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Recently a T-matrix formulation of classical electromagnetic scattering has been given

by Waterman for the case of one homogeneous scatterer, and this formulation has subsequently
been extended to the case of an arbitrary number of homogeneous scatterers by the present
authors. In the present article we show that the T-matrix formulation is also well suited
for the treatment of electromagnetic scattering from scatterers consisting of an arbitrary
number of consecutively enclosing layers with constant electric and magnetic properties.
e also show how the earlier results on the T-matrix formulation can be combined with
these new results to apply to more general types of multilayered scatterers. Some numerical
applications are presented.

I. INTRODUCTION

In Hefs. 1 and 2 Waterman has given a T-matrix
description of acoustic and electromagnetic scat-
tering from a single homogeneous scatterer. The
boundary conditions on the scatterer can be of a
fairly general nature and the surface of the scat-
terer has to satisfy certain fairly weak geometrical
conditions. Monochromatic waves are considered,
and the T matrix refers to expansions in spherical-
wave solutions to Helmholtz's equation. This T-
matrix formulation has subsequently been extended
to the case of an arbitrary number of scatter-
ers,"the extension being valid under fairly weak
conditions on the configuration of the scatterers.

In the present article we consider monochromatic
electromagnetic scattering and we show that the
T-matrix formulation is equally well suited for
the description of scattering from a target con-
sisting of several layers, each of which has con-
stant electric and magnetic properties and which

consecutively enclose each other. By invoking the
results of Ref. 3 we then also obtain the T matrix
for an arbitrary number of such scatterers, where
the number of layers and the electric and mag-
netic properties of these layers ean be chosen in-
dependently for each of the scatterers. The prob-
lem of calculating the total T matrix for one
scatterer with several layers turns out to be al-
gebraically much simpler than that of calculating
the total T matrix for several homogeneous scat-
terers. ' In the case of one multilayered scatterer
a recursion formula for the T matrix itself is ob-
tained. By using the results of Ref. 3 we also ob-
tain the T matrix for one scatterer which contains
several enclosures, which may themselves be
multilayered in the above sense. Furthermore,
the methods and results of Ref. 3 are shown to

apply to the ease of a scatterer consisting of sev-
eral nonenclosing parts„each with arbitrary but
constant electromagnetic properties ~ All the
above-mentioned results have their counterpart in
a matrix formulation of acoustic scattering. This
case is treated in Ref. 5.

The plan of the present article is as follows. In
Sec. II we consider first the case of a scatterer
consisting of two layers and we obtain the total T
matrix in terms of the T matrix for the inner sur-
face and Q matrices' associated with the outer
surface. A formal expansion of the total T ma-
trix gives a series of terms which can be inter-
preted as multiple-scattering contributions to the
scattered fieM. In Sec. III we extend the formalism
to the case of a scatterer with an a.rbitrary num-
ber of consecutively enclosing layers and we dis-
cuss the iteration procedure for obtaining the total
T matrix. In Sec. IV we discuss some examples
of other types of scatterers to which the results of
Ref. 3 and Secs. II and III of the present article
can be applied. A discussion of the results and
some numerical applications are given in See. V.

II. THE T MATRIX FOR A TYCHO-LAYERED SCATTERER

Throughout this paper the T matrices to be con-
sidered will refer to spherical waves, i.e., the
scattered field outside the scatterer mill be rep-
resented as

E" =Ex.~. ,

where g„stands for an outgoing spherical-wave
solution to

(v'+k') y =0
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[a time factor exp(-isn't} will be suppressed
throughout]. Explicitly, we choose a complete
set of g„'s as follows:

4n =4ramn(kr}

-=(y„„)'"(k 'vx)'[kryo, „(i)k"'(kr)]

where r =1, 2, c =e, o ("even" or "odd" },
n =1, 2j ~ ~ ~ j ps Oj 1j ~ ~ ~ j plj and

(2n+1)(n -m)(
4v n (n + 1)(n +m)! '

(2.3)

E'"' = pa„Re/„, (2.5)

where Ref„stands for the regular part of g„, i.e.,
the expression (2.3) with k'„"(kr) replaced byj „(kr),
a spherical Bessel function. The solution of the
scattering problem is given if the transition ma-

&, =1, e =2, mg0. (2.4)

k"'(kr) is a spherical Hankel function and

1', „(i)=P„(cos8)cosmic,

y~„(i)=p„(cos8) sinrmp,

where P„ is an associated Legendre function2 ~ 3 ~ 6

The incoming field is assumed to be regular
everywhere inside the scatterer, i.e., it canbe
represented as

trix T, with elements T„„, satisfying

(2.8}

is determined. In Ref. 2 it is shown that the T
matrix for a single scatterer is of the form

(2.7}

where Ref and Q are matrices which are functions
of the surface S of the scatterer and of the nature
of the boundary conditions. For example, if the
scatterer is characterized by a relative dielectric
constant e and a relative permeability p, Q is
given by

Q =k l dS'n [[V'xg„(kr')]x Re/„, (k'r')
"s

+g 'y„(kr')x[g'x Reg„, (k'r')]),

(2.8)

where k' =k(pe)'" (note that in the present article
we use conventions for the Q matrices which are
slightly different from those in Refs. 2 and 3).
Re@ is the matrix obtained by taking the functions
Ref„(kr) instead of g„(kr} in (2.8). In order to ob-
tain (2.7} one uses the Poincarh-Huygens princi-
ple, ' which for a medium characterized by p. and e
reads (we puts, =y, ,=l for vacuum)

~ ~

() +=p x dS'k'[nxE, (r')]G(k'[r-r'()+vx v'x dS'fw'"e "' [nx II,(r')]G(k'(r-r'[) for ]r outside V,

where S now is the whole surface which encloses
the volume V and where the unit normal vector n

points into V. %'e note that in order to obtain
(2.9) it is sufficient to require G(k~r -r'~} to satis-
fy

(v2+k2)G(klr r'I) = —k'5(r -r'}-
and VG = -V'6, i.e., the boundary conditions on 6,
and thus on E, have to be introduced separately.
E, and H, denote the boundary values of the total
fields E and H on S. (2.7) and (2.8) are obtained

by means of the Poinca&-Huygens principle, in-
cluding a source term, applied to the region out-
side the scatterer bounded by the surface S (in
this outside region the wave vector is k and

p, =e =1) and combined with the boundary condi-
tions. From the resulting equations the surface
fields can be eliminat:ed. ' Through the boundary
conditions E+ and H, are connected to the fields
inside the scatterer and one then assumes expan-
sions for these fields in terms of regular solutions
to the interior wave equation. ' This can be done

under certain regularity assumptions on the sur-
face S. %e refer to Refs. 1 and 2 and further
references cited therein for a discussion of these
questions, and in the present article we shall al-
ways assume that the corresponding expansions
of the surface fields are valid. %e shall further-
more concentrate on the cases of infinite or zero
conductivity (i.e., no losses}. Many features of
the formalism presented below are expected to be
valid also in the case of finite nonzero conductivity.
However, the description of translation of spheri-
cal waves characterized by a complex wave vector
requires more general results concerning local
representations of the three-dimensional Euclidean
group E(3) than were explicitly given in 3, and
therefore we shall presently concentrate on the
lossless case [concerning these more general
properties of the local representations of E(3},
see, e.g., Ref. 8].

%'e shall consider a two-layered scatterer de-
fined by the closed surfaces S, and S„where S,
encloses S, according to Fig. 1. The scatterer is
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pg~ x E+ =pg~ x E

n, xH, =n, x H',

(2.10}

(n, is the unit normal vector on S„ i =1, 2), we
now have to assume a more general expansion for
the interior surface fields, containing both regular
and irregular solutions. For convenience we shall
write this expansion in terms of a regular part and
an "outgoing" part, i.e., we assume that

E' =gn, [a„'Re&„(k,r')+P'„[j)„(k(r')],

and thus.

(2.12)

n, x H' = (ik g, ) 'p n, x [a„' ([]"x Rey„(k, r' }

FIG. 1. Geometry and notations for a tv'-layered
scatterer.

In this way we obtain

+p„' v' x y„(k,r')] .
(2.13)

immersed in a medium with c = p. =1 and the two

layers are characterized by the relative constants
and e„p,„respectively, and the corre-

sponding wave vectors are k, and k, (the small
variations in the formulas which are obtained for
the case of infinite conductivity will not be written
down in the following; cf. Refs. 2 and 2). The
boundary values of the fields on the outside and the
inside of a surface are denoted by a subscript +

and —,respectively. First, we apply Poincare-
Huygens principle to the region outside 8, and pro-
ceed as in Ref. 2. However, in the boundary condi-
tions

f„=-ig[Q„'„(Re,Re)a'„, +Q„'„,(Re, Out}p„', ]

(2.14)

a„=iQ[q„'„,(Out, He)a„', + Q„'„,(Out, Out)P„', ]

(2.15)

for the coefficients f„and a„ in the expansions
(2.1) and (2.5) of the scattered and incoming field.
%e have used the notation

()'„„,(Re, Re)=-(] r(sr), ~ [[e'xRer) Re')]„xRer)„,((re') ~ rr,
' eRr()e)ex[ rr xeR„,r),R'')]]. (2.16)

The other combinations of "Re" and "Out" in the
coefficients Q„'„, in (2.14) and (2.15}refer to simi-
lar expressions, where Re or Out in the first place
in the argument of Q„'„corresponds to taking the
functions He(t„(kr') or [()„(kr'), respectively, and

similarly Re or Out in the second place corresponds
to taking the functions Re[][)„.(k, r') or [I)„.(k,r') [these
replacements shall be made in both places in (2.16)
where a function of kr' or k, r' occurs]

In the next step we apply the Poincarh-Huygens
principle to the volume between 8, and S,. It is
easy to see that (2.9) is valid for a general Green's
function

G(k[r-r'()=X, g(k(r-r'))+X g(k[r-r')),

where

(2.18)

is an outgoing Green's function and thus g (where
the bar denotes complex conjugation) is an ingoing
Green's function. In the present situation the
choice of the Green's function is dictated by the
following requirements. It should be general
enough to describe a field between 8, and S, which
is general enough, i.e., consisting of both regular
and irregular parts. On the other hand, it should
be such that in the limit of ~, -1, p., -1 the solu-
tion of the scattering problem approaches the
form given by the T matrix for one scatterer
bounded by the surface S,. As is easily seen (cf.
the formulas below} the last requirement gives
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~, =0 and the first requirement is then still ful-
filled.

Thus, by applying the Poincark-Huygens princi-

pie with the Green's functiong(k, ~r -r'~) and as-
suming that E' has no sources between S, and S,
we obtain

=g x Q~QS -n1 x E g ~ r —r +p'x gx jp~ g~ -n~ xH g
Sg Sg

+ [[7x pjdS nexE g ~ r -r +gx Px )pl &g n2XH+g Al~ r -r
$2 $2

r between S, and S„for r outside S, or inside S, . (2.19)

The expansions for n, x E+ and n, xH+ are given
in (2.12) and (2.13). The boundary conditions on

S, are

n2X E+ =n2X E

n, xH~ =n, xH',
(2.20)

where we now assume that n, & E' has an expansion
of the form (cf. Ref. 2)

n, x E' =ga2 n, x Re[)„(k,r'),

s,xR' = (fkj],,)-'g{r'„s,x[v'x Re[()„@,r')] (2.22)

(note that we have already used the boundary condi-
tions on 8,]. By considering the cases of r outside
the circumscribing sphere 8, of 8, (with center in

0) and of r inside the inscribed sphere 3, of 8,
(also with center in 0}, we obtain two situations for
e„', P„', and o'„as follows. Let a denote the unit
dyad. We then have

ag(k, ~
r - r'() =i+g„(k,r, ) Re[c)„(k,r,) + I,

=i+ Ref„(k,r&}g„(k,r, ) +8, , (2.23)

where the dyad 8, is formed out of irrotational
vectors. It will therefore disappear from all sub-
sequent relations. With r outside 5, we have

r, = r, r, = r' on both S, and S, and with r inside 8,
we have r, =r, r, =r' on both S, and S,. Introducing
(2.12), (2.1S), (2.21}, (2.22), and (2.23) into (2.1.9)
and using Vxg„„(k,r) =k, [))... „(k,r), where 7 x v',
we obtain, from a consideration of r inside g, ,
by comparing the coefficients of Re[I)„(k[r), the
equation

0=+ d8'n, ][V'x[))„(k,r')]xRe[c)„,(k, r')+T[)„(k,r')x[g'xReg„, (k, r')]]a„',
n' sg

+
~

d$'&, [[p'xy„(k,r')]x[)„,(k, r')+y„(k, r')x[q'x[c), (k, r'}]]p„',
~s,

(2.24)dS', ~ {[V'x), R,P)]xRe) „Ikr ) ~ vv„) , A')x[v, 'x,-R'e„{ ,(k', r )]j ' ). „, '„.~~

$2

Similarly we obtain from a consideration of r outside 5,

0=/ J dp{[v' e sx,,R'))]x ej , AR, ') e Rs„)p)x[q'x e ,R&), ')ljn„',
n Sl

+ dS n p x Ref (kyr ) x'(I) @lr' + Re&„k,r')& W' & g„. ,r' p„'
$1

dS n2 p & Re/„(ter ) x Qek '@2 ) + ~1~2 R [II)„1 )x ]II]y x Re[ejI) '@2r
$2

A direct calculation, using Gauss's theorem and the Wronskian relation for j„and h„", yields

(2.25)
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d S'n ([V' x Re/„(kr')] x Ref„.(kr') + Re/„(hr') x [v"x Ref„(kr')]J

dS'n g'xy„r' xq„, r' +tI}„r' x g'xq„, kr'
S

=0, (2.26)

k dSVg ~ g'x Hey„(kr' xy„kr')+He/„r' x g'xq„, r =i5„„,.
S

With the notation

(2.27)

q'„„,(Re, Re) =-p, J dS'n, ~ ([q' xR qe„(k, r')]x Rey„, @,r') + p, , p, ' Req„@,r') x [o'x Rey„, {t',r')] J
82

(2.28)

ia„'=$-q„'„,(Out, Re)a„'

iP„' = g q'„„,(Re, Re)a'„

(2.29)

(2.30)

In a vector and matrix notation (/ag
—= a, , etc.}we

have thus obtained the following system of equa-
tions:

[note that this is a direct analog of (2.16)], and

similarly for other combinations of Re and Out ac-
cording to the prescriptions given in connection
with (2.16}, we get

to the total T matrix. En such an expansion there
occur, besides the individual T(i) matrices, Q
matrices which, in accordance with the form of
T (1), can be associated with a passage of a wave
out through S, [and thus a (Q') ' factor is asso-
ciated with a passage in through S, , and a factor
(with the appropriate arguments of the Q"s}
(Q') ' Q' represents a. reflection at the inside of

S,]. The first few terms in the expansion of (2.35)
can be depicted as in Fig. 2 and one easily sees
that in general one has exactly the terms expected
from a multiple-scattering picture.

a =i[Q'(Out, Re)a ' + Q'(Out, Out)jE '],
i[q'(R-e, Re)a'+q'(Re, Out)P '],

(2.31)

(2.32}
III. THE T MATRIX FOR A MULTILAYERED

SCATTERER

a' =iq'(Out, Re)a',
p' = iq'{Re-, Re)a'.

(2.33)

(2.34}

Here we may remark that if we had started with
a more general Green's function (2.17), this would
have affected Eq. (2.33) but not (2.34), and this
fact can be used to show that one has to choose
A., =0. From the four equations (2.31)-(2.34) we
can extract relations between any two of the five
vectors a, f, Z', P', and Q.

' and we shall con-
sider the relat:ion between a and K, i.e., the total
T matrix for the two-layered scatterer which will
be denoted T(1, 2). A useful expression for T(1, 2)
ls

T(1, 2}=(T(1}—q'(Re, Out)T(2)[Q'(Out, Re)] ']

x/I +Q'(Out, Out}T(2)[q'(Out, Re}] '} '.
(2.35)

The extension of the results of Sec. H to the case
of a scatterer which consists of an arbitrary num-
ber of consecutively enclosing surfaces S, ,
i =1, . . . , N, is straightforward. The notations of
Fig. I are generalized in an obvious way so that
we now have the wave vector k, , the relative
media constants c, , p, , and the fields E', H', etc.
in the space between S, and S„,. As before, it
follows that we must consider the Green's function

g@,~r-r'~). For the expansions of the surface
fields we now assume

n, x E' =p 6, x [a„'Rey„(}t,r)+p„y„{k,r)], (3.1)

and thus

it, x H' = (i}tg, ) 'P 6, x [a„'g x Hey„(y P)

Here
+p„'v x q„(a,r)] (3.2)

T(i) = -q'(Re, Re)[q'(Out, Re)] ' (2.36)
fori =1, 2, . . . , N-1, while fori =N we assume

is the T matrix of a homogeneous scatterer bounded

by the surface S, and with media constants e, , p,
As in the case of two separate homogeneous scat-
terers, ' the various terms obtained by a formal
expansion of the inverse in (2.35) can be inter-
preted as various multiple-scattering contributions

n»x E =Q a„n»x Re/„(k»r},

and thus

n» x 8» = (ik g») 'ga»n»x [g x Hey„g„r)] .

{3.3)

(3.4)
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By considering Poincare-Huygens principle for
the volume between S, and S,+, we obtain, in com-
plete analogy with the derivation of (2.31}-(2.34),
the following set of equations p' = 2[-q"'(Re, Re)o. "'+q'"(Be,Out)p"']

(3.7)

1T.'
' =2[q" '(Out, Re) a '+' + q" '(Out, Out)p" '],

a =i[q'(Out, Re)o. '+q'(Out, Out)P '],

f = -f[q'(Re, Re)o'+q'(Re, Out)p '],

(3.5)

(3.6)
where i =I, . . . , N —1 and PN=-0. The matrices
q'+' are defined in analogy with (2.28), i.e.,

q'„'„,'(Re, Re) -=k; dS'22, „~[[g' x Req„(k, r')]x Ref„, (k &„r') + i2, g, +,
' Re/„(k, r') x [g'x Beg„(k,, lr')]}

and similarly for the other combinations of He

and Out. The algebraic solution to this set of
equations can be written down immediately. It is
then convenient to introduce the following sys-
tematic notation:

(q'(Out, Re) q'(Out, Out)) 8'„, 8I2

(q'(Be, Re) q'(Re, Out) j 8,', , (2,"22

layered scatterer whose outer surface is S„,.
This T matrix is denoted T(i+1, . . . , N}, i.e., we

have P' = T (i +1, . . . , N)a', and thus (3.7) and (3.8)
can be written

n' =2[q"'(Out, Re)a "
+q'"'(Out, Out)T( 22+, . . . )11Twt.'"1'], (3.15)

IT' = 2[q"-'(Re, Re)B"'
+q'+'(Be, out)T(2+2, . . . , X)a'+'],

and if we use an additional vector notation for the
two components 8"and 5", i.e.,

the equations (3.5)-(3.8) may be written

Ci+1Q)+1 4 -0 1 pj 1 (3.10)

l.e.,

and since
N

~~N-
0

(3.11)

THE TERti 9"T(8) LGP]

we have

(3.12)

(3.13)

i.e., the total T matrix for the N-layered scat-
terer, denoted T(1, 2, . . . , X) is

THE TERY T(1) Q T(2) LGP]

= —Q. [Q] Q T(2) LQ"]

(3.14)

However, for numerical applications it is relevant
to note that the structure of the equations
(3.5)-(3.8) is such that we have a recursion rela-
tion for the T matrix itself. The recursion rela-
tion is obtained simply by noting that 8' and P'
are related by the total T matrix for the (N-i)-

FIG. 2. Multiple-scattering interpretation of Eq.
P.35).
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from which we find

T(i +1, . . . , fi) =]T(i+1)—q"'(Re, Out)T(i+2, . . . , X)[q"(Out, Re)] 'j

x(1+@( '(Out, Out)T{i+2, . . . , N)[{(('+'(Out, Re)] ') ',
of which (2.35} is the simplest special case.

IV. THE T MATRIX FOR SEVERAL MULTILAYERED
SCATTERERS AND OTHER CONFIGURATIONS

We shall now combine the results of Secs. II and
III with those of Ref. 3 and obtain the total T ma-
trix for new classes of scattering configurations.
In deriving these new T matrices we shall take
some care in referring back to the original equa-
tions so as to demonstrate explicitly how the re-
sults combine. We consider first the case of
several multilayered scatterers. The case of two
scatterers each having two layers is generic and

from the explicit results for this case the con-
clusions for the general case are immediate.
Thus we sha, ll consider the configuration depicted
in Fig. 3. For the surface fields we write (n,.

&
is

the unit: normal vector on 8,&, pointing outwards}

n, , x E"=g n, ,x[c(„'Re(1(„(k„r',',).
+P„'(y„{k((r,",)], . i,j =1, 2

(4.1)

n(&xH(( = (iki(, , ) 'pn, &x[((.„"V"x Re({(„(k,&r,'&)+.p„'(. (('" x(}(„(k,,rI()], i j =1, 2 (4.2 }

where P„"=0, i =1,2. We shall now repeat the main steps of the derivations of Sec. III of Ref. 3, with the

appropriate modifications. Thus we first apply the Poincard-Huygens principle to the volume outside S„
a,nd 5», with a source term corresponding to the incoming field, and get

Z(r)

0
=E'"'(r) +Vx dS'k(nxE, )g(k(r r'~)+-gx rrx

~y&+ ~» ll S21

d S'i (n x H, )g (k I
r —r

l }

r outside Sll and $21for r inside S» or S».

By considering r outside a sphere with center in 0 and containing S„and S„we get, after (4.1) and (4.2)
have been introduced by means of the boundary conditions and after expanding the Green's function as in

(2.23) and then comparing the coefficients of (1(„(kr},

E, ](;, t(.=1, F. =
&

I IG. 3. Geometry and notation for two bvo-layered seatterers.
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f„= (-(el I J ds'e„g ((e' x Re(,„()tr'„)]x Re („,()p) ,~', e„'Re(„(kr),)x(e" r Re(„()„,r,'. ', )]] e')
i= i,2 n'

+g [[())"x Be(])„(krI))]x ]I)„(k,,r, ) + p„' BeT))„(kr',) )x [)])'"x]))„,(k„r'(I)]}p„", , (4.4)
nr

= Q R„„„(a,) Bej„„(kr",, ) . (4.5)

The translation matrix R„„„is treated in detail in

where [f„}are the expansions coefficients for E
as in (2.1). Here r'„=a., +r,", , i =1, 2, and a trans-
lation of the origin of the Ref„ functions gives

Ref„(kr'„}= Re)))„(k(i, + r",,))

Ref. 3. It follows that (4.4) may be written

f = i-g R(a, )[Q"(Re, Re)n"
(=1,2

+ Q" (Re, Out)jP '], (4.6)

where the matrices Q'~ are defined in complete
analogy with (3.9), the integration now being over
the surface S„.. Similarly, if we consider r in-
side the inscribed sphere of Spy we find

p a„,R„,„(a,, ) = (ik)g J
dS'n» ][V" T()„(kr,",)] ReT])„,(k»r,",) + ]]» '())„(kr») x [V"x Re())„,(k»r,",}]}n„",

s

+ d$ nay "]] X gn{Q ryy X ~n' @yg yg + I yy 4n@ryy X g X (II'n' @'ylryy ~n

+ ( d S'n» ][V'"xg„(k (r,",+a, - a, ))]xReT])„,(k»r,",)

+ &„-'y„[k(r,", +a, —a, )]x
I
q" x Reg, (k„;„)]}n,

+ dS'n„V" x$„k r", +a, —a, ) xg„, „r»

+ P„')))„.(k(,", a, —a, ))x[7"x(})„(k»r,",)]}p'„' (4.7)

where we have used

= r~ +a~ —r»

in the Green's function in the integrals over S»
(thus we have r, &

~ r,",+i, —i, ~ ), and where fa„}
are the expansion coefficients for E ' as in (2.5).
In order to be able to express (4.7) in terms of
Q'~ matrices we now assume that the configuration
of S„and S» is such that r,",&~a, —a, (. When this
condition is fulfilled (cf. the discussion in Ref. 3),
the change of origin for the g„ functions leads to
the expansion

q„(k(r,",+i, —a, )) = Q o„„~(i, —a,, )
nl I

x Re~(„„(kr,", } . (4.8)

The translation matrix v„„, is treated in detail in
Ref. 3. In this way we get the equation

B'(i,)a =i[Q"(Out, Re)n" + Q" (Out, Out)p"

+o(a, -a„)[Q"(Re, Re)n"

+ Q" (Re, Out)P" ]}, (4.9)

where R' denotes the transpose of A. In exactly

The equations obtained by invoking the boundary
conditions on S» and S» are the same as given
before in (2.33) and (2.34), i.e., we now get

n)' =i Q" (Out, Re)n ", i =1, 2

P(~ = iQ(2(Be, Re)n '2 i = I

We introduce

i~ i[Q~'(0 =-t, Rue)n" +Q~'(Out, out)P«],

(4.11)

(4.12)

j = I, 2 (4.13)

f~ —= i[Q"(Re, R-e}n~'+Q" (Re, Out}p"],
j = I, 2. (4.14)

From Sec. II [cf. E(ls. (2.31)-(2.34)] it follows
that a' and f' are related by the total T matrix for
the two-layered scatterer whose outer surface is
S«. This T matrix will be denoted T (il, i2), i.e.,
we have

the same way we obtain, by considering r inside
the inscribed sphere of S»,

R'(i, )a =i(o(a, —a, )[Q"(Re, Re)n"

+Q" (Re, Out}P "]
+Q" (Out, Re)n "+Q"(Out, Out)p "}.

(4.10)
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f' =T(il, i2)a', i =1, 2.
Thus {4.6}, (4.S), and {4.10) can be written

R'(a, )a = a ' - u(a, - a, )T (21, 22)a, ',
R '(a, }a= -o(a, —a,,)T (11, 12)a '+a ',
f =R(a, )T(11,12)a, '+R(a, )T(21, 22)a'.

(4.15)

(4.16)

(4.17)

(4.18)

Equations (4.16)-(4.18) should be compared with
Eqs. (3.11), (3.12), and (3.13) of Ref. 3. If the
relation T(f) =-Re@" (Q") ', i =I, 2 (in the no-
tation of Ref. 3) is introduced into these equations,
they read

R'(a, )a=&"5' —a(a, —a, )T(2)g"o, ', (4.1S)

R'(a, )a=-o(a, -a, )T(I)q"n'+q"o. ', (4.20)

f =R (a,)T(I}Q"a '+R (a,)T(2)q"u '. (4.21)

[Incidentally we may remark here that this way of
writing Eqs. (3.11), (3.12), and (3.13) of Ref. 3
shows immediately that the total T matrix for two
scatterers can be expressed exclusively in terms
of T(l), T(2), and the translation matrices R and
o'; this fact is, of course, also obtained from a
detailed consideration of the iteration procedure
as in Ref. 3.] From a comparison between
(4.16)-(4.18) and (4.19)-(4.21) it is clear that the
T matrix connecting the a and f of (4.16)-(4.18) is
of the same form as the T matrix connecting the
a and f of (4.19)-(4.21), but with T(1) and T(2) re-
placed by T(ll, 12) and T(21, 22), respectively,
i.e., the total T matrix of a configuration of two
two-layered scatterers as in Fig. 3, having the
individual total T matrices T(11, 12) and T(21, 22)
and denoted T (11, 12; 21, 22), is given by'

T(11, 12; 21, 22) =R (a, )(T (11,12)[1—o(a —a, )T (21, 22)g(a, —a, )T (11, 12)]-'

x [1 + o(a, - a, )T (21, 22)R (a, - a, )]]R (-a, )

+R (a2)[T (21, 22)[1 —&(a, —a,)T (11,12)g(a, —a,, )T (21, 22)]-'

x [1+v(a, —a, )T(11, 12)R(a., a, )])R ( a, ) .

It is now a straightforward matter to consider
the case of an arbitrary number of multilayered
scatterers„where the number of layers can be
chosen independently for each scatterer, along the
same lines and it is easy to see that the same
situation arises, i.e., the result is that given in
Sec. IV of Ref. 3, the only difference being that
the individual T matrices T(i}, $ =1, 2, . . . , N con-
sidered there are replaced by the more compli-
cated individual T matrices of Sec. III for the mul-
tilayered scatterers.

This result might certainly be said to be an ex-
pected one. We emphasize that the result (3.14) of
Ref. 3, and thus Eq. (4.22), was obtained under
the assumption that each of the scatterers are
bounded by one closed outer surface. Vfe have
gone into some detail here in showing that the re-
sults of Ref. 3 also hold for scatterers having the
internal structure considered in Sec. III.

The multilayered scatterers considered so far
have consisted of consecutively enclosing surfaces.
However, the T-matrix description is also suitable
for a situation where one has at some stage a sur-
face which contains several closed surfaces which
enclose regions, each of which is characterized
by different relative media constants. The generic
case is that depicted in Fig. 4. Outside a sphere
with center in 0 and enclosing S2 and S3 (and pos-
sibly in a larger region) the E' and H' fields can
be expressed as a linear combination of a regular
and an outgoing part and the connection between

these parts is given by a T matrix, namely, the
T matrix corresponding to the configuration S,
and S,. Thus we now assume that on S, we have
the expansion

n, x E' =gn, x[o.'„Rett„(k,r')+p„'g„(k, r')],

and thus

n, xH' =(ikp, ) 'gn, x[a'„V'x Re(„(k,r')

+p„'v'xq„(k, r')], (4.24)

E, 4, p=1, s. =&

FIG. 4. Geometry and notation for a scatterer con-
taining two enclosures.
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where n ' and P
' are connected by the T matrix

T(2; 3) for S, and S, and where the form of T(2; 3)
is given by Eq. (3.14) of Hef. 3. By invoking the
boundary conditions on S, we get the equations
(2.31) and (2.32) as before. Thus the only differ-
ence between (2.31)-(2.34}and the present case is
that now n ' and P

' are connected by T(2; 3) in-
stead of by T(2) as in (2.33) and (2.34), and it fol-
lows immediately that the total T matrix of the
scatterer depicted in Fig. 4, which will be denoted
by T (1; 2, 3), is given by

T(1; 2, 3) =[T (1}—Q'(Re, Out)T(2; 3}[Q'(Out, Re)] '}

&&[1+@'(Out, Out)T(2; 3)[Q'(Out, Re)] '} '.
(4.25)

A case of interest in applications is that of a scat-
terer having a "displaced" enclosure, i.e., an en-
closure situated in such a way that it is most con-
venient to use different origins for the coordinate
systems used for the fields on the outer surface
arri for those on the enclosure. This case is ob-
tained as a special case of (4.25) by letting, e.g.,

S,-O, in which case T(2; 3)-R(a,)T(2)R(-a,).
Taking into account the results of Sec. III and

Ref. 3 it is now clear that the above results con-
cerning enclosures generalize in the following way.
From Ref. 3 it is clear that the case of S, contain-
ing an arbitrary number of separate enclosures is
obtained by inserting the appropriate T matrix in-
stead of T {2, 3) in (4.25). Furthermore, according
to the discussion in connection with (4.22), it is
clear that each of the enclosures may be multi-
layered. Here we have considered S, as the outer
surface, imbedded in a homogeneous medium, but
it is again clear that outside S, there may again
be an arbitrary number of, e.g., consecutive en-
closing surfaces. In fact, one can consider any
combination of separate and consecutively enclos-

FIG. 5. Geometry and notation for a scatterer con-
sisting of bvo nonenclosing parts.

ing surfaces and for each case immediately write
down the form of the total T matrix according to
the prescriptions given above and in Ref. 3.

Finally, we consider scatterers consisting of
several nonenclosing parts, each characterized by
arbitrary but constant values of p and c. The
simplest type is that depicted in Fig. 5. A novel
feature here is the appearance of edges on the sur-
face enclosing a part with constant p, and e. Edges
are allowed by the basic regularity assumptions
of the T-matrix formalism of Ref. 2. However,
the appearance of edges results in special con-
vergence problems in the numerical treatment,
which are usually remedied by rounding them off,
as discussed in Refs. 2 and 9. A scatterer of the
type depicted in Fig. 5 can be treated by the for-
malism of Ref. 3 under the appropriate geom tri-
cal conditions. To see this we start by using the
Poincark-Huygens principle for the region outside
S, +S, , and according to (2.9) we then have

r=i"(v)+v«J, ds'vf «z, g')lGSI«-v'll v«v«) ds'I «H, ( 'Ha(v~1
0 Sg+ S2 Sg+ $2

r outside S, +S, ,for ' (4.26)
~ ~

~

~

r inside S, +S,

(n = n, on S,). The closed surfaces S, +S», f = 1, 2

are denoted 5, , and we note that for the outward
pointing unit normal vectors n, on 8, we have

n, = -n2 on S». Let 0 in Fig. 5 be the origin for
the expansions E'"'(r) =Q„a„He/„(kr) and E"{r)

„f„g„(kr} (Of course, i.n a particular example
it might be more convenient to take 0 to coincide
with either 0, or 0, but the structure of the result-
ing equations becomes more transparent by a gen-
eral choice as in Fig. 5; cf. also the discussion in

Ref. 3.} By considering r outside a sphere with
center in 0 and containing S, +S, we find, using
(2.23) and comparing the coefficients for g„g;r)
(Hef. 2),

d S'(jk-'(8 x E,).[g' x Heg„(kr')]
I 2

—(n && H, ) ~ Req„(kr')}, {4.27)

where, according to the boundary conditions,
n & E+ =n, ~ E', n ~ H+ =n, && H' on S, . Furthermore,
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ave n&&Ex n&xE, n~xH- =ni H- on S
i.e., nIXE +n2xE' =0, n, &H' +n, ~H' =0 since
n, = -n, on S». Thus by adding the relevant com-
binations of

(n, x E' +n, x E') ~ [g'x Ref„(kr'„)]dS'
Si2

n, x 8' +n, x H' Re/„A'r'„dS' =0 4.28}

to (4.27), this equation takes the form

f„=k' Q dS'[ik '(n, xE') [tr'xReg„(kr')]
1=1,2 "g,.

(n, x H' } Re&„(kr')} (4.29)

(r' = r,'. on S, , r' = r'„on S„). The expansion of
the surface field on 8,. is assumed to be

n, x E' = g a„'n; x Re)„(k,r, "),

n,. x H' = (ik g, ) 'g n„' n, x [g' x Rey (k, r, ) ]

(here r;"= r -a; on S& and r;"=r,', -i& onS„;
cf. Fig. 5). We introduce these expansions into
(4.29), write r'=a;+ r," on 3; and translate accord-
ing to (4.5). ln this way we obtain

f =-i g R(a, )Q'(Re, Re)o', (4.30)
i=1,2

where Q' is the Q matrix associated with the
closed surface 3, [cf. (2.16)]. Here we note that
Eq. (4.30) is identical to the equation which would

be obtained if 8, , were two separated closed sur-
faces defining two homogeneous scatterers as in

Eq. (3.13}of Ref. 3. By taking r inside the in-
scribed spheres of 8, and S„respectively, we ob-
tain in a similar way two equations for a which

are identical to Eqs. (3.11) and (3.12) of Ref. 3,
i.e. , we get

R'(i, )a =i[q'(Out, Re)o, '

+o(a, —a, )q'(Re, Re)o'],
8'(i, )i =i[a (i, —a, )Q'(Re, Re)o '

+Q'(Out, Re)B'] .
In deriving these equations we have again made

the geometrical assumptions which are necessary
for (4.3) to hold, i.e., Ir'l~ lii —i21 where r'
stands for r', , r,', or r,', (more details of this
derivation are given in Ref. 3). It is clear that a
very wide class of scatterers of the kind illus-
trated in Fig. 5 fulfill these conditions (we recall
that the choices of the positions of the coordinate
origins 0, , O„and 0 are largely arbitrary and

mainly dictated by convenience). Thus the total T
matrix of the scatterer in Fig. 5 is given by an ex-

pression analogous to (4.22) with T(ll, 12) and

T(21, 22) replaced by the T matrices associated
with each of the two parts 5, and 5, of the scat-
terer.

Furthermore, it is now clear that the above con-
clusions generalize to the case of a scatterer con-
sisting of an arbitrary number of parts, each with
arbitrary but constant values of p, and e, provided
the obvious generalization of the condition
)r'~ & ~a, -a,

~
is fulfilled for all parts of the scat-

terer. Thus the total T matrix is then obtained by
means of the method described in Sec. IV of Ref. 3.

It may appear as if we have actually complicated
the solution of the prob1.em by introducing the vanish-
ing integrals in (4.2S) into (4.27). Thereby the physi-
cal fact that the tangential fields are continuous
across the intersecting surfaces becomes the key to
the structure of the equations, but it is not used ex-
plicitly later on. However, the above procedure
seems to be necessary if we want to extract equa-
tions for j, a, etc. for a general case.

V. DISCUSSION AND NUMERICAL APPLICATIONS

In the preceding sections we have shown how the
T -matrix description of electromagnetic scatter-
ing from homogeneous scatterers "can be gen-
eralized to the case of multilayered scatterers ~

In particular it was shown that the structure of the
multiple-scattering equations given in Ref. 3 re-
mains unchanged when the scatterers have the
more complicated structure cons idered in Secs.
III and IV. This is true in still more general situa-
tions, which will be considered elsewhere. The
main observation is that the Poincare-Huygens
principle gives, irrespective of the structure of
the scatterers, a set of %+1 equations which com-
pletely determine the scattering.

Previously, electromagnetic scattering from
multilayered scatterers has been considered
mainly for a scatterer with concentric spherical
layers. The equations for the case of an arbitrary
number of such layers are given in Ref. 10, to-
gether with several numerical results and refer-
ences to earlier works. Some work has been done
on nonconcentric spherica1. inclusions in spheres,
such as Refs. 11 and 12 for the electromagnetic
case and Ref. 13 for the acoustic case. In Ref. 12
the scattering from two nonconcentric plasma
cylinders is treated by means of an application of
Waterman' s matrix formulation.

The formulas given in the previous sections for
the total T matrix for the various configurations
considered represent exact solutions to the govern-
ing equations. In order to obtain numerical re-
sults we consider the truncated solutions. A

closer study of these truncated solutions is, of
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FIG. 6. Normalized backscattering cross section for
a homogeneous dielectric sphere with 0

&
——2k and radius

b, as a function ofkb.

course, of primary interest. Here we restrict
ourselves to a consideration of some of the very
simplest configurations. Since we primarily want
to illustrate the structure of the solutions we take
all surfaces involved to be spherical, i.e., all the
individual T matrices involved are diagonal. Qf
course the computer time required increases
rapidly if more general individual T matrices are
considered. Thus we shall consider the case of a
dielectric sphere containing one or two infinitely
conducting spheres. The radius of the dielectric
sphere is 5 and that of the infinitely conducting
sphere (spheres) is a.

%e consider first the case of one infinitely con-
ducting spherical enclosure and we take 5 =Sa and

k, =2k. One might then study, e.g., the backscat-
tering cross section as a function of several pa-
rameters, such as the distance between the cen-
ters of the spheres, the polarization of the in-
coming wave, the incidence angles, and the wave-
length. We content ourselves by illustrating a
couple of these dependences (the others could
equally well be handled within our formalism and

by the computer programs developed). The dis-
tance between the centers of the spheres is denoted
c and is taken along the positive z direction.
Origo is at the center of the outer sphere. The
incoming field is taken as a plane wave with the
electric vector orthogonal to the z axis. For
reference we have first computed the normalized
backscattering cross section,

4vr2 tE" t'
(7 =- lim b2 I lllc

t2

I"IG. 7. Normalized backscattering cross section for
a dielectric shell, withe& ——2k and outer radius b, en-
closing a concentric infinitely conducting sphere of
radius a, where a = 3b. The cross section is given as a
function of kb.

for a homogeneous dielectric sphere (radius b,
k, =2k) and for a dielectric sphere with a con-
centric infinitely conducting spherical enclosure
(b = 3a, k, = 2k) as a function of kb up to kb = 4.
These cross sections are given in Figs. 6 and 7,
respectively. Figures 8 to 13 show 0 as a function
of the angle 8' to the positive z axis of the incoming
wave vector for three different values kb and for
each of these values, for six values of the trans-
lation c. For comparison we have also indicated
in these figures the corresponding values for a
homogeneous dielectric sphere with k, =2k and
radius 5 and for an infinitely conducting sphere of
radius a.

Second, we consider a dielectric sphere with

A;, =2k, containing two infinitely conducting spheres
situated symmetrically on the z axis and having a
distance 2d between their centers (i.e., a, =-a, ,
ta, t

= d in Fig. 4). The electric vector of the in-
coming plane wave is again orthogonal to the z
axis. The square I of the absolute value of the
backscattering amplitude, def ined by

F —= lim (kr)'

is presented as a function of the angle to the posi-
tive z axis of the incoming wave vector in Fig. 14.
For comparison, the corresponding diagram for
two infinitely conducting spheres, without the
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E.

*
~

8' (deg)
180

e' (deg}

FIG. 8. Normalized backscattering cross section for a
dielectric sphere, with k~ = 2k and radius b, enclosing
an infinitely conducting sphere of radius a = 3b, whose
center is displaced the amount c along the positive z
axis. The electric vector of the incoming field is orthog-
onal to the z axis and the cross section is given for
&b = 2 as @ function of the angle 8' between the positive z
axis and the incoming wave vector for c/h = 0, &&, $, &9,

where e/b = 0 (solid line), c/b = ~9 (dashed line), c/b = &

(dot-dashed line), c/b = & (dotted line). For comparison
the backscattering cross sections a-d and 0- i for a
homogeneous dielectric sphere of radius b and an infin-
itely conducting sphere of radius u, respectively, are
also indicated in the figure.

surrounding dielectric sphere, is given in Fig. 15.
Even for the relatively simple scattering con-

figurations which we have considered in our nu-
merical computations there are clearly many more
parameter dependences which ought to be studied

FIG. 10. Same as in Fig. 8, but now with@5 = 3.

before one can get anything like a complete picture
of the characteristics of these scattering con-
figurations. In the simple case of concentric
spheres one generally encounters a resonance-
type behavior which can be understood as a result
of a wave-guide effect in the dielectric shell (cf.,
e.g., the discussion in Chap. 5 of Ref. 10}. When
the enclosed infinitely conducting sphere is non-
concentric this effect is expected to be less
marked, and more extensive calculations in this
direction would be of interest. As is illustrated
in Figs. 7-12, a displacement of the enclosed in-
finitely conducting sphere can result in a substan-
tial change of the backscattering cross section
(up to an order of magnitude, cf. Fig. 9). In Figs.

0 QO
(9' (deg)

~t,~.
I

~ ~ ~
~ ~ ~

q.-l.- g

V-i—
/g&.r ~

~ ~

FIG. 9. Same as in Fig. 8, but now for the displace-
ments t:/b = & (dashed line), c/b = & (dot-dashed line),
c/b = & (dotted line).

e' (deg)

FIG. 11. Same as in Fig. 9, but now with kb = 3.
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2
F-d

FIG. 12. Same as in Fig. 8, but now with kb = 3.375.

8 and 9 we have kb =2, which according to Fig. 7

is close to a minimum for the concentric case,
and here the enhancement of the backscattering
cross section for small angles is more marked
than in Figs. 12 and 13, corresponding to
kb =3.375, which according to Fig. 7 is close to a
maximum. A remarkable feature of Figs. 15 and
14 is the increase in magnitude of the backscatter-
ing amplitude obtained by enclosing the two in-
finitely conducting spheres in a dielectric sphere.
Still, the amplitude is very close to zero in one
direction, which is, however, shifted somewhat.

Further details on the numerical aspects of the
computations will be given in a separate report. "

FIG. 14. The square E of the absolute value of the
backscattering amplitude for two infinitely conducting
spheres as in Fig. 15 symmetrically imbedded in a
dielectric sphere of radius b = 4a. E is presented as
a function of the same angle as in Fig. 15 for 4&

——2k,
kb= 2 (i.e., ka = 0.5). For comparison we have also in-
dicated the corresponding amplitude E -d for a homo-
geneous dielectric sphere of radius b with k

&

——2k.

The calculations of the T matrix for the two in-
finitely conducting spheres is done according to
Ref. 3. In general, the exact rate of convergence
depends on a complicated interplay between the Q,
T, and translation matrices, but, , of course, con-
vergence is faster the smaller kb is.

0.05-

6"
(degas

49' Ideg)

180

FIG. 13. Same as in Fig. 9, but now with kb = 3.375.

FIG. 15. The square F of the absolute value of the
backscattering amplitude for two infinitely conducting
spheres with radii a. The spheres are situated on the
z axis with a distance 2d = 4a between their centers.
The electric vector of the incoming field is orthogonal
to the z axis and E is represented as a function of the
angle 8' between the incoxning wave vector and the
positive z axis for ka = 0.5.
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