terms

Assuming that the q 3m decay is due to an e3u3
term, we have given what we believe is a reliable
determination of e,.

We now consider the other implications of an
e,u, term. Using the matrix element (2.9), and

assuming e, & 0, we 'can find the e,u, contribution
to p, ~+' —p. ~02. The result, listed in Table II for
the two values of e, in (3.15), is about twice the
experimental mass difference.

Since u,' and u,' are members of the same octet,

(a) (c) (d)

&ac' -&E2 2

Mp -M„
Mz+ —M~-

M --M-,o

-0.0104 GeV -0.0084 GeV -0.004 GeV'

-6.4 MeV -1.3 MeV-7.9 MeV

-22.7 MeV -7.9 MeV

+6.6 MeV

-18.5 MeV

+14.8 MeV +12.0 MeV

TABLE II. The predicted esua contributions to the
QI =1 mass differences: (a) The quantity. (b) Prediction
for B/A = -2.08/p&. (c) Prediction for B/A =-1.87/p&.
{d) Experimental mass difference.
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I =1 assumption. Of course, detailed predictions
would be difficult to make in such a case.

One could also abandon the (3, 3) + (3, 3) model
for all the terms in (3.7). But the (8, 8) model
seems no better, "and the (6, 6) + (6, 6) model has
serious problems of its own."

Perhaps the decay is basically due to the u, term
(or even electromagnetism), but is enhanced by
some strong final-state interaction (such as a
heavy pion)" to which the chiral symmetry argu-
ments are blind.

It would be worthwhile to study (both experi-
mentally and theoretically) the other implications
of a u, term. Possibilities include violations of
SU(2) symmetry in p decays and in meson-baryon
coupling constants. 4' Bace" has considered the
effects on nonleptonic K decays, and Osborn and
Wallace" have considered the mN scattering length.

0 Z / Z /2 + Z i/2Z I i/2 + dg p
SO8

(A1)

1 Z'q+Z gt+ ds p', ,(s),

for i=0 or 8, where

a Goldstone boson but not the g'.
Let us define the renormalization constant

Z;,'t'—= &olp';la) for i =0 or 8 and a=q or q'. They
are real by T invariance. In the e8 = 0 limit,
Z '/' and Z '/' vanish while Z '/'=Z '/'

87)

=Z»' '=Z, ' '(e', ); Z,„i'' approaches some dif-
ferent value. Assuming canonical quantization
rules for Qo and g,' one can prove formally that

IV. CONCLUSION

We have argued that SU(2)x SU(2) is the best
symmetry of the strong Hamiltonian after isospin.
In Sec. II we observed that SU(3) x SU(3) and SU(3)
are comparable and valid to -30% in most cases.
Some applications of chiral perturbation theory
were given. We also argued that octet enhance-
ment for matrix elements which vanish in the
SU(3) limit could be understood from the Goldstone
boson pair mechanism.

In Sec. III we showed that an e,u, term is of the
right order of magnitude to explain the q-3p de-
cay, but the details depend sensitively on the ex-
perimental parameters and on the representation
content of u, .

Other possible applications of these ideas (in ad-
dition to those at the end of Sec. III) might include
the decays q'-g7tz and R, -2~, the effects of sym-
metry breaking on g„and the meson-baryon cou-
plings, and the extension of these ideas to other
symmetry-br caking models.

p;(s) = 2' g 6'('I -p„)(&oiy',ln& &nip,'. Io&
n

+ (i —j)), (A2)

&oly,'lo& =&oly',
I 8& =o . (A3)

But (A3) implies

with q2 = s. Of course, in a real field theory these
integrals will in general diverge.

The g-g' mixing effects are incorporated in the
Z, , 't'. An 7)-g' mixing angle 8 could be defined in
various ways. For example, it could be defined
as the angle which satisfies Eq. (2.8). A theo-
retically useful definition, however, would be to
define "singlet" and "octet" states Io) and I8) as a
rotation by 9 of the physical states lq') and lq)
such that

APPENDIX A: THE q-q' SYSTEM

In the third section of I we presented a formalism
to describe the g-g' system which assumed the
existence of an g-g' mixing angle. Such a mixing
angle exists only if one drops a certain continuum
integral. As no such assumption was made any-
where else in I, our treatment was inconsistent. 4'

In this appendix we will correct this inconsistency
by giving an exact formalism for the q-g' system. '

In the (3, 3)+(3, 3) model there are two unre-
normalized fields P,' and P', and two states lq) and
I7i') with I= y=o. We expect that for e, =0 there
will be no mixing effects and that P,' (p,') will cor-
respond to the q (g') state Furtherm. ore, as e,
-0 we expect p, „'-0but p.„,'0: The q becomes

Z/2

tang = 8n'
Z8$

Z/2
07)

Z x/2 ~

og I
(A4)

&oIB Ala& = p. 'f. , (A5)

This last equality is true if and only if the po8 in-
tegral in (Al) can be neglected relative to the re-
normalization constants. However, we shall see
that Zo~i/2 poo8 and probably Z8~

i/2 all vanish
like e,Inc, Hence, o.ne cannot justify dropping
the continuum integral in (Al) on the basis of a
small e8. A mixing angle, as definedin (A3), can

only be justified if the interactions in the sym-
metric Hamiltonian H0 are neglected.

Now define f„andf„,by
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where a=)I or )I'. For es-o, f„,vanishes and

f„=f,=fr ——f,(e,). Then using the result'
2 Z/2

one has

(A'I )

for a=g or )I'. The Ward identities (3.11) of I
become

(-', )"'(s,'), -~(s,'),=d, „"'/s+d,„,'/„,— (-*,)"s —~s, f dsp,', (s)/s -(') s—,S'f,dsp', (s)/s,
S88 SO8

( —',)' (s, ) =Z,„s'/„+d„.S'/„,— (—,')P's„—~ s, f dsp (s)/„s,—( )d s'—,f'd, sp „(s)/s .
Sos SOO

(A8)

Now, from (AV) one has

p „,'f„,= —( ', )' 'e—ZS,„'s'+O(e'In&), (A9)

which implies that f„,vanishes like e„notlike
eslnco Then, using the fact that the continuum
integrals in (A8) have no threshold singularities, dd

we have

(-', )'/'&u,'), —~&u,'), =Z, „'/'f + O(e), (Aloa)

(-')"&u') =Z»"'f„+O(e, ) . (A10b)

Equation (A10a) will be used to determine Z«'/'
and f„;from (Alob) and (3.18) of I we can deter-
mine the mixing quantity Zo„'/ which was needed
for the corrections to the Qell-Mann-Qkubo for-
mula in Sec. II:

Z „'/' 2 '/' Se,ln(A2/4p, ')
[Z (0)]'/' 3 96m'

(A11)

We would now like to define a pair of suitable
interpolating fields to define off-shell Green's
function for the g and g'. They are

0'q-=(Zoq ' '4s —Zsg
' '4o)/D

(A12)

D —Z &/2Z & 2 Z &/2Z 1/2
I 8'F) Sq t Og ~

In the e, =0 limit, (I))„=$8/Z,„'/2, (t)„.=$0/Z,„.'/'.

The fields are constructed so that

&ole. l» = 6.. .
for (a, b)e(q, )I'), and

(A13)

(A14)2O'A, =f„p.))'Q„+f))sp.qs y„s
One can use PCAC techniques for p„(org,') by
writing them in terms of s A, and p„,(or yo)
from (A14) and (A6), and then verifying that the

Q„,(g) pieces vanish to the required order
Equation (A12) can be inverted to yield

0 I/2 X/2
48 —Z8)) $7)+ Z8 ))s $7)s

(A15)

&flu((0) (n& = ~.' (A16)

for l = 0 or 8, g = g or g', with u, carrying zero
momentum. Also,

&q'(k') (u', (q(k')) = O, (A1'I)

where u, carries no momentum and k'= p, „'ox
2

P Tt

Finally, as in (3.23) of I one can show

Q 1/2 Z/2
Po ——Zo„g))+ Zo))

Since Z,„'' and probably also Z» &

' ' vanish like
e,inc„we see that p0'8 [defined in (A2)] must also
vanish like e,inc„aswas asserted after (A4).

In analogy to (3.22) of I one can easily derive

~() (Z;, ' 'Z, ' ') = ——(k' —p, ,')' d'xd'y e" '" "'&0~ T(y', (x)y,'. (y)u', (0))~0)
E dk

(A18)

From (A18) one can derive various results, such Z/2 Z/2

D = —Z /2 Zsn —Z &/2 dZon
Z D op~ d~o sq~ d~o

2

a,' =
2 „k,&n(k')lu', (0)l'9(k )&I,.„.,

where

(A19)
dz, „'/'

v2 d'0 + O(e In'e)
Zs g dE l

[D is defined in (A12)].
From Eqs. (A10a), (A 19), and (A20) one can
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use the techniques described in I to show

f,. ln(A'/4p, s)
,', —1 = —

2 2 (v 6 to+ sd;es)+ O(e),

(A21)
Z. '/' ln(A'/4 p, s)

—1 = — » [14(—',)' 'go+ d, es]+ O(e),

evaluated at K' =0 [the q' poles in the (q, u', ) chan-
nel present no difficulty]. The result is

(Pot'~0& ~s) T (0. )p uo ~ &0~ &8
s

for i = I, . . . , 8. Byf, (Z, '/') we mean f „(Z,„'');
d,. is the Gell-Mann d symbol d, ,,

If T(K'; e„es)is a Green's function involving an
71 field carrying momentum K, then [as in (3.30)
and (3.31) of I] the derivative of the on-mass-
shell matrix element T(I/. „';e„es)is

+, ," —D2 T(0; e„as)
p, ~

+ d," T„(0;e„es)+O(constant),
dp, ~

(A24)

dT(Po& fo~ Es') ~ Ts s 2,
~ o =-& „0(Pq ~ ~0~ ~sj

s l

= -i T„o(p,o,' E'o, 6 2) + Dg T(g o,' fo, fs)

2.+ ~ o To(p o ~ eo~ es) ~

C4C g

(A22)

where Dz is defined in (A20). T„'oand T1o are
.lthe matrix element T with a u, operator inserted

everywhere except on the external legs. The tech-
nical difference between the two is defined in I.
Both still contain 7)' poles in the (71, uo) channel.
The quantity T„is defined as

where T„oincludes u', insertions everywhere, even
Qg

on the external leg. One may usually" set e, = 0
on the right, inducing an error of O(eslneo).

The error in (A24) would be O(e inc) if T„were
evaluated at p, „'.If there are "dependent variable
singularities" (see Sec. IIC of I) the error can be
O(1) when T„is evaluated at K2 =0. This presents
no difficulty in practice since we are usually only
interested in the inc, part of the derivative. The
same comments apply to Eqs. (2.71) and (3.32) of
I.

APPENDIX B: CORRECTIONS TO THE SU(3) X SU(3)
CALCULATION OF THE @~3m AMPLITUDE

T(k; cess) —T(jL o,' eo, es)
h; -P&

(A23)

At Ks=g„', T„is just dT/dZ2 Of course. , one
must also add the counterterms associated with
other external legs to (A22).

As in (3.32) of I, one can approximate (A22) by
a formula in which the quantities on the right are

In this appendix we will sketch the calculation
of the leading (e lne) corrections to the result
(3,13) for A. We will stay on the line es'= -&2eo'
of exact SU(2) x SU(2) symmetry.

We will work with the expression (3.10) for
A(eo') = G(p, „',e'o). Since f„is an explicit factor in
(3.10) there is no need to expand it around co= 0.
From (3.10) and (A24) we find

—
d o [f,G(Po, eo)]=-iG,„o/s„o(0,eo) — ', '" G(0, eo)

2 dZs'/2 1 df„2 d bozo„' '

2 (2)1/2Z 1/2

d, G(p', e'o) +O(aine) .
71 P

(Bl)

The interpretation of (Bl) is that -iG„o ~s„orep-
resents the c, dependence of the internal dynamics.
The G/p, „'comes from differentiating the Klein-
Gordon operator; it cancels the uoo—&2u, inser-
tions on the external g leg in the first term. The

G(0, eo) [ ] term represents renormalization ef-
fects, and the last term is due to the variation of
the mass of the external g with c.

In (Bl) we have chosen to evaluate dG/dp' at
p, „'rather than zero. We have rewritten the
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[G(0, eo)dp„'/dcoo]/p „2term of (A24) using the ex-
pression (A7) for p, „'.The dZ, '~'/dao , term in
(81) is the counterterm associated with the ex-
ternal pions. [This is clear from (2.46) of I since
dp, '/de, '=0.]

Using (A11) and (A21) one easily finds that coo

times the bracketed counterterms in (81) is

e;G(0, e,')[ ]=—
3 3, , X(0) +O(e, ) .

11 2 'i' coin(A'/41L')
32r' .'

To calculate the first term in (81) we use the
exact SU(2) x SU(2) expression

-i G„o~2„o(0,coo) = '"" d'xd'z + — T fu', (z) —&2u,'(z)]&]&„(x) (-,') '~'(Po(0)+ — y,'(0)
~

0

~0 2
Wn

f~
'F„,T (uo'-&2u,')y„v'(-,')y,'+ ~ y,'~

where, just as in (3.11), we mean take all the
equal-time commutators. For the second term in
(81) we use (3.11). We now compute all the equal-
time commutators for these two terms [using the
expression~' (A12) for p„],utilize Eqs. ' (A6) and
(A14), a.nd then drop all terms which vanish or go
to constants as ep-0. The result is that the first
two terms in (Bl) are

~ 0
d'z [-'-, ~(T(u„o+(z)uo, (0))),

Finally, the dG/dP' term in (81) has singular-
ities due to the three diagrams in Fig. 1. In the
first diagram the invariant mass of the cut is of
the dependent-variable type (see I). The contribu-
tion of these diagrams (when multiplied by eo) is

G(
fo dP P ~60

p 2 p 2

A(0) + O(e) . (85)

+ -', V 2 (T(uo'(z)[uo'(0) —Wu,'(0)] )~0)o

+ o (T(uo(z)[uo(0) —v 2 uo(0)])~0)o]

+ O(constant) . (84)
Each of these terms diverges like cp due to the
two-meson cut (none have a two-pion cut). The
divergent part is calculated as in (3.15) of I to
give (when multiplied by eo') the same expression
as in (82).

4c, 93 2 '~' coin(A'/4p. ')
3~f,(e)f,'(0) 16 3 32m'f, '

+ O(Eo) . (86)

Part of the e in& correction can be absorbed into
the renormalization off„(0)by the symmetry-
breaking interaction [see (A21) j to give~'

(The first diagram contributes ~„and the last two
2. )

Putting the various pieces together, we have

S=P= 2 4c,
1

45 2 '~' coin(A'/4p')
3~f o(e) 16 3 32w2f

„

S=0

(p j

S=O

FIG. 1. The three diagrams contributing to the singu-
lar part of dG/dp2 in Eq. (B1).

+ O(eo) (87)

where f, (e) is the physical (renormalized) value
of f, . For ln(A'/4u') = 2, the c inc term is
= -0.34.

We conclude by commenting that the relatively
small (34%) corrections in (87) are due to the
cancellation of much larger factors. We do not
consider this to be a lucky accident. The differ-
ent terms in (Bl) merely single out for separate
consideration different aspects of the same Feyn-
man diagrams (e.g., the e dependence of the
masses of the internal and external lines, of the
vertices, etc.). Their near cancellation is not ac-
cidental; it simply means that the relevant graphs
are small.
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