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Eigenvalue conditions and asymptotic freedom for Higgs-scalar gauge theories
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Eigenvalue conditions are obtained from a study of the renormalization-group equations for
a non-Abelian gauge theory with Higgs scalars. With these conditions, it is found that the
theory is asymptotically free. For the purely leptonic SO(3) model of Georgi and Glashow,
the eigenvalue conditions fix completely the parameters of the theory.

It has become a common belief very recently
that spontaneously broken gauge theories, with

Higgs scalars, are not asymptotically free." In
the work of Gross and Wilczek, an initial investi-
gation of this problem was made, without, how-
ever, considering in detail the effect of Yukawa
couplings which generate fermion masses. In a
subsequent paper by Cheng, Eichten, and Li, ' the
full problem was discussed and the possibility of
asymptotic freedom was quickly dismissed. In
this note we wish to point out a simple eigenvalue
condition that was not considered in their investi-
gation, and, with it, we show that asymptotic free-
dom is restored for the Georgi-Glashow-type
gauge theories of weak and electromagnetic inter-
actions. ' Theories of the steinberg-Salam type, '
involving mixing with an Abelian gauge group, are
not asymptotically free.

For simplicity, we have considered the Georgi-
Glashow model with only leptons present. Let h„h,
be the Yukawa coupling constants such that the low-
est-order masses for e, 8', and Xo are mo-h, v,

m, +h, e, and +h, u/sin8, respectively (8 is the &„X
mixing angle in the model, while v is the vacuum
expectation of the neutral component of the Higgs
scalar field). For the muon system„corresponding
coupling constants are denoted by &» 8,. Let ~ be
the quartic self-interaction coupling constant for
the Higgs scalar field [Z&~-(X/4!) Qo~+ ]. Then
the lowest-order coupled equations for the effec-
tive coupling constants read in the usual nota-
tion"7
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The equation for 0,' and H, ' can, by p, -e sym-
metry, be obtained from Eqs. (1b) and (lc).

For clarity, let us suppose first that the h2 H1,
0, couplings are absent in the theory and examine
the prototype equation

(2)

dh'16' „=h [Ah (a P,)-]-
As Cheng, Eichten, and Li' have pointed out, the
critical point ~ =0 is ultraviolet-stable, for B& Po.
This solution has h' vanishing as t ', ~=(8 —P,)/
Po Since this implies that & vanishes fas ter than

g, in the asymptotic domain, it is the same situa-
tion as that considered by Gross and Wilczek, ' and
a largely pessimistic conclusion results.

However, there exists a solution to Eq. (3) which
is identically satisfied, viz. , when h is a constant,
«=—(B—Po)/A. It is a trivial solution to Eq. (3);
however, by virtue of the fact that the proportion-
ality between h and g holds for all t, it is an
eigenvalue condition that must be imposed on the
renormalized theory. That is to say, if the re-
normalized Yukawa coupling constant [h2(0)] is
chosen initially to be an arbitrary value smaller
than «g'(0), then in the deep Euclidean region
h'(f) vanishes faster than g'(f). However, if the
initial value assigned to h'(0) is exactly equal io
«g'(0), then in the deep Euclidean region h'(I) is

with A, B strictly positive constants. Call h' —=h'/g'
and u(f) =- f dTg'(T); then Eq. (2) reduces to
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always proportional to g'(f). This behavior is
absolutely essential to make the quartic coupling
&(&) asymptotically free.

We turn now to the coupled set of equations in

(lb) and (lc). To look for an eigenvalue solution
that is asymptotically free, we make the substitu-

and look for the allowed nonvanishing values for
the constants for ~„~„g„E,.' The solution is

», = E, = (324 —11P,)/334,

»~ = E, = (24 —7Po) /16 "I .
Since, in a purely leptonic world I3o= 3 the solu-
tion here is physical (for», to be &0, Po has to be
( 24)

To check that the quartic Higgs scalar self-
eoupling is asymptotically free, substitute ~ =Ag2

in Eq. (lf) and find that a positive root for A exists
in the condition

—", A'+ (32», +16», —24+ po)A —(192»,'+96», —'l2) =0.

(6)

This is guaranteed so long as 192~,'+96K, '& V2,

which is amply satisfied in a pure leptonic world.
The discussion thus far has been confined to the

set of lowest-order coupled equations for the vari-
ous coupling constants. Higher-order corrections
to Eqs. (1) result in a correction to the eigenvalue
condition of the form

~(o)~~ 2 + ~(z)g 4+ ~(2)g 6 +...
y

the coefficients of which can obviously be deter-
mined in an iterative way. At f, =0, the initial val-
ue of h' is thus also modified; however, for theo-
ries of weak and electromagnetic interactions such
corrections to h'(0) are of higher order in g'(0}/
4r(=—+).

At this point we make a remark concerning the
analytieity of the solutions we found. Solutions
given by Egs. (4)-(7) are regular at g' =0 in the

complex g' plane, and are fully consistent with

the perturbative expansion of the effective coupling
constants with respect to g'. To be complete, we

should mention that there exist other solutions to

Eqs. (1) which are asymptotically free. These are
solutions for which h, '/g' approaches constants,
while h, '/g' vanishes with a power of g' when g'
-0. That the solution is asymptotically free fol-
lows from the fact that the nonvanishing &,'/g'
alone was sufficient to make ~ asymptotically
free. This solution, however, is not analytic in
g' at the point g =0. This mild criticism aside,
the real relative shortcoming of this solution is
that the theory is still "arbitrary. "

h, '(0} is not
determined by the theory. Therefore we have rele-

gated a discussion of this solution to the Appendix.
Finally, we list the physical mass constraints

which result from the analytic solution of the re-
normalization group equations for a purely lep-
tonic Qeorgi-Glashow model. 4 In this model, p, -e
symmetry is strictly observed, so we use as input
an "average" mass for m, =m„=0.053 QeV. This,
together with the identification g (0) = e electromag-
netic coupling constant, leads immediately to the
following results:

m» =mr=3. 34 GeV/c2,

m~ =3.58 GeV/c',

6 =—0.0669 1—
0.97

ms+ =m„+ =6.64 GeV/c',

X(0)=3.52g2(0)

It is surprising that all the particles turn out to
be unexpectedly light, with the charged heavy lep-
tons, however, constrained to be nearly double
the vector-boson mass. Of course since we cannot
in this model include hadronic quarks the mass
predictions here cannot be taken too seriously.

In conclusion, it is clear that there exist unified

weak and electromagnetic gauge theories that are
asymptotically free. It is gratifying that analytic
solutions exist which are regular at g' =0 (there-
fore rigorously allowing for a perturbative ex-
pansion in g' for all effective coupling constants),
and that these solutions fix uniquely the heretofore
arbitrary mass and mixing angle parameters that
are present in the Qeorgi-Qlashow model. While
asymptotic freedom, per se, is not essential to the
"success" of weak and electromagnetic gauge the-
ories (they are already convergent}, it is hoped

that with the help of the eigenvalue conditions ob-
tained from the renormalization group equations
they can finally be "calculable" and compared
agains t experiment.
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APPENDIX

Solutions exist to the lowest-order coupled equa-
tions (1) that are not regular at g' =0 in the com-
plex g' plane. We indicate in this appendix the
properties of this solution.
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Ne first rewrite the equations for h„h, as
(T =-1/z')

24h &+ 5h &

d7' T

dh, ' 12
po = 16h2'+ 10h,' ——h ',

(Ala.}

(Alb)

h, '(0)( P.(~ —1)g,'/18. (A9)

Going back to the equation for h, ', the solution
for h, ' including the first iteration now reads

This in turn implies that the renormalized coupling
constant h, '(0) must, to lowest order, satisfy the
cons traint

and note that they are of the Bernoulli type,

—= a(v)y +5(T)y, (A2)

[Q 2] -1 (~)24/8Pe-44 24axe~4(x) '4~~0 —,
jo
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whose solution is given by

=(1—,—', (~,) +o(1) . (A4)

The solution for h, ' can, in general, be written as

16 ' ~p"
[h '] '=e 4 — C —— e xi*~

p, , x

(A5}

where we have parametrized h, ' as (1 —,—', J3,)g'+z,
and

10
z(x)dx, u =,—', +2/ti, .

~0 .,
z(T) vanishes faster than 1/r as r -~. In order
that the solution (A5) be physical, the constant C,
must obey the constraint (a = —,0 in this model)

(A8)

C, )— e "i"~(g 2x)-~dx16
Pp

(A V)

in an iterative solution to the coupled set of equa-
tions we have in the zeroth-order solution Q, =0,
and therefore

C(0)) g
-a16 1

P, u-1 (AB)

j
Y, =-e@ e +*'b(x)dx.

7 0

We look for a solution for which h, '/g' approach-
es a constant as g'- 0, while h, '/g' vanishes in

the same limit [i.e. , solution (I), Ref. 8]. From
Eq. (Ala) it is easy to find that

5 I

h, '(x)dx .
j30

If we call the asymptotic behavior of h, '- K(g')'
as T- ~, then the correction to the asymptotic be-
havior of h, ' reads (x, -=1 —P,/24}

(Al 1)

[h'] ' ~ &, "g '+—(g') '/(24+(o-2)P &

g2~p I(i

(A12)

As far as positivity of the solutions is concerned,
so long as g' is real, the solutions (A5) and (A10)
remain positive definite, and insofar as they vanish as
g~ 0 are asymptotically free. It is easy to check
that the solution for &, because h, '/g '- (1-,—', p, ),
is also well behaved as g'-0, remaining positive.
In the earlier analysis of Cheng, Eichten, and Li
both h, ' and h, ' vanished faster than g' and in the
asymptotic domain did not provide the damping
needed against the positive 72g4 term in Eq. (1f).

From Eg. (A10) the eigenvalue condition for
h, '(0) is in principle obtainable. In the presence of

h, ', however, it is not obtainable in a simple
closed form.

So far we have discussed only solution (I) men-
tioned in Ref. 8. The situation for solutions (II}
and (III) and their p, —e images is entirely anal-
ogous.

Finally, a question can be raised on whether the
higher-order corrections to E|ls. (1) will destroy
the asymptotic freedom of the solutions (A5) and

(A10). Intuitively speaking, since the lowest-order
solutions already vanish in the asymptotic domain,
the higher-order terms, at least in an iterative
solution, are clearly much smaller, in the same
asymptotic domain. This expectation is borne out
in Levinson's theorem, but we refer the interested
reader to the mathematical literature for refer-
ence '0
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/here exist solutions with zero eigenvalues:

(I) Kp =Xp=0, Kg =E) =1-po/24

(II) ~, =0, ~, =~-230,/944, &, =(240-»Pg/236,
A'

2
= (24 —7p()) /118

(III) K& =0, ~~&
= (4032-413po)/1491,

E
&

= (2268 —77po) /1491, E2 = (180 -14po)/213 plus
p —e mirror image of solutions (II and III).

Zero eigenvalues are not acceptable for the Georgi-
Glashow model Ie.g. (III) requires e" to be degenerate
with E'j. However, they can be used as a zeroth
approximation in an iterative solution of the type dis-
cussed in the appendix. (II) and (III) are obviously
m&& m, solutions.

SIn Eq. (2.8) of Ref. 3, the coefficient for 0;&z& should be
-48 instead of —12.

' See, e.g. , S. Lefschetz, Differential Equations:
Geometric Theory (Interscience, New York, 1957),
Chap. V.

PHYSICAL REVIK%' 0 VOLUME 10, NUMBER 8 15 OCTOBER 1974

Spin-statistics connection for dyonium

A. O. Barut*
International Centre for Theoretical Physics, Trieste, Italy

{Received 3 August 1973)

The spin-~t bound state of two spinless dyons (dyonium) has additional independent (gauge)
degrees of freedom associated with an arbitrary unit vector n in the Hamiltonian. Hence it
does not constitute a counterexlnple of the normal spin-statistics connection.

There has been a recent assertion in this jour-
nal' that the spin-& bound state of two spinless
dyons (particles with both electric and magnetic
charges), called dyonium, constitutes a counter-
example to the normal spin-statistics connection,
i.e. , it is a boson, or the spin-zero constituent
dyons must be fermions. This assertion is based
on the assumption that the configuration space of
two dyons in dyonium is AsxRS, hence the wave
function of the dyonium is a square integrable
function in the space I '(R,) &&I '(8,). This would
be the case for an ordinary atom of two bosons.
But due to the singular structure of the vector
potential along a string for Dirac monopoles, I
wish to show, both mathematically and physically,
that dyonium has additional degrees of freedom.
Consequently, the exchange of particle coordinates
aLone is not the complete exchange operation of the
system as a whole.

Consider first the exactly soluble case where
one of the dyons is very heavy. The nonrelativistic

motion of a dyon in the field of another fixed dyon
is governed by the Hamiltonian

nH = [ p- gD(n, r)]2m

where p, =e,g, —e,g, and n=e, e, +g, g, in terms
of the electric and magnetic charges of the dyons,
and the Dirac vector potential

r xnan'

[t (,a)2]

is singular along the half-line i = A. The singular
vector potential is a necessity and may be taken
as the definition of the Dirac monopole. ' The
singularity line can be interpreted as a string of
magnetic dipoles', the end points behave like po-
sitive and negative magnetic charges, and the
string as the return line of the magnetic flux:

yV&D= —
2

—4w6(r —xa),


