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Several aspects of deep-inelastic neutrino scattering are discussed in the framework of asymptotically
free field theories. We first consider the growth behavior of the total cross sections at large energies.
Because of the deviations from strict scaling which are characteristic of such theories, the growth need
not be linear. However, upper and lower bounds are established which rather closely bracket a linear
growth. We next consider in more detail the expected pattern of scaling deviation for the structure
functions and, correspondingly, for the differential cross sections. The analysis here is based on certain
speculative assumptions. The focus is on qualitative effects of scaling breakdown as they may show up
in the x and y distributions. The last section of the paper deals with deviations from the Callan-Gross
relation.

I. INTRODUCTION

A considerable theoretical industry has built up
around the idea of Bjorken scaling, which received
its first experimental support in the SLAC-MIT
experiments on electroproduction. ' Subsequent
confirmation, in part, has come from the obser-
vation' that the total cross sections for neutrinos
and antineutrinos on nucleons appear to grow lin-
early with energy beyond a few GeV. A simple and
highly successful physical picture of the scaling
phenomenon is provided by the well-known parton
model. In its field-theoretic transcription, this
model amounts to the assumption of canonical
dimensions for the twist-2 operators that appear
in the Wilson expansion of a product of currents.
It has recently become clear, however, at least
in the framework of renormalizable field theory,
that the dimensions can be canonical for all the
relevant operators only in the absence of inter-
actions. Strict scaling, therefore, if it were to
persist, would represent a major theoretical para-
dox. On the other hand, departures from scaling,
if they develop in a sufficiently patterned way,
could also be informative about the structure of
the underlying theory.

So far, the closest that one has come to strict
scaling is with a special class of theories, based
on non-Abelian gauge symmetry. Theories of this
class possess the property of asymptotic freedom'
and lead to certain characteristic patterns of scal-
ing breakdown. ' ' In the present paper we discuss
some of the observational implications, especially
in the context of neutrino reactions. One issue
concerns the dependence of total neutrino cross
sections on energy. This is taken up in Sec. II,
where upper and lower bounds are derived on the
growth rate. The arguments employed in this
section involve very little in the way of extra

assumptions going beyond those implied by asymp-
totic freedom. It is found that the growth, while
it need not be exactly linear once strict scaling
breaks down, cannot depart too greatly from lin-
earity. In the present context, asymptotically
free theories make their most definite predictions
for the large-q' behavior of the moments of the
structure functions. Section III is concerned with
converting this information into predictions about
the large-q' behavior of the structure functions
themselves. Issues of nonuniformity arise here in
going from one to the other, so the discussion in
Sec. III is based on frankly speculative procedures.
The aim, however, is to assess qualitatively how
the breakdown of scaling could reveal itself in
certain aspects' of the differential cross section. In
particular, one is led to expect what could be a
substantial change with energy in the shapes of the
x and y distributions. Section IV deals with a
somewhat different subject, namely, corrections
to the Callan-Gross relation. ' However, this sec-
tion also provides a brief review of asymptotic
freedom, and it contains some comments on the
nonuniformity issues mentioned above. Through-
out the entire discussion we ignore possible devia-
tions from scaling which would arise from the
propagator term of a weak vector boson. If the
mass were very large the effects would not be
noticeable at present energies, but in any case
the necessary modification could easily be made.
In Secs. III and IV the discussion is implicitly re-
stricted to strangeness- and charm-conserving
neutrino reactions.

II. BOUNDS

We focus on the neutrino reactions and their
structure functions F, (&u, q'), i = 1, 2, 3. Here q'
is the negative of the invariant momentum transfer
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and u =2mv/q' is the Bjorken scaling variable.
Strict scaling would imply that the E;(((),(f') ap-
proach finite limits as q'- ~, for fixed ~. How-
ever, we are contemplating the possibility of de-
partures from scaling; according to present think-
ing such departures are expected to take on their
most characteristic shape when expressed in terms
of the large-q' behavior of the moments of the
structure functions,

For the asymptotically free theories under dis-
cussion the moments are predicted to display
logarithmic deviations from scaling. Namely, for
(f' large enough (how large may, in general, de-
pend on the order n of the moment} the predicted
asymptotic behavior is

q2 -ff ~(i)
F';"'(q')-b (i)()n—,„

where p, is a scale parameter not specified by the
theory. The coefficients b„(i) are similarly un-
specified, but the exponents a„(i) are definite and
characteristic of the underlying theory. They can
be computed explicitly, given the gauge group and
the quark content of the theory.

Actually, there will, in general, be several
different operators of spin n+2 in the Wilson ex-
pansion, each making a contribution to the right-
hand side of Eq. (2), each with its own character-
istic coefficient b„(i) and a„(i). For every n, it
is the contribution with the smallest exponent that
ultimately dominates at large q, arid it is this
contribution that is understood to be represented
by the right-hand side of Eq. (2).

Equation (2) describes the leading term in an
expansion in inverse powers of lnq and q . It
would be tempting to try to reconstruct the full
structure function F;((d, q~), for large (f', by sup-
posing that the correction terms in each moment
are uniformly small, for all n, when q' exceeds
some n-independent value. We shall in fact suc-
cumb to this temptation later on, but it is clear
that any such procedure is highly speculative. At
the present stage of theoretical understanding the
only firm predictions that follow from the ideas of
asymptotic freedom are those embodied in Eq. (2).
Thus a sharp test of asymptotic freedom requires
the difficult experimentation involved in extracting
from the data the individual moments, as functions
of q'. A more modest experimental objective is
the study of tota1, neutrino and antineutrino cross
sections as a function of energy. As is well known,
strict scaling implies a linear growth with energy,
at large energies, and indeed this kind of behavior
is what is indicated by existing data. The question

arises as to the growth properties that are to be
expected for theories of the sort under present
discussion. This is our first topic. We will see
that both upper and lower bounds can be set on the
growth rate, on the basis of the moment properties
discussed above. It turns out that the bounds rath-
er closely bracket a linear growth behavior.

The integral in Eq. (1) is presumed to converge
for all n~ 0. It therefore defines the I";"' as func-
tions of complex n, regular for Ren&0. For the
present discussion we shall adopt the one addi-
tional assumption that the analytically continued
moment functions are regular for all Ren& -n„
where n, is some small, but nonvanishing, positive
number, independent of q'. For given n, at large
enough q', the Ei(") are given by Eq. (2). The ex-
ponent functions a„(i) that occur in that equation
can be explicitly computed and turn out to be reg-
ular for all Ren& —i. We are assuming that the
coefficients function b„(i ) are also regular, at
least for Ren& -n, . In the following discussion
we will be concerned with real values of n in the
vicinity of n =0.

Let us now turn to the cross section bounds for

and the corresponding antineutrino reaction. Drop-
ping at the outset certain kinematic corrections of
order m/e, we have for the differential cross sec-
tion

2Bo G 1 2 1 1

BxBq B7Tx
f
(1 —y+-, y )F, —,FIy ay(1 —~—y}xE,],

where the upper sign in the last term refers to the
neutrino reactions, the lower sign to the antineu-
trino reactions; and where

x=~ '=q'/2mv, y=q'/2mxe, E~ =E, —2xE, .

To sufficient accuracy for our present purposes,
we note the inequalities

F, ~ 2xF, &xfE, f.

(i) UpPex bound, Using the inequalities of Eq.
(5), together with the inequality 1 —y+ ~y'& 1 for
0&y& 1, we see that the total cross section (for
the v or v reactions) is bounded according to

G2 'm' ' dxdq' —( Eqx'}.
277 p q2/2m(.

Now introduce a positive parameter y, in the range
0 & y & n„and observe that

dx 2m' & dx
2 2 2

/2m' q p x
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an inequality that follows from the positivity of
F,. According to Eq. (2), for al/ q'&0 and all
n& -n, we have the bound

1 q2 + q2 Cff

drum " 'F, = dxx"F, &B(n) ln
1 0

(8)

where the B(n) are unknown constants, independent
of q, and where the parameter q, with q & p, ,
has been supplied to guarantee that the moment
exists for all q'~ 0. Define

r»/e & C(o.)/[ln(e/m)]» (14)

F =y-f(o) (15)

within these constraints. From familiar inequal-
ities on moments of a positive function one has
that

where C(o.) depends on the parameter n but not on
the energy e. The inequality of Eq. (14) holds for
all positive values of y, n, and P, subject to Eq.
(13) and to cr+P &n, W. e therefore seek to mini-
mize the quantity

f(-n) = —a„.
Then

Sf(or), 0 8'f(ar), 0
~Q &Q

(18)

G2 , 2m' '-& q'+ q'
o & B( y—) -drf ', ln

27t p

f(cr+P) —f(o') & yP

Then it readily follows that

(13)

G2 2m'+ q'B(-y)2m' ln
27Ty p,

for all y in the interval 0&y&np. We now invoke
the result that the leading spin-2 (n = 0) opera. tor
in the Wilson expansion is the stress tensor, an
SU(3) singlet with canonical dimensions. This
implies that a„vanishes at n = 0 and becomes
negative for n&0. For the range of y involved in
Eq. (10), this means that f(y) is positive. How-
ever, f(y) ca,n be made arbitrarily small by allow-
ing y to approach zero as closely as one wishes.
We therefore conclude that r»/e grows with energy
less rapidly than (In@)', for 5 positive but arbi-
trarily small.

(ii) Lozoex bound. From the inequalities of Eq.
(5) we see tha, t

G2 2m& . 1

r» & — dq' —(1 —y)'F, (x,q') . (ll)
2Tf 0 q2/2m'

The expression on the right-hand side can in turn
be bounded from below if we shrink the range of
integration. In particular, let us, say, double the
lower limit on the x integral, so that (1 —y)'& &.

Moreover, let us replace the upper limit on the q'
integral by 2m'/[In(e/m)]», where y is some posi-
tive parameter. Next observe that

q

I

~f

~~

2 )
~

I

~f
~

~ 2

f &Le (q' ')~ f ch'
(12)

where o. &0, P&0, and n+P&n, We now .invoke
the bound in Eq. (8) and require, in the notation of
Eq. (9), that

It remains therefore to minimize

P(o.) = f(rx)-sf(o.)
BQ

(18)

with respect to n in the range 0& a&n, . Since in
this section, conservatively, we allow for the pos-
sibility that n, may be small, we shall simply set
n = 0. Reca, lling that f(0) =0, we therefore have the
bound

r»/e & constant [In(e/m)]

where

8P=-
BA ~-p

(19)

The function f(cr), which is related to the exponent
function a„by Eq. (9), can be computed explicitly,
given the gauge group and quark content of the
underlying theory. For definiteness we adopt the
theory of Refs. 5-7 based on the color group SU(3)'
and containing three quark triplets. For this the-
ory one finds

P = 1.35. (20)

To summarize, we find (for neutrinos or anti-
neutrinos) that r»/e is bracketed at large energies
within the limits

D ln — « — —C ln—

where 5 is an arbitrarily small positive constant
and where P, which depends on the structure of
the underlying theory, is a constant of order unity;
for SU(3)' the value is given by Eq. (20). In deriv-
ing these bounds we have made the mild assump-
tion that the moment function Fr2"~(q') can be con-

Thus, for fixed Q. one minimizes y within the con-
straint of Eq. (13) by letting P approach zero. Then
from Eq. (13) it follows that

,af(o')
BQ
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tinued a small but finite distance to the left of
n=0, for all q'. For the rest the results depend
solely on Eq. (2), which represents the character-
istic prediction of asymptotic freedom. The key
technical fact that made it possible to achieve such
close bounds is the fact that a„=0 for n =0.

What emerges from all this is that the total cross
sections are predicted to grow asymptotically in
a way that cannot be too different from linear. In
this particular respect the departure from strict
scaling (which leads to a linear growth at large
energies) is expected to be very mild. On the
other hand, deviations from scaling have a chance
to be more substantial for the structure functions
themselves, in their detailed dependences on q'
at each &. To proceed further, homever, one has
to introduce new assumptions that go beyond Eq.
(2). We shall introduce these in the following sec-
tion, and attempt there to follow out some of the
qualitative implications.

III. THE STRUCTURE FUNCTIONS

The discussion in this section, which is ad-
dressed to the properties of the structure functions
at large q', will be based on a highly speculative
assumption. Namely, let us suppose that the mo-
ments F(")(q') are well represented by the asymp-
totic expression on the right-hand side of Eq. (2)
once q' exceeds a certain limit, call it q, ', where
q, ' is independent of n; i.e. , let us suppose that
the asymptotic behavior described in Eq. (2) is
uniform in n. At the present stage of theoretical
understanding this is to be regarded as a frankly
phenomenological conjecture"; we shall return to
warnings and comments later on. For the present,
let us see mhat follows. In general, the inverse to
Eq. (1}is given by

(22)

where the contour runs to the right of all singu-
larities of E;"~. What we are assuming now, for
q ~ qa', is that the E~" can be replaced by the ex-
pression on the right-hand side of Eq. (2}. The
exponent functions a„(i) can be explicitly corn-
puted and are known to be regular for all Hen & —l.
We shall assume that the b„(i ) are similarly regu-
lar for Ren& —1. Altogether, then, we are assum-
ing for q ~q, ' that E;"~ is regular in the region
Ben& —I and mell approximated there by the right-
hand side of Eq. (2).

If we are given the structure functions for some
value of the momentum transfer in the above as-
ymptotic region, say at the value q, ', we could
compute the moments F(")(q,') and thereby the co-
efficients b„(i) in Eq. (2). From our assumptions

j.t then fpllpws fpr all q & qo that

F(n)(~2) F(n)(~ 2)~ a~-(i)

where

In(il'/ p, ')
»(&.'/u')

(23)

(24)

(i) It vanishes at n =0, reflecting the fact that
the stress tensor has canonical dimensions, "

a, (2) =0.

(ii) For large n, a„(2) grows like

a„(2)- inn.

(iii) The exponent function develops a pole" at
n= —1,

a„(2)„

This can be traced back to the presence of vector
gluons in the underlying theory.

On the basis of the exact results given in Ref. 5,
we adopt the following approximate expression for
a„(2):

a„(2)= —1.478 ln(n+ 1) + 2.0711n(n+ 2)

—0.1024 —1.333/(n+ 1) . (25)

For large n the exact a„(2) grows like Alnn+B
+ O(1/n). The approximation adopted in Eq. (25)
gets the coefficients A and B right. It also incor-
porates the exact residue for the pole at n= —1,
and it satisfies a, (2) =0.

The exponent function a„(3), relevant for E„has
properties simila. r to those of a„(2), though with
different numerical coefficients: a inn growth for
large n, a zero at n =0, and a pole at n= —1. The

In principle the full structure functions F; ((A), il')
can npw be cpmputed for all q & q0 pn the basis pf
Eqs. (22) and (23). The practical implementation
of this procedure, even apart from questions about
the underlying assumption on which it is based,
requires the "input" information F, (&u, q, '), and
also requires evaluation of the complicated inte-
gral of Eq. (22). The practical difficulty arises,
in part, from the fact that the a„(i) are compli-
cated functions of n (digamma functions are in-
volved}. There are no issues of principle here,
but the situation calls for numerical approxima-
tions. Let us first deal with these. For definite-
ness we take the underlying theory to be based on
the gauge group SU(3)', with three quark triplets.
Moreover, let us concentrate on the structure
functions averaged over proton and neutron targets.

For the structure function E„ the relevant ex-
ponent function a„(2) has the following key prop-
erties':



SCALING DEVIATIONS FOB NEUTRINO REAC TIONS IN. . .

following expression incorporates these key fea-
tures and represents a reasonable approximation
to the exact results:

a„(3)= 0.59261n(n+ 2) —0.1144 -0.2963/(n+ 1) .

We shall have some comments to make in the next
section about the longitudinal structure function
E~. For the purposes of this section, however, we
accept that E~/E2 for electroproduction is already
small compared to unity in the q' region of the
SLAC-MIT experiments. ' Moreover, the ratio is
predicted to vanish as q' —~, in the model under
discussion as well as in the simple quark-parton
model. We shall suppose that EI,/E2 is also already
small at modest values of q' in the case of the
neutrino reactions.

Our next task, then, is to settle on the input in-
formation E(&u, q'o) and E(+, q, '). To be safely
asymptotic we mould like to have these for "large
enough" q, '. Detailed structure function informa-
tion for the neutrino reactions is, however, still
lacking. Apart from everything else, therefore,
we cannot at present proceed in a really quantita-
tive way. However, in order to see qua/itatively
what kinds of effects are to be expected in the
present framework, we adopt the following il-
lustrative hypothesis. Let us suppose that
q, '= 5 GeV' is already just sufficiently asymp-
totic so that, for electroproduction, me can em-
ploy the SLAC-MIT results for E(e, q,'). We may
then employ a simple parton model (from whose
predictions we are expecting substantial departures
only at much larger q') to translate this into the
E, structure function for neutrino reactions at qp'.
The details of one such approach and fit are dis-
cussed for example by Albright and Jarlskog. '
We shall adopt a slightly modified version'4 of
their Ecl. (3.8c) to represent the neutrino structure
function E„averaged over protons and neutrons,
at q, '= 5 (GeV)'. Concerning Es(&u, q, ') 'we make use
of the fact that at CERN energies (where depar-
tures from scaling are presumably still small)
the cross section ratio, ' v"/o' = 2.6+ 0.2, is
fairly close to its upper bound, &r'/e' ~ 3. The
bound corresponds to E, = -uE, . It will simplifymat-
ters, and will perhaps not be too misleading for our
qualitative purposes, if we accept this relation at
the reference momentum transfer q, '. In any case,
asymptotic freedom implies at very large q' that

~ E, j /&uE2 -0, hence that o'/v" - 1 as e -~. Our
input hypotheses merely help us to get started on
this road. When better starting information be-
comes available one will be in a position to do a
more serious and qualitative extrapolation into
the asymptotic region than is now possible.

Given the approximations of Eqs. (25) and (26),
which are reasonably good, and given the input
structure functions, which are perhaps only illus-
trative, one can now work out the structure func-
tions for all q'& q, ' on the basis of Eqs. (22) and
(23). This has to be done numerically, and a num-
ber of technical comments are assembled in the
Appendix. The qualitative behavior of the st,ructure
functions at large q' can be inferred rather direct-
ly from the properties of the exponent functions,
as has already been discussed in the literature.
Consider E2(x, q'), for example, where for con-
venience me now work with the variable x = + ' in
the place of &u. Since a,(2) =0 it is obvious that

f,'E2dx, the area under the E, curve, must be-
come independent of q' in the large-q' region.
However, the shape of the curve changes with
changing q'. The behavior near threshold, " i.e. ,
near x = 1, is clearly governed by the large-n
properties of the exponent function. Since a„(2)
grows, logarithmically, with n„ it follows for in-
creasing q' that E, should vanish increasingly
rapidly as x- 1. Qn the other hand, the behavior
as x - 0 is governed by the pole that a„(2) de-
velops at n= —1. At large q', this leads to an
unbounded growth' '' as x-0, proportional to
exp(2ra ink(in~ ')] '), where a is a constant and
X is proportional to lnq'. The rate of growth as
x-0 increases with increasing q'. It is obvious
that these properties of E, are all shared also by
the structure function E,.

We shall not present here the results of our de-
tailed computations of the structure functions
themselves. It will probably be some time before
E2 and E, can be experimentally determined in de-
tail, as functions of x and large q'. Moreover, in
particular for E„ the behavior near x=1 and x=0
has already been discussed in the literature. In-
stead, we shall display the structure functions in
what are effectively partially integrated forms.
Namely, we consider the partially differential
cross sections, Bo/By and Bo/sx, obtained by inte-
grating 9 o'/Bxsy over one or the other of the two
variables. For given beam energy e this requires
knowledge of the structure functions for all q up
to the kinematic limit 2m'. The preceding dis-
cussion, given the basic assumptions adopted for
this section, deals only with the asymptotic region
q'& q,', where, ideally, qp should be taken large
enough. " In practice me are supposing that q,'
somewhere in the SLAC-NIT region will do; we
have somewhat optimistically taken q, '= 5 GeV'.
To discuss the differential cross sections me must
also know the cross sections for q'& qo'. Here we
rely on the observation that scaling seems in fact
to hold well enough for modest q', say for q, '& q'
& qo', where q,' is perhaps of order 1 QeV'. It is
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G'm~

Bp 7T
[(1—y+.-'y')&(~y)+ y(1 —2y)I~(~y)],

1

H(ey) = dx F,(x,q' = 2meyx), (2'f)

1

IC(ey) = — dxxE, (x,q' = 2meyx) .
0

If strict scaling were to hold, both H andK mould

be constants and the total cross sections 0' and
o' mould grow linearly with energy. Moreover,
with-xE, = —I"2 it would follow that H = K, which
impliesAhat o'/o' =3, so'/sy = constant, and
so'"/&y (1 —y)'. Except for the question of scaling
breakdown at very small q', these are precisely
the results that we are adopting as input for small
energies (2m' & q, '= 5.0m'). As we go up in ener-
gy, departures begin to develop, since we are
assuming onset of asymptotic behavior for q'& q, '.
The functions H and K begin to acquire a depen-
dence on the argument ey. The behavior at small
y still comes exclusively from the scaling region,
wherea, s the large-y behavior (y-1) reflects con-
tributions from q' in the asymptotic region. With
increasing energy e the transition moves increas-
ingly towards small values of y. The functions H
and K in this region are sensitive to our assump-

stretching things, however, to suppose that the
transition from scaling to asymptotic behavior
sets in sharply, for all x, at some particular qo'.
Nevertheless, we are forced to this assumption.
This introduces certain artifacts in the final re-
sults, especially for low beam energies e where
both the q'& q, ' and q'& q,' regions are making
comparable contributions to the cross section.
These effects, however, become less serious as
one goes to large energies. There is also the
problem of scaling breakdown at the other end,
for q'& q, '. The low-q' region (q'& q, ') contrib-
utes significantly to the cross sections even for
2m' substantially larger than q, '. It has always
been something of a puzzle, therefore, even when
strict scaling is assumed to hold beyond q, = 1
GeV', why the total cross sections become so
nearly linear in e already at a few GeV. These
uncertainties about scaling breakdown at low q'
make themselves felt in our computations here,
although the effects become unimportant for large
beam energies. In practice we have simply cut
off all q integratj, ons below q~ = 1.0 GeV . For all
of these reasons we restrict ourselves to large
energies e. For the remaining parameter, the
scale p. ', we take p.'=0.5m, where m is the pro-
ton mass.

(i) The y distribution. From Eqs. (3) and (4),
and ignoring the longitudinal structure function E~,
we have

.f5

.)0—
b ~
U M

.05—

I I I I I I

.2 .3 .4 .5 .6 .7 .S .9 {0

F1Q. ]. A plot of (m'/G m)(1/E)da /dy for E =200m
(solid line). For comparison we have plotted (dashed
line) the function 0.50(1 -y) which is what (~/6 m) (1/E)
x da'/dy would be if scaling held with the structure func-
tion given by Albright and Jarlskog (Refs. 13 and 14).

tion that there is a sharp transition from scaling
to asymptotic behavior. They both undergo varia-
tions in this region but then become smooth and
slowly varying functions for larger values of y.

To get the total cross sections we have to inte-
grate over all y in the interval 0-1, and this in-
cludes the problematic transition region. For
small energies the results are sensitive to the
choice of cutoff and to artifacts associated with
the transition region. Once large energies are
reached, roughly e R 50 GeV, the behavior becomes
smooth. Indeed, to within the numerical accuracy
of the computations"/e is then essentially constant
up to the highest energies (= 350 GeV) that we have
considered; p"/e rises very slowly toward o'/e.
Eventually, as e-~, o "/o" must approach unity-
for the present model but also in fact for any in-
teracting field theory. This is because the singlet
operators in the Wilson expansion must have small-
er dimensions than the corresponding nonsinglet
operators, owing to positivity. However, for as-
ymptotically free theories the approach to unity
is very slow, reflecting the fact that departures
from scaling are only logarithmic. Thus, we find
that the ratio o'/&x', which was equal to 3 in the
scaling region, has dropped only by about 10% at
c =200 GeV. Because of the transition region
artifacts, however, we cannot be too precise
about this number. What are less sensitive, at
large energies, are the differential cross sec-
tions so'/sy and so "/sy at large values of y. For
e = 200m and —,

'
& y & 1, these are displayed in Figs.

1 and 2. For So'/Sy in particular, we show for
comparison the input curve (1 —y)' which obtains
at low energies. The changed behavior reflects
the fact that H and K, though they are slowly vary-
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ing in y away from the small y region, are no
longer equal in magnitude away from small y.

(ii) The x dist~ibution. As was discussed earli-
er, with increasing values of q' we expect the
structure functions to fall off increasingly rapidly
as x 1, and to grow increasingly rapidly as x-0.
For large energies e, which allow for contributions
from large values of q', something of this comes
through in the x distributions Bo "/Bx and Bo'/Bx
This is especially the case so far as the x- 1 be-
havior is concerned. Unfortunately, since for
given x, q' cannot exceed 2mex, the small-x
effects in the structure functions are somewhat
washed out in the cross sections Bo/Bx. Never-
theless, for large energies the effects are visible.
The results are shown in Figs. 3 and 4, for
e = 50m and 250m.

I.4

l. 2

I.O
LLI

x
b ~,8

.6
LLI

E
4

. I .2 .3 .4 .5 .6 .7 .8 .9 I.O

FIG. 3. A plot of (x/G~mE)do (E)/dx as a. function of x
for two different energies (E = 50m and E =250m. )

IV. CORRECTIONS TO THE CALLAN-GROSS RELATION

In our discussion of the differential cross sec-
tions we have ignored possible contributions from
the longitudinal structure function E~ = E, —2xE,.
For electroproduction the ratio E~/F, is known to
be small already in the SLAC-MIT region. More-
over, both for electroproduction and for the neu-
trino reactions, asymptotically free field theories
and the quark-parton model both agree that this
ratio must go to zero as q'- ~: This is the Callan-
Gross relation. ' However, although the effects
arising from El, may indeed be small, it is never-
theless interesting to try to detect its contribu-
tions experimentally. Owing to the absence of the
photon propagator this may be easier to do at
large q' in the neutrino reaction than in electro-

production. In this section we shall consider the
large-q' properties of the ratio E~/E2 in the con-
text of asymptotic freedom. This will also pro-
vide an opportunity to briefly review some of the
ideas of asymptotic freedom. "

Let us first recall how parton-model relations
among structure functions are partially recovered
in an asymptotically free theory. We adhere close-
ly to the notations of Ref. 5; for simplicity we re-
strict ourselves at first to SU(3) nonsinglet struc-
ture functions. The analysis presented in Ref. 5,
which j.s based on the work pf Wj.lson, Callan,
and Symanzik, leads to relations of the form

dxx" E(x,q') = C"' —,, g lM„,

44

.42—

b m. 40—
C3 U

-iW

E
~.38—

where E is a generic structure function, M„ is the
matrix element of the operator of spin n+ 2 ap-
pearing in the Wilson expansion, and C„ is the
Fourier transform of the coefficient of this oper-
ator. The parameter p. is a reference momentum
at which the coupling constant g is defined. The
function C"' satisfies a renormalization group
equation

8
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FIG. 2. A plot of (z/6 m)(1/E)do~/dy for E =200m.
Note the suppressed zero. We see that (1/E)do~/dy is
practically a constant from y =2 to 1, which is what
scaling would predict.
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FIG. 4. A plot of (r/G2mE)do (E)/dx as a function of
x for two different energies (E =50m and E =250m).
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whose solution i.s

The effective coupling constant g (x) is defined
through

(29)
where K, and E, are constants which may be com-
puted from Eq. (33) if we know the growth proper-
ties of I"2 as a function of cu. For instance if
E,-(d '" as u-~, as expected from Regge argu-
ments for the proton-neutron difference, then

&, = —,
' C,(&) (&,= '—,' for the colored quark model).

If &,(~ —1) i' ' as ~- I, then', =4C, (R)/(P+ I).
For q' in the region of several GeV' experiment
suggests that P = 3. With more reliable input data
one could try a. global fit based on Eq. (33).

The q' dependence of E~(~,q')/E, (cu, q') is, of
course, also determined by Eq. (33). Once q' is
large enough so that g'/8m' is small comps, red to
unity we expect

In an asymptotically free theory g (In(q'/p, ')) —0
as q'- ~, so that on the right-hand side of Eq. (30)
the Wilson coefficient C"'(I,g) approaches its
free-field value. Iv this sense one recovers the
aj.gebraic relations of the parton model, such as
the Caliban-Gross relation I"2 —2xI', =.FL = 0. Devia-
tions from scaling, which formed the subject of
the previous sections, come, of course, from the
exponential factor 1n Eq. (30) ~

By evaluating C" (I,g) to the next order in per-
turbation theory one obtains corrections to the
parton-model relations. A simple calculation in-
volving the graphs of Fig. 5 fin fact only 5(a) gives
a nonvanishing contribution] leads to the (quark
operator) result

C~;~(quark) I"&,"~(q') 16m' ' n+ 3 '

where C,(B) is the quadratic Casimir operator for
the representation of the quarks. For the colored
quark model we have C,(A) = —', . It should be em-
phasized again that Eq. (32) refers to the SU(3)
nonsinglet combinations of structure functions,
e.g. , the proton-neutron difference. The left-
hand side of Eq. (32) is an experi. mentally defined
quantity and provides a direct determination of the
effective coupling constant Rs R fUnctlon of Q' The
smallness Gf g ls I'equlred fol self-consistency of
GUI' expRnslons~ ln the large-Q' I'egloIl tI1Rt we RI'e

considering. One can now invert Eq. (32), at fixed
g', to obtain

g -A. ln —
2

where the constant A is computable. For the
colored quark model A = —,'~r'. Since g is an ex-
perimental quantity, Eq. (35) therefore permits an
experimental determination of the parameter p, '.
In the renormalization-group formalism p.

' is of
course an arbitrary parameter, but we might con-
ventionally define it by requiring a good fit to Eqs.
(34) and (35). Defined in this way, p' is a funda-
mental parameter, which describes the rate at
which the strong interactions "turn off" in the deep
Euclidean region.

In oui pI'evioUs discussion Gf the asymptotic in-
version assumptions we had to express strong
caveats about the uniformity in n of the onset of
asymptotic behavior for the moments. The ques-

where we have switched to u=x '. In this way we
see thRt

I'i(~, e')
I'2((al, g ) 167!'

&~(&u, a') -K,((o —1) —,, u)- 1
12(~,q') ' 16m' '

photon or W

quark

q ~l

Flo. 5. Peynman diagrams contributing corrections
to the %'ilson coefficients for fermion operators. The
graphs (b) do not modify the Callan-Gross relation.
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tion boiled down to whether one can trust pertur-
bation theory for the anomalous dimensions y„,
especially with respect to the growth at large n
and the singularity at n= —1. Concerning the for-
mer in particular, there is the danger that higher-
order terms in perturbation theory lead to correc-
tions which increase with n. In the present con-
text we must ask whether we can trust perturba-
tion theory for CI", '/C, " . Here we believe that we
are on firmer ground, for the following reasons:

(a) In each order of perturbation theory the lead-
ing contribution to C," as n-~ is given by vertex
correction graphs, as displayed in Fig. 6(a).
These give no contributions to C~ . However, the
graphs of Fig. 6(b), down by exactly one power of
n as n-~, do contribute to Cl". . There is no ob-
vious nonuniformity, therefore, and the n-~ be-
havior in Eq. (32) may therefore be realistic even
beyond lowest order in perturbation theory.

(b) Graphs involving exchange of two gluons do
not contribute to the ratio Cl"~/C,"~. Order by or-
der in perturbation theory, therefore, it seems
that there are no singularities to the right of
n= —2. Even if the sum over all orders produces
a moving singularity (as q' varies), since the ef-
fective coupling constant at large q' is small, such
a singularity should not move much to the right of
n = —2. This is relevant because Regge arguments
suggest that E2" has a singularity at n = ——, (for()
the nonsinglet case under discussion). Therefore,
the x-0 behavior of E~(x,q'), obtained from the
inversion of

J
1 1

dxx" E~(x, q') = dxx" E,(x, q')Cg~'/C~2',
0 0

(36)
will be dominated by the singularity of Fi2"'. This
means that the behavior predicted by Eq. (34)
is not sensitive to the singularity structure of
Cz"'/C," and should therefore be reliable.

For SU(3) singlet structure functions the analysis
is more complicated, ' and the results are weaker.
Here one has contributions from the gluon opera-
tors in the light-cone expansion. Their coefficients
vanish to zeroth order in g, but in order g' we
have to consider the graphs of Fig. 7. It turns out
that only graph 7(a) gives a nonvanishing contribu-
tion to C("~. In fact, the gluon contribution leads
to

C~g~ (gluon) g ' 16
Ci,"&(quark) 16m' ' (n+ 3)(n+ 4)

'

%e see t:hat for large n the gluon contributions are
negligible compared to the purely quark contribu-
tions, Eq. (32). Thus the m- I prediction of Eq.
(34) applies for the singlet as well as the non-
singlet case. The co- ~ prediction is also un-
changed, in form, but the coefficient K, is no
longer determined.

V. CONCLUSIONS

Our discussion of deviations from scaling, for
deep-inelastic neutrino reactions in the context of
asympt 'Ically free theories, has been at two le-
vels. Concerning the growth properties of the
total v and v cross sections, we could set lower
and upper bounds without recourse to serious as-

(a)

(b)

FIG. 6. Representative high-order Feynman diagrams
controlling the n behavior of corrections to the Wilson
expansion. (a) Atypical leading contribution to C2 .
This graph gives no contribution to CI" . (b) A leading
contribution to CI . The bubbles represent radiatively
corrected vertices.

(b)

FIG. 7. Feynman diagrams contributing corrections to
the Wilson coefficients for gluon operators. The graphs
(b) do not modify the Callan-Gross relation.
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sumptions going beyond the basic features of as-
ymptotic freedom. The bounds closely bracket a
linear growth, so that in this respect deviations
from scaling are predicted to be small.

In order to treat the structure functions in more
detail, and thereby the differential cross sections,
we had to invoke uniformity assumptions of a spec-
ulative character. Given these, we are led to ex-
pect substantial deviations from scaling in the
structure functions at large q'. The effects are
somewhat washed out in the partially integrated
cross sections but are still visible there, espe-
cially for the x distributions as they change shape
with beam energy.

It is natural to ask how these results compare
with expectations for other possible mechanisms
of scaling breakdown. In this connection it is
especially interesting to contemplate a situation
where the strong interactions are governed by an
Abelian rather than a non-Abelian gauge theory. "
Of course Abelian theories are not asymptotically
free. That is, if there is a fixed point, it is not
at the origin of coupling constant space. The
anomalous dimensions, which are determined at
the fixed point, cannot therefore be reliably gotten
by perturbation theory —even if we knew where
the fixed point is located. Just for orientation,
however, suppose that the effective coupling con-
stant at the fixed point is very small, so that
lowest-order perturbation theory can be used. In
that case the anomalous dimensions would have
the same general properties as in the non-Abelian
case. The chief difference is that the analog of
Eq. (2) would contain q'/p' in place of In(q'/p, ');
the scaling deviations, that is, would go like in-
verse powers of (q'/g') rather than inverse powers
of ln(q /p. '). For the structure functions and dif-
ferential cross sections, therefore, the general
trends would resemble those of the non-Abelian
case, but the effects would be greatly magnified.

There is another mechanism of possible scaling
breakdown for neutrino processes that has been
discussed in the literature. ' The idea there is to
modify the parton model solely through endowing
the partons with form factors. The trends can be
seen in the paper by Barger. '

from one value of q' to higher values of q'. This
involves inversion of the moments, Eq. (23), with
the a„given by Eq. (25) or Eq. (26). Let us quote
three relevant theorems on Mellin transforms:

(a) If

then

where

(b) If k & 0, v & 0, then

„+2 I, , 2 Olney

1 u/(n+ 1.)

(n+ 1)"

where I, , is the modified Bessel function of index
v —1.

(c) If f(1)=0 and f(~)/~""-0 as &u-~, then

„„u) ""—(u"f((u) = (n+ o. +1)

The moment problem that we encounter is

(A1)

where, with the approximations that have been
adopted, a„has the form

c„=ccnntnnt+ g (cc tn(n t nc+ I) t dg

8 Pl+ +8+ 1

(A2)

Our coefficients de are positive. If all the c8 were
similarly positive we could invert A,

'" by repeated
convolutions, using (a) and (b). One further convo-
lution would then yield E(&u, q') Actually, th. e c~
are not all positive. However, if a given c& is
negative we can use (c) to write
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APPENDIX

where

(d dc'

(A4)

We present here some of the details of our pro-
cedure for extrapolating the structure functions

is known from the input data rwhich satisfy the re-
quirement that E(1,q, ') = Oj. In this way we are
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led to consider the moment problem

E„(q 2) = G„(qo', ~s)A. '",
where

b„=a„+(in'.) '.
The new problem has exactly the same structure
as the original one, with E„(q o)- G„(qo'; ns) and

a„-b„. By repeated use of this trick me can ar-
range (over some range of A which is big enough
for our needs) that the modified cs are all positive.
Indeed, with sufficient repetition we can arrange
that the index v encountered in (b) is always great-
er than unity. This last allows us to avoid modi-
fied Bessel functions of negative index. The latter
are singular at the origin and mould be a nuisance
for numerical work.
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