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T matrix for electromagnetic scattering from an
arbitrary number of scatterers with continuously

varying electromagnetic properties
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e consider monochromatic electromagnetic scattering from a fixed configuration of an arbitrary
number of separate scatterers which are immersed in a medium with constant electric and magnetic
properties. %'ithin the scatterers the electric and magnetic properties are assumed to vary smoothly, By
considering the integral equations for the scattering we show that the total T matrix for the
configuration of the scatterers can be expressed in terms of the T matrices for the individual scatterers
in the same way as was previously found for a similar configuration of scatterers, each having a
discontinuity in the electric and magnetic properties at the surface and constant electric and magnetic
properties in its interior.

I. INTRODUCTION

In the present article we consider scattering of a
monochromatic electromagnetic field from a con-
figuration of an arbitrary number of separate scat-
terers which are assumed to be immersed in a ho-
mogeneous and isotropic medium. Within the scat-
terers the electric and magnetic properties are as-
sumed to have a sufficiently smooth variation (see
Ref. 1 and below). The electromagnetic scattering
from a single scatterer of this kind is governed by
by an integral equation (see, e.g. , Refs. 1, 2}
which thus determines also, e.g. , the T matrix.
Our main objective in this article is to show that
if we assume the T matrix for each of the individ-
ual scatterers of the kind described above to be known

then the total T matrix for a given configuration of
an arbitrary number of such scatterers can be ob-
tained in the same way as was found previously
for the case of a configuration of homogeneous
isotropic scatterers. ' In other words, the multiple-
scattering aspect of the problem can be clearly
separated from that of determining the T matrices
of the individual scatterers, as might be expected
in the stationary description of the scattering.

Our results follow from a consideration of the
structure of the integral equations determining the
scattering. In Sec. II we make a few remarks on
the interrelationship between various forms of
these equations and in Sec. III we derive the main
results. In Sec. IV we make a few concluding re-
marks on the relevance of the results of Sec. III
for other types of mathematically similar but phys-
ically different multiple-scattering problems.
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&
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(2.2)

where n'—= e+iu 'e, 'o (in an obvious notation),
for the electromagnetic fields in a medium char-
acterized by c, p, , and 0. For the wave vectors
we have A' =k,'p. n', A, =(de, '"p, ,'". Equations
(2.1}and (2.2) imply

v (pH) =0, v (n'E) =0 (2 2)

and for E and H we have the separate differential
equations (the functions u and n ' are assumed to
be continuously differentiable)

v x(v x E) —k'E = p '(v p, ) x(v x E),
«(«H) —k'H=n '(vn') x(v x H).

(2.4)

The corresponding integral equations are obtained,
e.g., from the vector analog of Green's theorem
(see, e.g. , Ref. 4}. We shall consider a scattering
situation, and thus we choose the outgoing free-
space Green's function

G(k, ; r, r ') = (4v ( r —r '
( )

' exp(i k, (
r —r '

( ),
satisfying (V'+k, ')G =-5(r —r') with constant k, .

II. PRELIMINARY REMARKS ON THE

INTEGRAL EQUATIONS FOR THE
ELECTROMAGNETIC FIELD

For later reference and in order to establish our
notations we recall some aspects of the integral
equations for the electromagnetic field. Through-
out this article we shall consider a stationary field
and we shall omit a time factor exp( i~t) from-all
equations. Thus we may write
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Using the auxiliary vector

M-, (r, r') -=Gi x[ V'x E(r')] —F(r') x[ V'x(Ga)]

+[V E(r')] Gi- E{r')V' (Gi)

(i is a constant vector) which satisfies

V' M~(r, r') =i ((k, ' —k')GE(r')+5(r —r')E(r')
—p '(v 'v) x [ v' x E(r')1 G

+IV [V' E(r )]jG)

n ~ Mp(r, r') =i ~ (-]n x[v 'x E(r'}])G

-[nxz(r )]xv'G

+n [v' E(r')]G
- n Z(r ')V 'G)

we get by means of Gauss's theorem (S, encloses
V, and n is the inward-pointing unit normal vector)

((gz'-u. ')GZ(r')+l(, -'V
P x[V'x E(r')]G -fV'[V' Z(r')] jG}dr'

0 &vo

+ pgx V'xE(r'} G+ nxE(r' xV'G-n V' E(r'} G+n E(r' V''G dS'
So

for
r inside V,

r outside V, . (2.6)

We now apply (2.6) to the following scattering situ-
ation. We assume that the whole space is filled
with a source-free medium characterized by A,

'
= k,'p. , e, with constant p., and e„except for the
following two facts. Inside a finite volume V,
bounded by the surface S, e, p, , and o vary but in
such a way that they are continuously differentiable
everywhere. Furthermore, in another finite re-

gion far away from V, a field is generated which

in the vicinity of V will be designated the incoming
field E'. In (2.6) we now take r inside V, and let
5, recede to infinity. In the process it encloses
the region where E' is generated. The contribu-
tion from the surface integral at infinity vanishes
and thus we may write

E(r) =E'(r)+ I ((k' —A, ')Gz(r')+p 'v'p x[v'x E(r')] G —(v' [v' E(r')])G}dr'.
V

(2.7)

This integral equation for E(r) could of course also be obtained directly from (2.4}. We note that in (2.7)
r may be taken both inside and outside V. Another common representation of E is obtained from a differ-
ent choice of V, in (2.6): I et V, consist only of a part of space where e= e„p.= l),„v=0 and let V, enclose
V so that So consists of an inner and an outer part. Let the outer part recede to infinity, which again re-
sults in a contribution E, and let the inner part tend to S. %ith this choice of Vo the volume integral in

(2.6) vanishes and from the integral over So there remains E' and an integral over S. Using v'G =-vG we

may write

{2.6)

which contains both the normal and tangential components of E. The normal components appear only in

the gradient term and may therefore be eliminated by means of the curl operator. In this way we get

Rr} =g'(r)+v x [nx g(F')]GdS'
0

+k, -'gx g x nx V''x E r' GdS' for
S

r outside S

r inside 5.
(2.9)
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E"= g f„P„, (2.11)
n

where the fields g„and Re/„are chosen as in Ref.
5 (apart from a factor k'" due to a different nor-
malization of the Green's function). The scatter-
ing is described by the T matrix, defined by the
relation

t'. =g T„„a„..
tl

By expanding the Green's function in (2.9) and
comparing coefficients for g„and Ref„, respec-
tively, one obtains the equations'

(2.12)

f„=i ((n x E) [ v' xReq„(k, r')]
9

+[nx(V xE)] Reg„(t, r ))dS' (2.13)

a„=— ((n x E) ~ [ v' x g„(k, r ')]
S

+[nx(V'x E)] q (u r')}dS' (2.14)

which determine the T matrix, by means of elimi-
nation of the surface fields. Thus if we have a set

Thus, with E =E'+E", where E
'

is the scattered
field, we have a representation for E" either as a
volume integral as in (2.7}or as a surface integral
as in (2.8) and (2.9). Alternatively, the represen-
tation in terms of a surface integral follows from
(2.6) for the choice V, = V and a consiaeration of r
outside V.

It is instructive to consider another aspect of the
relation between (2.7} and (2.8). First we note that
(2.8) does not depend on any regularity assump-
tions for ]U. and g' inside V; the only assumption
is that, when approaching 5 from the outside, the
field is sufficiently regular for the vector theo-
rems to be applicable. Thus, if S is a surface
where p, and n' have discontinuities and if 5 itself
is sufficiently regular, we have the representation
(2.8) but not (2.7). However, in this case (2.8) can
also be obtained from (2.7) by means of a limiting
procedure whereby a continuously differentiable
distribution of p, and n2 approaches a distribution
where these quantities have discontinuities at the
surface. We note that the field in (2.8) is the field
obtained by approaching 5 from the Outside and to
obtain (2.8) from (2.7) also in the case of a discon-
tinuity the boundary conditions have to be intro-
duced.

The incoming field and the scattered field, out-
side the cireumseribed sphere of the scatterer,
ean be expanded as

E' = P a„Re(„ (2.10)

of coefficients (f„) which are related to the sur-
face field as in (2.13) and a set of coefficients (a„)
related to the surface field as in (2.14), we write
the relation between (f„}and (a„}as in (2.12),
where T„„ is determined by the geometric and
electromagnetic properties of the scatterer. In
the case of a homogeneous scatterer, an explicit
expression for the T matrix can be obtained from
(2.13) and (2.14) under some additional geometric
conditions on the surface S, as was shown in Ref.
5. However, in the present case of variable p. and
e inside S, the T matrix remains implicit in (2.13)
and (2.14). This implicit relation can also be ex-
pressed in the volume-integral form of Eg. (2.7).

III. THE T MATRIX FOR AN ARBITRARY NUMBER OF
SCATTERERS 0/ITH CONTINUOUSLY VARYING

ELECTROMAGNETIC PROPERTIES

Before going into the details of the derivations
we recall a number of features which were essen-
tial in the treatment of the multiple-scattering
problem for a configuration of homogeneous (and
isotropic) scatterers given in Ref. 3:

(i) The scatterers are immersed in a homoge-
neous (and isotropic) medium.

(ii) We consider the wave propagation in a sta-
tionary state, i.e., outside the scatterers the wave
propagation is governed. by Helmholtz's equation
(and expansions of the free-space Green's function
for this equation is available in sufficiently explicit
and easily handled form).

(iii) The geometry of the configuration of scat-
terers was assumed to be such that all the desired
translations of the origin of the spherical wave ex-
pansions could be performed in a suitable fashion.

(iv) The scatterers were assumed to be passive
and they could thus be characterized by a transi-
tion matrix, depending only on their geometric
and electromagnetic properties.

In Bef. 3 an additional regularity assumption
concerning the scatterer surfaces was used,
namely that the radius r(8, Q) from an inner origin
to a point on the surface of the scatterer was to be
a continuous one-valued function of the spherical
angles 9 and (t). Because of this assumption and
the homogeneity of the scatterers, explicit expan-
sions for the surface fields can be introduced, as
was shown in Ref. 5. It was then shown" that
these assumptions led to a. solution to the scatter-
ing problem for a configuration of an arbitrary
number of homogeneous or multilayered scatter-
ers.

As will be seen below, it is possible to separate
the multiple scattering aspects of the problem also
in the more general situation with scatterers hav-
ing continuously varying electromagnetic proper-
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ties, to be considered here. In order to display
this structure it is not necessary to make any as-
sumptions concerning the surface fields (besides
those necessary for the validity of the vector the-
orems). We shall thus assume that the T matrix
for each single scatterer in the configuration has
been determined in some way or another (this
will in general have to be done by means of an in-
tegral equation, as discussed in the previous sec-
tion; we shall make no contribution to that part of
the problem here). Several essential features of
the multiscatterer problem are present in the case
of two scatterers, and therefore we begin by con-
sidering this case in detail. The implications for
the general case will then, in view of the results
of Ref. 3, be obvious.

Thus we consider the configuration of two scat-
terers depicted in Fig. 1, where the notations are
also defined. The multiple-scattering aspect is
determined by the geometry of the boundaries of
the "outside" region of constant electromagnetic
properties and we use the representation (2.9} for
the field, which makes no explicit reference to the
internal properties of the scatterers. The surface
S in (2.9) is now replaced by the sum of the sepa-
rate surfaces S, and S„and in the left-hand side
we get E(r) for r outside S, and S, and zero for r
inside S, or S,. Thus we have three equations cor-
responding to these three choices of r. In particu-
lar, by choosing, respectively, r outside a sphere
with center in 0 and containing S, and S„and r in-
side the inscribed spheres of S, , with centers in

0, „and comparing coefficients in the relevant
spherical wave expansions, we get three equations
for these coefficients. We use (ii is the unit dyad)

With r in S, we have r =r, +a, and E' can then be
written

E'(r ) =Q a„.Hey„(r, + a,}

=g a„R„„(a,) He&„.(r,), (3.2)

g„(r,"+a2 - a, ) = g a „„(a,- a, ) Re&„(r,"), (3.3)

where the translation matrices A„„are those de-
fined in Ref. 3. We want to introduce restrictions
so that r, and r, in (3.1) can be characterized in
a simple way for all r' on S, and S,. Still taking r
inside S, we write r —r'= r —r,' =r, -r," in the in-
tegral over S„and we have r, =r&, r,"=r, if we
furthermore restrict r to lie within the inscribed
sphere of S„with center at 0,. In the integral
over S, we write r r' -=—r —r,' = r, —(r," +a, —a, )
where r, & ~r2'+a„-a,

~
since r is inside the in-

scribed sphere of S,. An expansion according to
(3.1}of G in the integral over S, thus involves
g„(r,"+a,- a, ) Ref„(r,). In order to be able to ex-
tract an explicit algebraic expression for the total
T matrix, involving the individual T matrices, we
now introduce a restriction on the form and rela-
tive position of the scatterers, namely that r,"
&

~
a, - a, ~

(and correspondingly r,"&
~
a, - a, ~

when
we consider r inside S» see Ref. 3). Under this
condition we have

aG(k, (r —r'~) =i g p„(r,) Re&„(r,) +8,

=i Q Rey„(r, )j„(r,)+8„(3.1}

where the translation matrices cr„„are those de-
fined in Hef. 3. Thus, by taking (3.1)-(3.3) into
account we get from (2.9), for the case when r is
taken inside the inscribed sphere of S„

where the dyad 8, is formed out of irrotational
vectors. n stands for the set mxmn of indices, '
where v =1, 2 and one has k, 'V xg„„=g~

follows that

vx[gG(k, ~r -r'~)j =i Q Hey„(r')v xg„(r')

= i g v xReq„(r')y„(r). FIG. 1. Geometry and notations for the case of two
scattering regions.
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0 = Q a„R„„(a()Be())„(r,)

(3 4)

where r, may vary over a complete sphere, i.e.,
the total coefficient of each Be7()„(r() is zero. We
introduce the notations

g'„= -g, nj x E ~ V" )&g)n r,")
Sj

+[n. x(v" xE)] p„(r,")/dS", j =1, 2

(3.5)

R'(a, )a =a) -v(a, —a, ,)f'. (3.7)

It is immediately clear that by choosing r inside
the inscribed sphere of S, we get, under the as-
sumption that r)' &

~
a, —a, ~, the equation

R'(a, )a = -o(a) —a.,)f '+a2 . (3.8)

To obtain the third equation, consider r outside a
sphere with center in 0 and containing S, and S2.
Then r =r, and r,', =-r, and the relevant expansion
ofgGonS, is

(4G =I p Beg„(r,')g„(r)+Il),
n

where r,' = a j + r,". . By an analogous calculation in

which E in (2.11) is equated with the expression
obtained from (2.9), we get

f =R(a, )f'+R(a, )f' . (3 9)

The crucial observation is now that according to
the definitions (3.5) and (3.6) and the discussion in
See. II, we have the relations

f' = T(j)a ~, (3.10)

where T(j) denotes the T matrix corresponding to
the single scatterer bounded by S, [cf. (2.13) and
{2.14)]. Introducing (3.10) into (3.7)-{3.9) we get

R'(a, )K = a' —o(K, —a))T(2)P, (3.11)

((",. x E) (v" xRet)„(,")I
Sj

+[n, x(V" x E)] Beg„(r)")[dS",

j =1, 2. (3.6)

From (3.4) we thus get

Q(R",a, ))„„a„=a„"—Q(x„„(a,—a.,)f'„,
n'

(R' is the transpose of R) which we write in a vec-
tor and matrix notation as

R'(a, )a =--c(a, -a, )a'+a',

I =R(a, )T(1)a'+R(a, )T(2)a'.

Equations (3.11)-(3.13) constitute three relations
among the four quantities a, f, a', and a-', i.e. ,
they can be used to extract a relation between any
pair of these quantities, and we shall be interested
in the relation between a and f, a relation which,
by definition, determines the total T matrix for the
configuration of the two scatterers. %e now note
that Eqs. (3.11)-(3.13), regarded as equations
which determine a relation between a and f, have
the same structure as Eqs. (3.11)-(3.13) in Bef. 3
[introduce T{j) =-Beg "(Q") ' into these equations
in Bef. 3 and make the correspondence a' —Q"a';
in Ref. 3 explicit assumptions concerning the sur-
face fields were introduced and in that case the
equations can also be used to obtain an explicit re-
lation between the surface fields and the incoming
or scattered field].

Consider now the case of an arbitrary number N

of scatterers with (independently) continuously
varying electromagnetic properties, bounded by
the closed nonoverlapping surfaces S, ( j = 1, 2, . . . ,
N) and characterized by the individual T matrices
T(j), referring to centers defined by the position
vectors aj inside S, , where a, and Sj are such
that r,", =

~
a, —a., t

for all combinations i, j,
[r," (j=1, 2, . . . , N) generalize r,", in Fig. 1]. It is
then easy to see that the generalization of (3.11)-
(3.13) is the following set of IV+ I equations:

R'(a, )a =a' —Q v(a, —a;)T{j)a', (3.14)

f = Q R(a, )T(j)a', (3.15)
j=l

where a ' (j = 1, 2, . . . , N) is defined in analogy with

{3.5). Again, the structure of (3.14) and (3.15), re-
garded as equations determining a relation between
a and f, have the same structure as the corre-
sponding equations (4.1) and (4.2) of Bef. 3. In oth-
er words, the multiple-scattering aspect of the
present problem is the same as that obtained in
Bef. 3 for the case of several homogeneous scat-
terers, and in Ref. 6 for several multilayered
scatterers, in the sense that the total T matrix is
the same algebraic function of the individual T ma-
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trices. This result is an expected one in view of
the fact that we consider the scattering in a sta-
tionary situation and in this case each of the indi-
vidual scatterers is fully characterized by its T
matrix. Therefore we have here limited ourselves
to pointing out the steps which are crucial for the
conclusions and we refer to Ref. 3 for more details
on the algebraic procedure for obtaining the total

T matrix from (3.14) and (3.15). Here we only note
that the solution is obtained by applying an explicit
algorithm in N steps. The algorithm used is that
devised by Ore' for obtaining the inverse of a ma-
trix with noncommutative elements. For instance,
in the case of two scatterers one finds for the total
T matrix T(1, 2} (see Ref. 3)

T(1, 2) =R(a, )(T(1)[1 &r(a-, -a, )T(2)a(a, -a, )T(I)] '[ I +&r(a, —a, )T(2}R(a,—a, )]}R(-a,)
+R(a, )(T(2)[1—o(a, —a, )T(I)o(a, —a, )T(2)] '[1 v(a, —a, )T(1)R(a, —a, }]}R(-a,}.

[Note that in formula (4.1I) in Ref. 3 for the total
T matrix T(1, 2, 3) for three scatterers there is a
misprint inasmuch as the next-to-last factor,
R(k, i}, should read R(i, k}.]

IV. CONCLUDING REMARKS

In the previous section we have shown that the
results of Ref. 3 have a wider range of applicabili-
ty in electromagnetic scattering, in the sense ex-
plained before. However, from the enumeration
of the properties (i)-(iv) in Sec. III it is clear that
the results apply to many other types of multiple-
scattering problems. Consider for instance the
scattering of a scalar-wave field (for several ho-
mogeneous and multilayered scatterers this was
treated in Hefs. 3 and 9, respectively). It is then
immediately clear that the results of this paper

apply also to, e.g. , acoustic scattering from sev-
eral scatterers with continuously varying densi-
ties, etc. Another case of great interest to which
the above also applies is quantum-mechanical po-
tential scattering in the case of several nonover-
lapping potentials with finite ranges. This case
will be considered separately elsewhere. Among
recent work which stresses the similarity between
the quantummechanical and electromagnetic mul-
tiple-scattering problem we mention in particular
Ref. 10.
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