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%'ith the constraint of the pion inclusive transverse momentum distribution, we deduce a general

expression for the diffractive amplitude of the elastic scattering based on the "absorbed

multiperipheral-like (MP-like) model with the independent-emission (IE) parameterization for transverse

momentum cutoffs. For comparison, a dif&active amplitude with the multiperipheral (MP)
parameterization is also given. For both cases, the diffractive amplitude, together with an added

Regge-pole term, gives a reasonable description to pp elastic scattering data for p„b ~ 10 GH'/c and

~t~ 6 0.8 Gev', where for p „„beyond 100 GeV/c the contribution of the background term is

essentially negligible. It predicts that the total cross section ultimately grows like —(lns) . Together
with the elastic data, the inclusive transverse momentum data are compatible only with the IE case,
but not the MP case. This suggests that within the absorbed MP-like model the transverse momenta of
the leading particles are essentially not correlated to those of pions.

I. INTRODUCTION

Recently various theoretical ideas' ' were dis-
cussed in connection with the rise of PP total cross
section at the CERN ISR energies. " One idea is
the application4 of absorption to the multiperipheral
(MP) model, which had been previously suggested
in a different context. " We have followed up this
suggestion and considered absorption for a slightly
more general class of models referred to as the
multiperipheral-like model.

By MP-like model, we mean those models of
multiparticle production which have the following
general properties: (1) Particles are produced
with a sharp transverse momentum cutoff; (2) the
particle multiplicity distribution is Poisson-like,
with its average multiplicity n~lnE, where E is
the incident lab energy, E = s/2M; and (3) the in-
elastic cross section has a power behavior E'.
Features (1) and (2) are shared by various versions
of the MP modelII. I2 and those of the independent-
emission model" " (1E model). Feature (3) is a
prediction of the MP model, although sometimes
it is also assumed in the IE model. For the former
case, consider for example a simple multi-Regge
model, in which there is the emission of M type
of species along the MP chain. Ignoring the con-
straints from the conservation of charge, typ-
ically one gets

g Ec

with
N

c =2n-2+kg, ',

where n is the trajectory exchanged and g,.
' is the

coupling of the jth type emitted, with, e.g. , the

average multiplicity n,- -g,-' lnE.
Empirically feature (1) is well borne out by the

data. In theoretical models, this feature is
usually implemented through simple factorized
cutoff functions. Typically, for an (n+2)-particle
production amplitude, they are of the form

T„, , cc ] I ft(Ptr)
5=0
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n

T.' "."]['ft («r»
k=0

where the cutoff in the transverse momentum P, ~
is for the IE model and in momentum transfer
«r —( f, )'/', -for the MP model. So far as the
present work is concerned, Eq. (2) is the main
expression which distinguishes between the IE
case and the MP case. For the experimental sup-
port of feature (2), we recall that the pion multi-
plicity data have been successfully described by
the independent-cluster-emission model. "'4'"
There one finds that the pion multiplicity dis-
tribution is essentially Poissonian. For feature
(3), if the MP-like model dominates the physical
production cross section, the Froissart bound"
implies c ~0. So the observed rise of the total
cross section cannot be attributed to the asymp-
totic behavior of the MP-like model.

Instead of looking at the total cross section, the
quantity c of Eq. (1) can also be determined in-
dependently with the average multiplicity data. In
particular, for the m, K, and P average multi-
plicity data together with the assumption of 0. ~0.5,
Suzuki estimated that c& 0. Although we do not
suggest that one should take all the details of his
analysis seriously, his work once again reminds
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us that there is always a distinct possibility that
the MP-like production may have an "apparent
violation" of the Froissart bound. Similar to
earlier speculations, "especially that of the QED
model' of Cheng and Wu, we assume that this
violation at the level of MP-like production does
indeed occur. However, the Froissart bound is
restored in the physical total cross section through
further direct-channel mechanisms, such as
absorption.

We have analyzed the elastic and the pion in-
clusive data within the absorbed MP-like model
for both the IE case and the MP case of Eq. (2).
The simple MP case considered fails to give a
simultaneous fit to these data. This confirms
previous conclusions. "" On the other hand, the
IE case is compatible with these data. The latter
case of the absorbed MP-like model is the very
model advocated in this paper. On the whole, the
main phenomenological support for this IE case
is the following:

(1) Within our approach, constrained by some
typical pion inclusive distribution, the unabsorbed
diffractive amplitude is essentially specified up
to normalizations. The available elastic data for
P„b ~ 10 GeV/c and [ t [%0.8 GeV' can be fitted
within such a scheme.

(2) It gives a parameter-free prediction" to the
proton inclusive distribution. This prediction is
in crude agreement with the data.

(3) The pion multiplicity distribution for this
case is essentially not affected by the absorption.
Previously it has been found that a Poisson-like
multiplicity distribution in the context of the in-
dependent cluster emission model" gives a good
description to the multiplicity distribution. This
can be regarded as another favorable point for the
model.

We shall see that for the MP case due to the fact
that cutoffs are imposed on the t, variables, the
transverse momentum of each pion emitted is
correlated to that of the leading particle. This
leads to unwarranted constraints between the
elastic and the inclusive data. On the other hand,
the "pion-leading-particle correlation" is absent
for the IE case. So we extract the following
important lesson from our analysis: The data
suggest that there is, if at all, only a small frac-
tion of pions having their transverse momenta
correlated to those of the leading particles.

The outline of this paper is as follows. In Sec.
II, we present a comprehensive discussion on the
derivation of the diffractive amplitude for the IE
case. In Sec. III, we demonstrate that the dif-
fractive amplitude obtained together with a back-
ground Regge-pole amplitude gives an adequate
description to the elastic data. In Sec. IV, we

study the constraint of the elastic data imposed on
the pion inclusive transverse-momentum dis-
tribution for the MP case and discuss difficulties
involved. Also we compare our present work with
the impact-picture model. " Finally, we give a
summary in the same section. For completeness„
the asymptotic predictions of elastic scettering,
some formulas for the MP case, and the multi-
plicity distributions of the impact-picture model
are given in the Appendixes.

II. THE DIFFRACTIVE AMPLITUDE

FOR THE IE CASE

We shall consider exclusively PP collisions. We
assume that multiparticle production can be de-
scribed by two types of processes: simple MP-
like production processes and the subsequent
interactions among the particles produced. To
account for these interactions among the pions
and between the pions and nucleons, we adopt the
usual cluster-emission picture"'"'"'" and crudely
describe the final states as NN (or NN* or N~N~)

plus n mesons. Here N* are baryonic excited
states and baryonic clusters, and mesons are
pions, resonances, and mesonic clusters. For
most of our discussions below, it turns out that
the identification of the species within either the
baryonic or the mesonic classes is not important.
For convenience we shall loosely refer to the
reactions considered as pP PP+ nw, and comment
on the effect of resonances or clusters ("cluster-
ing effect") at relevant places. The initial- and
final-state interactions between the two nucleons
will be explicitly accounted for through the re-
scattering correction or absorption mechanism to
be specified below.

In this section we will give a comprehensive
discussion on the derivation of the diffractive am-
plitude only for the IE case and leave the MP case
to Appendix B.

A. The unitarity relation and the unabsorbed

overlap function H

As usual, we refer the diffractive amplitude to
be the asymptotic piece of the elastic amplitude.
Presumably its contribution to the total cross
section has a power behavior s up to some lns
factor. Also the amplitude is crossing-even, and
thus predominantly imaginary. For definiteness,
lower-power terms such as s ' ' will not be in-
cluded in it. We assume that the imaginary part
of the diffractive amplitude is given through the
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unitarity relation by

2Im T»(b) = [Im T»(b) ['+ [8»(b) ['H(b),

with

S»(b) =1+ iT»(b),

where all the quantities in the impact-parameter
space are designated by the tilde symbol. We
suppress the energy dependence in the arguments,
and ignore spin effects. The right-hand side is as
usual divided into the contribution of the diffractive
part of the elastic amplitude [Im T» [' and the
remaining overlap function, where H(b) is its
"unabsorbed" overlap function. We shall specify
H below. The absorption factor [8»(b) [' takes
into account both the initial- and final-state inter-
actions between the two nucleons. Here we assume
that the interaction between these two nucleons in
the presence of pions is essentially the same as
for the corresponding elastic scattering. Also,
technically speaking, the absorption factor should
be evaluated at the relevant impact parameters
between the two nucleons throughout the produc-
tion, "which in general differ somewhat from the
impact parameter b of the initial state. We shall
ignore this difference.

The corresponding quantities of Eg. (8) in t are
given by their Fourier-Bessel transform, e.g. ,

B. From cutoff function f(p,.T) to H(t)

To obtain the t dependence of H(f ), we first
specify the cutoff function f (p, r). Assuming the
cutoff functions for pions and protons are all the
same, the p~ dependence of the unabsorbed pro-
duction amplitude ("Born'* amplitude) is given by

J Ea

f=o
(8)

For definiteness, we assign the zeroth and the
(n+1)th particles to be the two protons. It turns
out that the eventual predictions of the inclusive
P~ distributions of pion and proton based on this
simple form are compatible with the data. This
gives us a Posteriori justification for the univer-
sality assumption. As we shall see in Sec. II C,
for this IE case the effect of absorption on the
pion inclusive p~ distribution is negligible. Also
the constraint due to the conservation of trans-
verse momentum can be neglected when many
particles are present. These two approximations
together imply that the cutoff function is given
by the square root of the pion inclusive distribu-

d'b e'b ' ~ g(g)
100

(4)

where &'= t So we ha-v.e H(t) =(8(b))z,. The un-
absorbed overlap function II at t=0 is completely
specified by features (2) and (8) of the MP-like
model stated in Sec. I. In particular, from the
optical theorem,

H(t = 0) = v = O' =I;pc=I;Ee P1 1
in 2+ tt n ~

Eg

b a[0
0

LLJ

n=p n=p

where E is the over-all normalization constant
and I'„ the normalized Poisson distribution, with

0.1—
0

I

.2 ~6 .8
p,
' (GeV'}

I.O
I

[.2

where Ep is a scale factor for average multiplicity.

FIG. 1. Comparisons of the pion inclusive distribu-
tion between the theoretical cutoff function and the data.
Data points with circles are at ~s=30.6 GeV and 8, ~
=89, and those with squares are at~8=30.4 and &=0.
They are from Ref. 23. All distributions are normalized
to the 89' data.
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H(t) =Q dC„„T„',*, , (p, ;p,')Ts„,(p, ;p, )

dc'n+~ Tn+~ 2(p& + x& ~~ pa)

'2
~ 2 Pfl Ptl)) (10)

where the integration is over the phase space of
the intermediate state and x, =2p«/Ms, with p, ~

being the c.m. longitudinal momentum of the ith
particle. Also, A=p,'-p, , where p, and p,' are
the initial and final c.m. momenta of one of the
protons, In the second step, the rotational in-
variance of the amplitude has been used. In par-
ticular, within the high-energy small-angle ap-
proximation, the usual rotation' around the y axis
with an angle 2A/vs is applied.

From Eqs. (8), (9), and (10) we have

tion, which can be directly read off from the data. .
Some typical pion p~-distribution data" are

illustrated in Fig. 1. A convenient parameteriza-
tion for this distribution, which also renders a
simple analytic form for the overlap function [see
Eq. (14) below], is given by

f (Pr) =(f (&)&p,

with its Fourier —Bessel transform

(
a ] t + x(y + a,')"']

)
"'

(b2 + B 2)3/2

&& exp( —
2 A. i [(5 + Bi ) -BiD

With' B,=1.98 and A., =0.32, it gives the curve in
Fig. 1.

The unabsorbed overlap function is in general
defined by

of the ith particle. %'e make use of the property
that for large n„, the Poisson distribution peaks
near its average multiplicity i, . From Eq. (11)
with G„(t, x, ) —= G„(t), we get

a(t) =FZ'PI„G„(t) FZ-'G(t), (14a)

G(t ) = exp(-(B, [(~'+ X„')'~'-~,]
+ n„B,[(t '+ X,')"'-X,]j), (14b)

~„=X,/x„, B,=x,B, ,

a(t ) = FZ' exp(-B [(-t+ ~2)'~'-~] ), (15)

Equation (15) remains approximately valid even
after the inclusion of the clustering effect."

Identifying the final-state objects as the "bona
fide" protons and pions with A, , given earlier, we
found typically""' A,„'=0.18 QeV' and A, '= 7
GeV'. Since we will be mainly interested in the
elastic scattering data for ~t ~& 1 GeV', the t de-
pendence of the pion term in the exponent of Eq.
(14b) is relatively unimportant and can be ignored.
Thus we arrive at

C. Smallness of pion angular momentum in the IE case

with"
n+I

G„(t, x, )=-]I
k=o

where the symbol f. ]„~ denotes the relevant
expression not written out explicitly, which in-
cludes the pE-dependent normal. lzatlon factors„an
integration over the longitudinal phase space, and
a summation over n. After integrating over the
longitudinal phase space, we have"

(G„(t,x, )],=FZ'P„c„(t,x,),
where x& is the rms moment of the x distribution

The fact that the pion contribution to the over-
lap function is relatively unimportant is a crucial
feature for the IE case. It is this very feature
which together with the absorption will enable us
to describe simultaneously the elastic and the in-
clusive P2.-distribution data. We digress here to
look at more closely the meaning of this approxi-
mation. Making a Fourier-Bessel transform on
Eq. (11), from Eq. (12) we get

The 6 function in the integrand is due to the con-
straint of the conservation of angular momentum.
Clearly the term x,b, corresponds to the contribu-
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tion of the ith particle to the over-all impact pa-
rameter b. The x factor here is also reflected in
the coefficient of b' in Eq. (12). Apparently our
approximation of Eq. (15) has its origin from the
relative smallness of the c.m. angular momentum
associated with pions produced.

Next we come to the inclusive distribution, which
will be discussed in detail in Ref. 21. As we shall
see,"the effect of absorption on the inclusive dis-
tribution is, analogous to the case of the overlap
function of Eq. (3), also through the absorption
factor 8»(b), where b =g; x;b;. Expanding the
absorption factor in x&, one has

S„(b)=S„(b„)+ x;6, b„S(b„)+ O(x,.'), (18)
r

with

D. From the function H to the diffractive amplitude

To obtain the diffractive amplitude from the
unitarity relation Eq. (3), we make the approxi-
mation that T» is purely imaginary. Solving for
the quadratic equation we get

1
Im T22(b) = 1—

[1 H(b)]
(20)

where

1
[I-2~'T,(N) "') ' (21)

To ensure that the amplitude f'»(b) be even under
crossing, we make the usual replacement of E
by Ee '"~'. Let To(b) be the complexified un-
absorbed overlap function. Then the complexified
elastic amplitude

b„=h„ /b„. and

1"0(b)= ri F(Ee "')' (",(b) (22)

Upon integrating over b&, due to azimuthal sym-
metry the term linear in x& does not contribute to
the inclusive cross section. Finally integrating
over the longitudinal phase space, one finds that
the corresponding correction term in the in-
clusive distribution is of the order of x, '.

For the pion one has typically" x„'=0.014«1.
In turn the absorption factor has a negligible de-
pendence on 5, . In other words, the original pion
inclusive P~ distribution remains essentially un-
changed by absorption except for normalization.
We have already made use of this feature in Sec.
II B. On the other hand, for the proton one has
typically" x„'=0.56. The dependence of the ab-
sorption factor on the corresponding b& cannot be
neglected. So the absorption effect has to be taken
into account explicitly and the calculation is more
involved. We defer the detailed discussions and
the comparison with the data to Ref. 21. There
the proton inclusive P& distribution predicted by
the model is shown to be in crude agreement with
the data.

Finally, let us look at the effect of the absorp-
tion on the multiplicity distribution. Similar to
our neglect of the pion contribution in the overlap
function of Eq. (15), G„(t) and thus G„(b) are also
approximately independent of n for this IE case.
The absorbed (n+2)-particle partial cross section
is given by

o:"=o.( I S„(b)I'G„(b)&, .
With the property of G„(b) mentioned, one finds
that the absorbed multiplicity distribution is also
approximately the same as that for the unabsorbed
case except for the over-all normalization.

G, (b) =(G. (t)&(,

[1+ y(B2 +B 2)~l2]

(b2+ B ')3f2

x exp]-A[(b'+B, ')'I'-B, ]] .
The experimental pion average multiplicity is '

n, =g,' in(E/Z, )

= 2.24lnE —3.44 .
Hence, from Eq. (85) in Appendix B one has

B,=2x„B for the IE case,

=2.24vB, (lnE-~i7()+2x„B0 4.44vB, -(24)

for the MP case.

IH. COMPARISON KITH pp ELASTIC SCATTERING DATA

As mentioned, our diffractive amplitude is meant
to account for only the leading asymptotic be-
havior of the elastic amplitude. For detailed
comparison with elastic data, especially in the
low-energy region, a background term has to be
added. We choose this to be a proper Regge-pole
contribution and write the full elastic amplitude as

a(t) = r(t) +It (t), (25)

where T(t) =(T(b)&~. The relevant Regge trajec-
tories for near forward PP scattering are the
u&-p and A, ftrajectories. Th-eir contribution is
parameterized as"

B(t ) [ P (e
—(t&x(t) + 1) +P (

fwcte(t) I)]

(26)



CHIU, GI RISER, AND WANG 10

= 4.89 ImA(0) (in mb), (27)

df 2.568

where the "+" subscripts designate the even and
odd signatures and o.(t) =-,'+ f. In the limit of
exchange degeneracy, P+ =P . However, because
of the oversimplified parameterization, we will
not impose this relation on R(t).

With our conventions, the total cross section
and the differential cross section are given by

c'r=
2 568 ImA(0)

4m

A. Total cross section

The comparison of solutions I and II with the
PP and PP total cross-section data"' "is shown
in Fig. 2. Solid curves are theoretical predic-
tions. Fits are reasonable down to p„b =6 GeV/c.
The diffractive contributions alone for both so-
lutions are also shown in the same figure as the
dashed curves. Notice that beyond 100 GeV/c
this contribution essentially saturates the cross
section. The analysis on the ultimate asymptotic
behavior of the total cross section is given in
Appendix A. With the solutions of Table I,

gz, -0.11(lnZ)', for the IE case
=1.22~A(t) ~' (in mb/GeV') . (28) -0.09(lnE)', for the MP case.

Here, the conversion factor mb/GeV' =2.568 has
been used. With Eqs. (27) and (28), the present
model for both the IE case and the MP case was
compared to the PP elastic data": cr, ReA/ImA
at t=O, the slope parameters of differential cross
section at various t values, and some sample
differential cross sections at 12.8, 19.2, and
1500 GeV/c. To further constrain Regge-pole
residues, PP total-cross-section data" are also
included. For the PP case the factor P of the
odd-signatured term in Eg. (26) is replaced by

For the IE case, the parameters A., and B, are
constrained by the pion inclusive data. Only free
parameters for the diffractive amplitude are I"

and c, which are correlated to the energy-de-
pendent normalization of the diffractive contribu-
tion. For the MP case, all the parameters are
free. This latter case is included mainly for
comparison. In our data analysis, no least-
squares fit program was used, although sample
calculations were made with parameters varied
to obtain their optimum values. Typical solutions
for both the IE case and MP case are presented
in Table I, labeled as solutions I and II, respec-
tively. Notice that in our solution c& 0. This is
a crucial point. All the predictions of the asymp-
totic behavior discussed below are with positive c.

The diffractive contribution rises more or less
linearly in lnE, at least up to 10' GeV/c, although
the (lnE)' term is expected to dominate eventually.

B. Re/Im ratio

The comparison between the predicted Re/Im
ratio of the forward amplitude and the data is
shown in Fig. 3. The fit is good for P» beyond
10 GeV/c. Notice that the diffractive contribution
alone gives a positive contribution. As is well
known, "it is the Regge-pole contribution which
is responsible for the substantial negative ratio
in the low-energy region. For completeness, the
prediction for PP is also included in the plot. The
ultimate Re/Im ratio can be obtained from Eq.
(A10) with the replacement of Z by Ee ''~'. It
gives the well-known form

ReA(0)/ImA(0) - g/InE for both cases. (30)

From Fig. 3, one sees that the Isabelle energy
is still far away from this asymptotic region.

C. Slope parameter

The slope parameter B(t) for the differential
cross section is defined by

2.44(ReA(t) [d Re(At)/dt] 1m+A(t)[di m(At)/dt]j.

do/d t (31)

The energy dependence of this parameter at dif-
ferent I; is shown in Fig. 4. The theoretical curves
are evaluated at t=O and at t=-0.325 GeV'. They
are compared with those points in the nearby t
region. There is a crude agreement down to s
= 20 GeV' or p„b = 10 GeV/c.

In Fig. 4, we see that there is a definite dif-
ference between the two parameters at t=0 and at
t = -0.325. So far as the present model is con-
cerned, this difference is already present at the
unabsorbed level. In particular, replacing B of
Eg. (15) by B, of Eq. (24), the unabsorbed ("Born
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TABLE I. Typical solutions.

Solution I (IE) Solution II (MP)"

Diffractive part: E =24.3 GeV

A. =0.43 GeV

B, =2.97 GeV '

& =35.0 GeV 2

A&
——0.32 GeV

B& —-0.087 GeV ~

Regge pole:

c =0.09

P =941 GeV 2

P =4 34 GeV

a =0.7 GeV

Bo ——1.45 GeV ~

c =0.04

P+ ——9.41 GeV 2

P =4.34 GeV 2

g =1.5 GeV 2

For the IE case, with (Ref. 27) xz —-0.75, A&
——0.32

GeV, and B
&
=1.98 GeV ~.

For the MP case, x~=0.75 and v =0.77 were used.

term") slope parameter is

ReB,
Born ( )

( f +yn)1/2 (32)

The right-hand side has a square-root branch
point at t=X'. Our solutions give A. =0.43=3m, .
So the slope BB„„(t)varies rapidly near t=0.
Apparently after the absorption and unitarization
within the present model, this feature of varying
slope still persists, and gives a good description

of the data. Ultimately for the absorbed parame-
ter one has from Appendix A,

B(0)-0.01(lnE)' GeV ', for the IE case

(33)
-0.007(lnE)' GeV ', for the MP case.

D. Differential cross sections

The comparison of our solutions with the dif-
ferential cross section data" at p„B= 1500 GeV/c
is illustrated in Fig. 5(a). At this energy the
diffractive contribution well saturates the elastic
amplitude. Thus the curve shown for the IE case
is essentially predicted by the pion inclusive P~
distribution, except for the over-all normaliza-
tion. The well-known "break" in the data is repro-
duced. As mentioned earlier, within the present
model this behavior is closely related to the
square-root cut in t .

The differential cross sections at various en-
ergies are illustrated in Fig. 5(b). The 12.8- and
19.2-GeV/c data are reasonably well reproduced
up to I f )= 0.8 GeV'. At 1500 GeV/c, the pre-
dicted curve agrees with the data again up to
around

~
f

~
= 0.7 to 0.8, although the predicted

curve has a dip at I f
~

= 1.0 GeV', while the data
show a dip further out in

~
t ( at

~
t I= 1.2 GeV'.

The predicted differential cross section at

I I I I I I I I l I I I I I I I II I I I I I Il I I I I I I Ill

60—

55—

pp data,'

Pp data.'

ACGHT

0 Galbraith et al.

0 Denisov et al.

Pisa- Stonyarook

G CERN- Ro~e

e Galbraith et al.

+ Allaby et al.

50—
C)
E

40—

I I I I I I III
IO IO

PLA& (GeV/c)

I I I Jg IIII
IO'

~ JMLJ
IO5

Isabelle

FIG. 2. The pp and pp total cross section for incident laboratory energy from 5 to 105 GeV/c. Solid curves are
model predictions. The dashed curve represents the diffractive term alone. I corresponds to the IE case, and II to the
MP case. For data points, see Refs. 33 and 34.
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04 I I I I ~ ~ ~ I I I I I I I I I 1 I I I I I ~ I
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FIG. 3. The ratio of the real part to the imaginary part of the pp and pp forward amplitude from 5 to 10 QeV/g.5

Solid curves are model predictions. The dashed curve represents the diffractive contribution alone. I corresponds to
the IE-case, and II to the MP case. The data points are for pp only. See Ref. 33 for detail references.
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FIQ. 4. The slope parameter B {t) for pp differential cross section in the energy region 8 =5 to 2x10 QeV . Theoret-5 2

ical curves shown are computed at t =0 and t = —0.325 QeV~. I corresponds to the IE case, and II to the MP case. The
data points as shown are divided into two groups: one with ~t~ &0.1 and the other with 0.15 & ~9~ &0.5. See Ref. 35.
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FIQ. 5. (a) A comparison between the theoretical curve and the Pp differential cross section data at 1500 GeV/c (or

&,~ =53.4 QeV). Both solutions I and II give essentially the same prediction. For data points see Ref. 33. (b) A

comparison between theoretical curves and the differential cross section data at 12.8, 19.2, and 1500 QeV/c. I corre-

sponds to the IE case, and II to the Mp case. For data points, see Ref. 33. The prediction at Sx 104 QeV/c is shown

by the dashed curve.

Isabelle energy is also shown in Fig. 5(b). Notice
several features in the energy dependence of the
predictions:

(1) the rapid shrinkage phenomena,
(2) the inward motion of the dip, and
(3) the rise of the secondary maxima.

These features are quite general and are closely
related to the approach of the asymptotic black-
disk-like pattern.

IV. DISCUSSION

A. The absorbed MP-like model and the inclusive data

In Sec. II, we have seen that, for the IE case,
there is a one-to-one correspondence between the

Pr dependence of the cutoff function f and the t
dependence of the unabsorbed overlap function H.

Our parameters &, and X, of Table I for this case
are compatible with both the elastic and the pion

inclusive data.
For the MP case, with the parameters obtained,

the predicted inclusive PT distribution is grossly
different from the data. In particular, constrained

by the elastic solution, we found for this case
the ratio (Pr'), /(Pr')N» 1. This disagrees with

the data, where this ratio is comparable to unity. "
It turns out that the qualitative feature of this in-
consistency is already present before the ab-
sorption. For simplicity, we demonstrate this
difficulty for the unabsorbed case with a Gaussian
cutoff function. We shall see that our observations
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below basically confirm earlier conclusions. ""
In Appendix B, we discuss the MP case in some

detail. With the Gaussian cutoff functions, in the
form of Eq. (B7)

f (p ) a- e (-bNPT )

from Eq. (B6) the unabsorbed slope parameter is

J3~„„=2b„x~'+b~(n-1)v', (34)

with u' defined in Eq. (B4). The quantity n is the
mean of the average multiplicities of pions plus
other resonances or clusters. Denote the average
number of pions per object emitted to be N, . Its
estimated value at this stage varies from authors
to authors. Making the most favorable choice for
the MP case, we take one" of the largest values
proposed, i.e., N, =3.5. From Eq. (23), one has

n = —=g, ' In(E/E, ) -0.64 ln E-0.98 . (35)

From Eqs. (B9) and (B10), the average values of
the squares of the transverse momenta of proton
and pion are respectively

(P,')'„= I/25„
and

general structure of the momentum transfer (q, ')
cutoff of the MP model [see Eq. (2)]. We recall
q, =g~, P, . Having the cutoff in q, 's, one finds
that the transverse momentum of each pion is
correlated to that of the leading nucleon. Further-
more, this implies that the contribution of each pion
to the t dependence of the unabsorbed overlap
function is comparable to that of the nucleon as is
clear from Eq. (B6). This feature leads to the
discrepancy discussed above.

On the other hand, for the IE case, the trans-
verse momenta of the pions and those of the nu-
cleons are assumed to be uncorrelated. This very
feature together with the fact that x„'«x~' enables
us to neglect the pion contribution to the t de-
pendence of the unabsorbed overlap function [see
Eqs. (14b) arid (15)]. This feature together with
absorption leads to a mild energy dependence of
the slope parameter, in agreement with the data.
We recall the multiperipheral-like productions
specified in the beginning of Sec. II are of the type
PP- NN (NN*, or N*N*) plus n mesons. There-
fore our analysis here suggests that except for a
small fraction of pions from baryonic clusters
(they typically are present in the diffractive dis-
sociation events), the momenta of the bulk of the
pions are essentially uncorrelated to that of either
proton (or more generally either of the leading
particles).

From Fig. 4, we obtain the experimental slope
parameter at t = 0,

B'"~=0.39 lnE + 10.4. (37)

With this slope parameter together with Eqs. (35)
and (36) and" v ' = 0.6, we get 5, = 1 GeV ' and
5„=10.3 GeV '. In turn, from Eq. (37), one has

(P,')'„/( p, ')'„=21» 1. (38)

Notice that from the point of view of the elastic
data, this large ratio stems from the fact that the
observed slope of the diffractive peak is relatively
large but has a weak ent=rgy dependence for the
MP case. This large rJ.tio predicts that the pro-
ton inclusive P~ distribution should be much
sharper than that of the pion. This is contrary to
the data, where the two distributions are similar. "
So with the param~'-, ers determined by the elastic
data, the MP case does not explain the inclusive
P& distribution. In other words, the simultaneous
description of the elastic and the inclusive data
cannot be achieved. This is similar to earlier
conclusions where, starting with the inclusive
P& data, one shows that the elastic peak cannot be
consistently explained. ""

We observe that this failure can be traced to the

B. Comparison of the absorbed MP-like model

with the impact-picture model

Our fits to elastic data and the asymptotic pre-
dictions are similar to those obtained from the
impact-picture modelb" (or the eikonal model),
although the latter did not consider detailed fits
to data below, say, s = 100 GeV', except for the
total cross section. In general for

~
f

~
S 0.8 GeV',

where most of the cross section is, apparently
the absorbed MP-like models and the eikonal mod-
el give a similar description. The elastic data
for

~
f ~s 1 GeV' appear to be insensitive in dis-

tinguishing these models.
We observe that the absorbed MP-like model

for the IE case and the eikonal model are based
on different multiparticle-production mechanisms.
The former corresponds to applying absorption to
the MP-like amplitude, while the latter corre-
sponds to the s-channel iterations of the MP-like
amplitude. Thus while the predictions of these
two models on the elastic process are similar,
their predictions on multiparticle production could
be different. For the present case, we have shown
that there is a simple relation between the pion
cutoff function and the corresponding inclusive

P~ distribution which is compatible with the data.
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A similar comparison for the eikonal case is not
available at this stage.

We now look at multiplicity distribution. This
distribution, predicted by the present IE case as
mentioned earlier, is essentially undisturbed by
absorption. We recall that Poisson-like distribu-
tions with the inclusion of cluster emissions have
been shown" to be compatible with the data. This
compatibility can now be regarded as another
strong point of this model. On the other hand, for
the impact-picture model, we assume the usual
s-channel iteration structure for multiparticle
productions as specified in Appendix C. With this
assumption the multiplicity distribution is given
by

(P lg'»(E/Eo)]" g j"
)(E/E ),2)y

x ( ~

S"(&) I'[lm 8(&)P&o

(S9)

with n-E'/lnE. This distribution deviates sig-
nificantly from a Poisson-like distribution. We
have attempted to fit the multiplicity data but have
not succeeded in getting reasonable fits, especially
for those data beyond 100 GeV/c, even though we
did obtain fits to the pion average multiplicity
and the correlation parameter, f, .

of the longitudinal exclusive distribution have not
been specified. Also we have greatly idealized
the final states. Our treatment of this aspect is
particularly rudimentary. As the next step, one
may ask whether with some proper choice of the
exclusive P~ distribution and with the inclusion
of a more realistic description of final states, one
can achieve an over-all description of PP collisions
at high energies.

After the completion of our manuscript, we
found that in addition to Ref. 4, absorbed multi-
peripheral models are also discussed by Finkel-
stein" and by Amati, Caneschi, and Ciafaloni. "
In the former paper, the simultaneous description
of the shrinkage rate of the elastic peak and the
inclusive transverse momentum distribution is
not examined. In the latter paper, this simul-
taneous description is discussed in the context of
the application of absorption to the triple-Regge
formalism.
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C. Summary

The main point extracted from our analysis is
that within the pr esent framework, the transverse
momenta of pions are essentially uncorrelated to
those of the leading protons. We have seen that
"the pion-leading-particle correlation" specified
by the MP case cannot simultaneously explain the
elastic and the inclusive data. On the other hand,
this correlation is absent for the present IE case
and such simultaneous description has been shown

to be possible.
For the IE case, we have exploited the empirical

relation, x~'&& x~', which leads to an important
feature that the average angular momentum of
pions produced is relatively small. This feature
subsequently implies the dominance of nucleon
contribution to the t dependence of the overlap
function and the weak dependence of the absorption
factor on the impact parameter of the inclusive
pion. This is one of the crucial ingredients which
enable us to describe quantitatively the elastic
data, the inclusive P~ distributions, and the pion
multiplicity distributions.

Some limitations of our model are the following.
Within our approach, so far as the longitudinal
momentum distribution is concerned, only quan-
tities such as x„' and x„' are included. Details

APPENDIX A: ASYMPTOTIC FORMULAS

where do= g, 'v B,=2.24vB, From Eqs. . (21) and

(Al), the elastic amplitude at i = 0 takes the form

where

2iTO= (1+D y-)e'/(D y)' . --
Set -2iT, =1 and solve for y. The solution is

yo=21nlnE + O(lnlnE/lnE) .

(A2)

(AS)

(A4)

In this appendix, we derive the asymptotic
formulas for the total cross section, the inelastic
cross section, and the slope parameter at t=0.
Define the variable y = D—A(b'+ B,')"', with
D=-ln[F(Ee "')'X'B,]+ XB, . For c&0, one ob-
tains from Eq. (24)

D=c lnE + O(ln lnE), for the IE case

=(c+Ad, )lnE+ O(lnlnE), for the MP case

(A1)
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Dividing the integral of Eq. (A2) into two parts,

T(0) = T, + T„
g

"
1 „ i " [1+(1+z)z 'e "D]"'-1

1 g2 (1 2 T )1/2 ( 3) y y2 [I ~ (I+z) -3 -& o+] 1/2

(A6)

(A6)

Z
o-yo+y {z 1)3z-lee D-1 1/2

T2 =
~P

I Il 2
~ T iy/2 (D 3)dy ~2 I / 153 -I I -D-l

DBc i — Z 0) +(g j 8 8
(A7)

T,=i, — ' + O(DlnD).
D' B,'
2X2 2

From Eq. (A7), the leading term of T, and, in

turn, that of T(0) have the form

D-yp+ 1 &cut

T(0)-T, ——, (z-1)dz =i bdb,
0

(A9)

By expanding the integrands of Eqs. (A6) and (A7)
in powers of z, it is straightforward to show

T, = O(D)

and

Note that in this asymptotic region o. - -, 0 ~, which
is a characteristic feature of black-disk scatter-
ing.

With the analogous approach one also finds the
slope parameter at t=o,

B(0)-, (lnZ)', for the IE case

(A14)

c(c +2a,d,} (lnE)', for the MP case.

APPENDIX B: FORMULAS FOR THE
MULTIPERIPHERAL CASE

where b,„, is the cutoff impact parameter, which
is the solution of the equation, -2iT, (b) =1.
Asymptotically b,„,- c lnE/X for the IE case, and

b„, -[c(c+2Ad, )] '/2 InE//A. for the MP case. Thus
we arrive at the asymptotic expressions

T(0)- ——,(InE)', for the IE case
'L C

1. The unabsorbed overlap function H

For the MP case, the momentum-transfer de-
pendence of the unabsorbed production amplitude
is assumed to have the following factorized form:

n-z
(A10)

i c(c+D.d, )
2

(In E)' for the MP case .
T'...,.-]I [f(e )f.(a'. )f.(e. ) (Bl)

From Eq. (27), the corresponding expressions for
the total cross sections are:

C2
o' r-2.445 —,(InE)', for the IE case

(A11)

-2.445, ' (1nE)', for the MP case.c c +

Zippo

Asymptotically the inelastic cross section is
given by

-4&( IS„(b)I'Im T.(b)).

With similar considerations to those leading to
Eq. (A10), after some algebra one finds

where q, ~ = -t~~ q&T =~;=opy~~ and p,-r is the trans-
verse momentum of the jth particle. En order to
describe the elastic data it is necessary to dis-
tinguish the cutoff function of the proton f0 from
that of the pion f. We assume that f(q, r) has the
same form as f(P, r) in Eq. (9) and f, is defined
with B, and X, in f replaced by B, and X,.

Following a formalism similar to Henyey, ' we

replace the (n+2)-particle transverse phase space
in Eq. (11)by g,",d'q, r. This together with Eq.
(B1) implies that so far as the transverse part is
concerned, the MP case is mathematically iden-
tical to an IE case with the replacements

0+2~ pg +1
C2

o;„-1.222 —,(InE)', for the IE case

(AI2}

and

P]r Qg r ~

(B2)

-1.222, ' (InE)', for the MP case.c(c+2zd, ) We shall make use of this in later discussion.
From Eqs. (10) and (Bl), one has
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n-1
)f"'(t)= I'

~ fq'q„f'llq„+ rql)f(q„) q'q„f;ilq, +q.al)f (q. ) f q* .q,f:(I t.), +v.ZI)f (q.,)
n2L

Similar to the IE case, one obtains the corresponding overlap function

H(t) =FE'exp( —2822N[(-t+A. „')"'—A„] -BI(22„-1)v[(-t+X ')' '—&„]], (B4)

with

2

and v'= ~
x ' " v' ~n1'N

q„~=p„,», after changing the P's to q's, it follows
that

do' d 0 ( 2p p 2)

dP ~ dP
cc e "~ ~ for the nucleon.

where as before the bar designates a rms average
over the longitudinal distribution. Asymptotically,
we assume that v does not depend on n. In order
to get a similar t dependence to that for the IE
case, we take 1,=X„or A.,/A. i =x„/v. Equation
(B4) reduces to Eq. (15), with

B=n, B,v + 2 B~„-B,v
= const + constx lnE

and

where the factor lnE stems from n, o-lnE. The
quantity v is bounded: 1 ~ v ~ xN. A typical value'
is v' =0.6. We recall the label "m" here actually
designates pions, resonances, and clusters. For
the discussion below, clustering effect enters
explicitly. For clarity we shall replace n, by n,
where the latter designates the mean of the
average multiplicities of pions, resonances, and
clusters.

2. Gaussian cutoff function

With a small-t approximation, the overlap
function in Eq. (B4) becomes

H(t)=FE'exp([b~x„2+-2' b(n-l)v ]2t), (B6)

where b„=B,/X„and b, =BI/XI. The expression
in Eq. (B6) can be derived with the Gaussian cut-
off functions

f (qi r ) cc e 22)a i T

and

(B9)

d 0'
g p~ e '& ~ for the pion .

dPT' d'PT
(B10)

In general, for a Gaussian case the average
transverse momentum squared of pion and nucleon
can be read off from Eqs. (B9) and (B10), re-
spectively:

& p,'&. = 1/b.
and

(p, '&„=1/2b„.
(Bl1)

It is interesting to point out that, if the cutoff
functions f for both pion and nucleon were the
same (b, = b„), their corresponding average mo-
mentum squared would differ by a factor of 2.
This can be understood as follows. For the (n+2)-
particle production, as mentioned, the amplitude
in Eq. (Bl) can be treated as an independent
emission of (n +1) particles with the correspond-
ing transverse momenta q, r. Hence ( qi r'& is the
same for alii's For th. e nucleon, one has (pr'&„
=(q,r') =(q„r') . For the pion, one has

&p '&, =&(q -q, )'&

(qi T ) + ( qi-IT &
-2 &qir qi —IT&

= 2& qir'&, (B12)

where the term (q, r qi, r& vanishes because the
q's are uncorrelated. So for 5, =b~, one has
(pr & =2(pr &If.

For the pion, if the inclusive particle is the ith
one, again changing P's to q's except for P, ~, from
Eqs. (B7) and (B8) one has asymptotically

2
f(qir)~ e "'ir

The inclusive P~ distribution is defined by

(B7)
APPENDIX C: MULTIPLICITY DISTRIBUTIONS

IN THE IMPACT-PICTURE MODEL

d 9
d2 d@n+2 n+2, 2(piq pa) Tn+2, 2(piq pa)d Pr

(B8)
where dc„'„is the (n 2)-+p rti ale pchase space
with the transverse phase space d'P~ of the in-
clusive particle removed. Since qo& =poz and

The impact-picture (IP) model for our discus-
sion here is the same as the eikonal model. For
simplicity, we shall only consider the uncomplex-
ified version. Within this model, the inelastic
cross section

g IP —( i $ IP (b) i
2 [eff (2)

1]&
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where S'P(b) = exp [--,'H(b)], and H(b) is given in
Eq. (17). We assume that the multiplicity infor-
mation of the multiparticle production has the usual
s-channel iteration structure. In particular, it is
specified by the following generating function:

+IP (x) —g xn + IP

The average multiplicity is given by

f,p 1 do;'„(x)

t
n=& 6 ~

=( ~$'P(b)P[e b & 1]) (C2)
=g FE'ln(E/E )/g

x( G„„(b)),

vrhere x keeps track of the number of pions, and

H(x, b) =FE'(E/E ) ' Q, ' G„(b),
n 5

(cs)

with G„(b) =(G„(t)),.

(C4)—E'/(inE),

since ( G„+,(b)), = 1 and o'g - (lnE)'. The partial
cross section can be obtained by expanding Eq.
(C2) in power series of x, which is given in Eq.
(39) of the text.
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national conference on new results from experiments
on high energy particle collisions, Vanderbilt Univer-
sity, 1973, edited by Robert S. Panvini (A.I.P. , New
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(b) Pion inclusive transverse momentum distribution

ISR data: AtWs=30. 4 GeV and x=0, see M. Banner
et al. , Saclay-Strasbourg Collaboration, Phys. Lett.
41B, 547 (1972); at vs =30.6 and 0, =89, see
B. Alper et al. , Phys. Lett. 47B, 75 (1973).

(c) Proton inclusive longitudinal momentum distri



10 DIFFRACTIVE AMI'I ITUDE OF THE ABSORBED. . . 2867

bution. M. Antinucci et al . , in Experiments on High
Energy Particle Collisions —E973, proceedings of the
international conference on new results from experi-
ments on high energy particle collisions, Vanderbilt
University, 1973, edited by Robert S. Panvini [see (a)
above], p. 244, Fig. 6.

(d) Proton inclusive transverse momentum distribu
tion. F. T. Dao et al. , in Experiments on High Energy
Particle Collisions —1973, proceedings of the inter-
national conference on new resu1ts from experiments
on high energy particle collisions, Vanderbilt Univer-
sity, 1973, edited by Robert S. Panvini [see (a) above],
p. 54, Fig. 11.

(e) The multiplicity distributions 10.2 GeV/c: J. W.

Chapman et al. , Phys. Rev. Lett. 29, 1686 (1972);
205 GeV/c: G. Charlton et al. , ibid. 29, 515 (1972);
303 GeV/c: F. T. Dao et al. , ibid. 29, 1627 (1972).

(f) The average multiplicity at 102 GeV/c is taken
from Chapman et al. , in Experiments on High Energy
Particles —1973, proceedings of the international con-
ference on new results from experiments on high ener-
gy particle collisions, Vanderbilt University, 1973,
edited by Robert S. Panvini [see (a) above], together
with the assumption of charge independence (i.e. ,
n =3n ). It is 6.6.

24The parameters B& and A,
&

enter in both the t depend-
ence of the elastic amplitude and the pion inclusive

p z distribution. The values quoted here were originally
obtained from fits to the elastic data as described in
Sec. III, although the predicted pion inclusive distri-
bution based on these values as shown in Fig. 1 is also
quite satisfactory. We observe that the conclusions of
the present paper are not sensitive to the details of the
mathematica1 form of the cutoff function assumed. For
instance, we have also reproduced both the elastic and

the inclusive data within the IE case with the cutoff
function as superposition of Gaussian functions.
Tables of Integral Transforms (Bateman Manuscript
Project), edited by A. Erdelyi (McGraw-Hill, New

York, 1954), Vol. II, p. 9, Sec. 8.2, Eq. (23).
The approximation involved in Eq. (13) is as follows.
Since the most interesting region is at small t, we

expand both sides of Eq. (13) in powers of t, and find
that the coefficients of t and t terms are identical.
For the t2 terms, the difference consists of the coef-
ficients with the factor, either ((x~ x; ) -(x; )(xj ))
or {(x;4}—(x;2}2},where the ( } symbol here denotes
the averaging over the normalized x distributions, e.g. ,
(xg}=x~2. For those eases where i or j stands for
pion, due to the fact that the pion x distribution peaks
near x=0, these coefficients are very small (see Ref.
27). For the two nucleons, we assume that the correla-
tion between them is not very strong and neglect the
corresponding terms. A simQar approximation is also
involved in dropping terms with higher powers of t.
Some typical values are X~ =0.014 and Xg =0.56. We
explain these estimations here. We have analyzed the
normalized pion inclusive x distribution data at a typical
energy, e.g. , 102 GeV/c [Ref. 23{a)]. The first moment
and the rms moment of the x distribution with x & 0, are
found to be respectively x~ = 0.085 and x~ = 0.12. For
the proton, we will explain in Ref. 28 that it is difficult
to extract the relevant value of X~ directly from the
corresponding proton data. We obtain this value from
the pion information together with the constraint of the

conservation of energy: 2xz+n„x~ =2, where xz is the
first moment of the proton x distribution and n~ is th

pion average multiplicity. At this energy one has n~- 6.6 (Ref. 23) and thus xz =0.72. From the general
shape of the proton x distribution one expects XN»™~.
As explained in Ref. 24, our parameters ~z and &~ were
originally determined from the elastic data. According
to Eq. (14b), ~& —-xz~z and 8& ——S~/2x~. We have found

that the eventual inclusive distributions predicted are
not too sensitive to specific choice of x~ within the
range: 0.72 & xz & 1, although there is a tendency that
the fits to the pion and proton p & distribution are im-
proved slightly for larger values of xz. We made a
conservative estimate and chose xz = 0.75. Further-
more, the pion x distributions at 102 and 205 GeV/c
[Ref. 23(a)] indicate that the distribution xdo/dx is
approximately independent of energy. So the quantity
n x™~,and in turn XN, could be roughly constant.

2 We did not extract the relevant quantity xN from the
proton x distribution directly. The reason is as fol-
lows. Within our model, the proton multiplicity is two.
On the other hand, there appears to be a central plat-
eau at high energy in the proton x distribution [Ref.
23(c)] which will give rise to a lns increase in the aver-
age multiplicity. This plateau could be due to the NN

production, not included explicitly in the present model.
To extract the pertinent X~ value from the proton data,
one has to first remove the central-region contribution.
This turns out to be difficult due to the fact that the
value of x~ so obtained is very sensitive to the specific
subtraction assumed. We thus choose to estimate its
value from the g'on information as described in Ref. 27.

9We observe that with the inclusion of clusters the
corresponding rms value x is in general larger than

X~, while the cluster average multiplicity n decreases
compared to n„. These two effects have the tendency
to compensate each other.

3 To be more precise, it is shown in Ref. 22 that the in-
clusive distribution can be expressed in the form

dG 1

dp 2
' d;db" SQ*;h;).

i
xH " (b;;p&, b;')

xS22 ~ x b +xjbj (
) ~,

where p z is the transverse momentum of the inclusive
j th particle. The inclusive overlap function H(b;;
P z, b';) has the following properties: It does not have
the xj dependence and it is invariant under the simul-
taneous sign change of bj and b', . From these proper-
ties and Eq. (18), one can show that the correction
term to the p z dependence of the inclusive distribution
due to absorption is of O{xj ).
The present negative-pion average multiplicity data
can be represented with f &

———1.15+0.74 lnE {see
Ref. 16, for example). This in turn leads to Eq. {23).

32For a review on the parameterization of Regge-pole
contribution and related topics, see, for example,
C. B. Chiu, Annu. Rev. Nucl. Sci. 22, 255 (1972).

3'The pp data:
(a) or. 6—22 GeV/c: W. Galbraith et al. , Phys. Rev.

138, 8913 {1965);15-60 GeV/c: S. P. Denisov et al. ,
Phys. Lett. 36B, 415 {1971)„300-1500GeV/c: See
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Ref. 9, and Giacomelli's review in Proceedings of the
XVI International Conference on High Energy Physics,
Chicago-Batavia, Ill. , 2972, edited by J. D. Jackson
and A. Roberts (NAL, Batavia, Ill. , 1973), Vol. 3,
p. 266 {hereafter referred to as paper G).

(b) Re/Im. 5, 7 GeV/c: A. R. Clyde, Ph. D. thesis,
Univ. of California, Berkeley, report, 1966 (unpub-
lished); 8 GeV/c: A. E. Taylor et al. , Phys. Lett. 14,
54 (1965); 10, 19, and 26 GeV/c: G. Bellettini et al. ,
ibid. 14, 164 (1965); 9-70 GeV/c: G. G. Benzogikh
et al. , ibid. 39B, 411 (1972); 300-500 GeV/c: U. Amaldi
et al. , ibid. 43B, 231 (1973), See also paper G, p. 286.

(c) Slope parameter Data. are from Fig. 14 of paper
G, p. 288.

(d) Differential cross section. 12.8 GeV/c: K. J.

Foley et al. , Phys. Rev. Lett. 11, 425 (1963);19.2
GeV/(d) Z. V. Allaby et al. , Phys. Lett. 28, 67 (1968);
1500 GeV/c (ISR 26.7+26.7 GeV/c): The ~t~&0.4 data
are from G. Barbiellini et al. , ibid. 39B, 663 (1972);
the ~t~) 0.6 GeV data are by the Aachen-CERN-Harvard-
Geneva-Torino collaboration, taken from Fig. 2 of the
first paper in Ref. 5.
The PP total cross section data: 6—8 GeV/c: W. Gal-
braith et al. , Phys. Rev. 138, B913 (1965); 20-65
GeV/c: J. V. Allaby et al. , Phys. Lett. 30B, 500 (1969).
T. Ludlam et al. , Yale University Report No. Yale
C00-3075-61, 1973 (unpublished).

36J. Finkelstein, Phys. Rev. D 8, 4176 (1973).
3~D. Amati, L. Caneschi, and M. Ciafaloni, Nucl. Phys.

B62, 173 (1973).


