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A new multiperipheral model with identical clusters is suggested. %e thereby coherently
sum over all crisscross diagrams, which is made possible by our earlier suggested cor-
relation expansion —a rearrangement of the ordinary perturbation expansion. This shows
that there are dynamical correlations already in the simple multiperipheral structure.
Finally, we demonstrate that the first term in this expansion, which is equal to the eikonal
part of our generalized multiperipheral model, describes the bound-state structure and ex-
hibits Regge behavior.

l. INTRODUCTION

In the present paper we suggest a new multi-
peripheral model mhere, because of identical
clusters, all crisscross diagrams are coherently
summed over (Fig. 1). Here we will study only
the elastic amplitude, mhich through unitarity can
then be related to the total cross section and in-
clusive and semi-inclusive particle spectra. In
all eases mhere clusters are identical objects—
where we cannot distinguish individuals —me must
sum over all possible permutations to get the
full amplitude. One naturally asks whether these
crisscross diagrams wil1. be of any importance in
the high-energy limit, where intuitively every-
thing shouM tend to a planar strongly ordered
graph of longitudinal momenta. The ansmer is
yes since the planarity is only justified for each
pa.rt of the diagram where a large momentum
propagates. Since the input energy is always
finite, the number of large-momentum particles
must be finite and small, and the rest of the pro-
duction, because of the limited available energy,
must occur in the pionization region. For these
small intermediate momenta„which constitute the
bulk of the process, planarity and neglect of trans-
verse momenta are not at all justified. The large
and small momenta need to be treated together
(smooth dissociation), since a cutoff would spoil
relativistic invariance and lead to an undesirable
cutoff dependence. Therefore me must crisscross
over all rungs in the ladder, and treat longitudinal
and transverse modes on equal footing for the
whole graph. This technique clea, rly shows that
there are dynamical correlations already in the
simple multiperipheral structure. The result is
given in a correlation expansion, where the first
term is the usual eikonal amplitude which involves
just kinematical correlations. Finally me show
that this eikonal part describes the bound-state

structure in the t channel and that these bound
states lie on the Regge trajectory obtained from
the asymptotic behavior in the s channel.

From a phenomenological point of view the most
interesting qualitative conclusions are no doubt
obtained most easily from the Chew-Pignotti
(CP) multi-Regge-pole type of models. ' ' How-
ever, as argued by Chew and co-workers, ' it is
highly questionable whether one can ever create
self -consistent Reggeized models. They notice
that in the more field-theory-like ABFST (Amati-
Bertocchi-Fubini-Stanghellini-Tonin) models, ' "
on the contrary, one gets output Regge poles, and
they conclude that these latter models are on a
much better theoretical basis. We agree with this
conclusion, but according to our arguments above
we cannot find the motivation to discard criss-
crosses and transverse momenta.

Until nom the multiperipheral configuration has
been used in such a may that the dynamical cor-
relation effects are left to be explained by the
cluster (fireball) spectrum. Before the insertion
of this spectrum the pair correlations are negative
(f,( 0) because of four-momentum conservation,
and if these are also neglected one gets no cor-
relations at all (f, =0). A more consistent treat-
ment of the crisscrossed multiperipheral ladder
provides, as me mill see, dynamical correlations
essentially different from the above kinematical
ones. It mill be very interesting to see hom many
of the positive correlation effects can be accounted
for in the multiperipheral ladder itself, before
insertion of a remnant fireball effect. We will
discuss this competition of the tmo kinds of dy-
namical effects under the unitarity restriction at
the end of this paper. For a later check of this
one should not forget about the possibility of ad-
ditional links in the multiperipheral model —a
certain "dressing" of the crisscross ladder.

We here make a technical study of the general-
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ized infinite ladder (Fig. 1) in a scalar rp'P model.
For simplicity we associate the field y with pions
with mass m and Q with some scalar mm isobar
(because of G parity) with mass p, . The isobar
plays the role of a simplified cluster, which can
later be replaced by some more realistic low-
energy amplitude (Fig. 2) or some effective cluster
"field." We will here just study the elastic am-
plitude to illustrate the technique. This can then
be used to derive single-particle inclusive and
semi-inclusive spectra, total cross section, etc. ,
via unitarity.

II. THE ELASTIC SCATTERING AMPLITUDE

From the above reasoning we conclude that the
dominant contribution to the absorptive part of
the elastic amplitude comes from the generalized
infinite i ladder (Fig. 1). The wavy lines here
represent our naive "clusters. " As usual we
introduce the invariants

propagator of our clusters and I is a product of
pion propagators. The 5 function is eliminated by
integration of the rth momentum, arbitrarily
chosen out of all (n+I) quanta. Inserting

(2.4}

we then get

a, (k„)= 'xe"" '"b, (x)

n+ I
d x~~(x)exp sq. x-z u x

t= I
t vs''

(2.5}

which later will be included in the correlation
expansion. By summation over r and all possible
permutations we get

n+ I

et y eg Pg +Pg' 7

e. =P. -P&2

The (n +1)t h- or der amplitude is defined by

(2.1)

(2.2)

sym r sym

(2.6)

(-ig)'""i„„-(s;i)=
( ),

4+ 1 d4k
x II ), E~(k, )I(2v)4

xO' q, — u, (2.3)

Here hr(k) =i(k' p'+ i@-) ,
' is the usual Feynman

r= I perm

The set of all permutations consists of the four
sets of permutations D, (i =a, k, a', k') for each
separate prong (Fig. 3) and the remaining factor
sets, "which include all possible exchanges of
vertices betmeen different prongs. In Fig. 3 we
have made a schematic picture of what could
happen. As mentioned above, the 5 function is
eliminated via one arbitrarily selected quantum,
say the rth. We then divide the quanta into four
groups (Fig.3), with respect to position relative to
this rth quantum. In Fig. 3 we have also explicitly
written out the number of elements in each per-
mutation set. The propagator product I„ is de-
fined by Feynman rules:

F2
perm

l=r'+ I

(2.7}

mhere the propagators A' now also include the
coupling constant

FIG. 1. The (n + 1)th-order generalized multiperipheral
model. FIG. 2. The low-energy amplitude.
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Perm t = f}f($) t =c((&) s, t=n(t) & =I(&)
s& t t &s, t

+ higher correlations, (2.9)

consisting of one "uncorrelated" term which factor-
izes with respect to all momenta (i.e., can be writ-
ten as a direct product of current elements, each
of which depends on one momentum), plus a second
term which factorizes except for an arbitrary
pair of momenta, which is called pair correlated,
etc. This is proved in the Appendix for the case

(n-r+", }„
«D

(n-r +1)I g -,-,

'E g&8(t) =
pt -PR + 26t p] 'K8(t) + g g(t)

8{&)

&Sui = g ki (2.8)
t = a(&)

and u(b} =1, P(b) =r 1, u(a-) =r+1, P(n) =n+1,
oi(Y)=1, P(b')=r' 1, a(d-}=r'+1, and P(a')=n +l.
Here we put all pions on their mass shell p,'=m'. If
the sign conventions are chosen as in Fig. 1, then
e, =-1, eq=+1, a~i=-1, and e, =+1. However,
the form of (2.8) permits any choice of these con-
ventions. The subindices rf and r2 in (2.7) are
needed to define which quanta are crossing the
rth quantum and which are not. From Fig. 3 it is
clear that r,'+ r,'=r'-1 must apply.

We now apply our previously derived correlation
rearrangement to the above ladder expansion. "
Summing over all possible permutations of quanta
attached to the ith particle leg, the corresponding
product of propagators can be written as

with an excited throughgoing mass so that p,
'

=m'+ 5m, '. The involved currents with 6m&'&0
are defined in the Appendix, and in the special
case with 5m, ' =0 we have for the uncorrelated
currents in (2.9)

S g
2eiPi'ki +ki + f6

and the pair-correlation currents are defined by

i +st
xgi fgf i 1 i

st
x' = 2ks

2e, p; (k, +k, )+k, '+k, '

(2.11}

In passing we notice that the correct triple-cor-
relation current already appears in three attached
quanta as the difference between the full triple
amplitude and the expression (2.9) for o(i) =1 and
P(i) =3. This argument could be applied to an
arbitrary order, defining the correlation ex-
pansion from the ordinary perturbation expansion. "
However, here we assume that the secondaries in
some sense behave like a gas" "with decreasing
correlation effects with increasing order of
correlation. [This corresponds to short-range-
order (SRO) dominance, whereas in general there
is no reason to exclude long-range-order correc-
tions. ] Then, if the model is at all physically
meaningful, this property should also yield the
correlations in (2.9), and we therefore drop all
correlations higher than pair correlations. We
do not here expect that this q' model is a suitable
candidate for strong interactions, but it is the
simplest laboratory model from which we can
learn about more realistic models.

Rewriting all products in (2.7) according to (2.9),
summing over the rest of all permutations (all
possible ways to link the wavy lines together for
I„,„„)in (2.7} we get"

f„, =II viz,'

+Q (X.i~,'~I +~.~i X.'s + X,i Xsi}
s, t=1.
s&t

n

~l~1 ~

J=z
t &s, t

(2.12}

(r —1)fD
b

(r +r, ) ~
1

(r -1)feD . where the total currents are given by

X st Xst
f

(2.13)

I IG. 3. Schematic picture of the permutation sets
relative to the rth quantum, where we explicitly have
written out the number of permutations in each separate
permutation set.

and given similarly for the primed currents. In-
serting (2.5) and (2.12) into the integrand in (2.3)
we can now exploit the factorization and partial
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factorization, respectively, and define form-
invariant functionals irrespective of which individ-
ual quanta are involved.

For the noncorrelated part we define a "scalar"
product

(2.14)

and correspondingly we define a pair-correlation
functional

p(*s, s)=,i* J( ),
'

(
)', e (s. )ss~(s, )e '" *''*

(X d~ ~d+ ~d~ X d+X()d X d) ~

(2.15)

For Eq. (2.3) we then obtain

2

Summation over n from zero to infinity gives

M(s, )= sf(ed'se" '*ss (s)

~fU
x

iU

(2.1V)

where the first term is the usual eikonal result
and the second defines dynamical pair correlations.
In passing we notice that our method does not
depend crucially on a straight-line-path approxi-
mation. It is rather a rearrangement of the
ordinary perturbation expansion. As we can see
from the form of (2.17) the strong coupling con-
stant alone does not determine the strength of the
pair correlation, as in a weak-coupling theory, "
but rather the summed-up factor which multiplies
P in (2.1V). However, if the strength of the cou-
pling is due to anything but a universal, large cou-
pling constant, as is probably the physical situa-
tion, the effect of higher-order correlations might
still be negligible.

III. DISCUSSION

As we have seen, we could write the amplitude
as the sum of a factorizable and a partially factor-
izable form, respectively, without introducing
any gapa or strong ordering of momenta. Further-
more, because of the form invariance of the cor-
relation functionals irrespective of which quanta
were involved, we could sum up infinite orders

in the coupling constant. In this way we obtained
a closed explicit form for the elastic amplitude
(2.17) without neglecting crisscrosses or trans-
verse momenta.

A further positive feature is that in this cor-
relation expansion we can strictly separate kine-
matical (due to four-momentum conservation) and
dynamical correlations. The first term, includ-
ing just kinematical correlations, is the usual
eikonal result and is obtained from the straight-
line-path approximation (= c-number sources).
The dynamical correlations, defined by the rest
of this expansion, thus define the recoil or rather
the quantum dynamical effects predicted by the
model with operator currents instead of c-number
sources. In principle it should therefore now be
possible to discriminate among various models
through correlation experiments. This would not
have been so easy to do with just kinematical
correlations (as in all uncorrelated jet models)
since these effects are always present.

Because of the form of the currents (2.10), due
to the k' terms in the denominator, the corre-
sponding "scalar" product has an effective rela-
tivistically invariant cutoff automatically built
into it. A corresponding infrared damping occurs
also in the pair-correlation currents (2.11).
From the form of (2.11) we further see that it has
an ultraviolet relativistically invariant cutoff
built in. If we include the latter, a similar smooth
"separation" of pair and triple correlations will
also occur, as we saw in Ref. 11. Correspond-
ingly, the triple correlations will be effectively
damped in the ultraviolet range by a built-in cut-
off. For small k momenta the associated wave-
length is long, as in the uncorrelated soft current
(2.10), and it is reasonable to work with strictly
pointlike particles. For larger k momenta we can
resolve more subdetails in the matter, which
would imply a certain dispersion in configuration
space. It might then not be possible to work with
strictly local fields any more; rather, we may
have to work with some effective cluster field or
low-energy amplitude, since these (instability)
effects would probably first appear in the mn-

isobar system corresponding to resonances of
the cluster. " If the isobar system is stable up to
momenta typical for pair effects, then rather than
going to triple-correlation effects we would find
it natural to modify the simple scalar isobar
propagator to a more general low-energy ampli-
tude (Fig. 2) or cluster spectrum. This general
problem involves higher spin, off-shell effects,
and distorted propagators which we are now able
to control through the generalizations in Ref. 17.
However, first it will be highly interesting to
investigate how many of the dynamical correlations
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are present in the simple multiperipheral struc-
ture, i.e., the nonzero P in (2.15). Through
unitarity we can then get the total cross section

g 2 gfAJ XJ

d k16m'~t " k '+

vr(s) = —1m M(s; 0),1 (3.1)

2~ If,(px, ).

and similarly me can obtain the partial cross
section cr„(s). Because of the explicit form of
(2.16), {2.17), by differentiation we can then get
the covariant inclusive spectra for one particle,
tmo particles, etc., and semi-inclusive spectra
as mell. '" The pair correlation, as usual defined

by these inclusive (or semi-inclusive} spectra,

c,{s;k„%,) =p, (s; k, ;%,)-p, (e; k, )p, (s; R,), (3.2)

M(s, t, p')= -2it d'x e "'~'~(e' U-01}

2i t-d'x, x„J,(q~ x, )(e'Uo- 1),

mhere we have used

(3.5)

For high t values, where q, = q, ~, the first term
in (2.17) becomes

describes the correlation effects —of both kine-
matical and dynamical origin —for an arbitrary
two clusters. Before deriving this we could start
with a more complete pair correlation (dynamical)
as given by (2.15), by the addition of all possible
links between this pair. This is discussed in
some more detail in Ref. 17 and will not be gone
into further here. We think that the pure multi-
peripheral dynamic pzr se, as discussed above,
should be carefully investigated first.

This was just a simple example to illustrate
that it is possible to derive a closed expression
for the amplitude without too much loss of quantum-
dynamical and statistical information in the
original model. The information loss in our ap-
proach lies in the neglected higher-order corre-
lations. However, we could also include triple
correlations without too much complication. " A
comparison of these effects with the above-dis-
cussed excitations of the clusters will shorn if this
is necessary. Homever, then me must also con-
sider possible additional links outside the simple
multiperipheral structure and all radiative correc-
tions (self-energies and vacuum corrections) as
well, in order to get the complete correlations.
A compressed presentation of this generalized
multiperipheral model, together mith the results
of Refs. 11 and 17, was given in Ref. 18. Finally
we notice that the eikonal part of the result
possesses Regge behavior and has the correct
bound-state structure. " In the limit s =0 where

P, =P~ and P,.=P~. me have U = U'„where

g2 ~-fk x

Uo=, d k, ~, 6(2p, k)6(2p~" k)-
k -p +26

(3.3)

In the coordinate system where P, =(F-, , 0, O, P)
and p, .=(E... 0, 0, -p) we arrive at

Following the lines of Levy and Sucher" we then
find that the high-s behavior tj.'«~ s ~«t-4m' is
given by the singularity in U, for small x,' values,

U, = — ~ in~px, ~
.

Thus for high s = -q, ~'-by insertion of (3.6) in
(3.5}we get

{3.6}

(3.7)

where a,(t) is given by

We ean also obtain this result in the limit p.--0
for rather modest t values and may therefore
also use it in the bound-state region

ao(t)
[(

&

) ] yl& 0 t 41n (3.9)

Equation (3.7) has poles in t at a,{t)+1= n+1--
or rather a,(t )=n, with n =1, 2, 3. . . . Simulta-
neously we have the asymptotic Regge behavior in

s, and with a,(t)-1= /, where 1=0, 1, 2. . . , we

get precisely the same levels as above. The
bound states in the t channel of the amplitude
(3.7) are lying on the Regge trajectory obtained
from the asymptotic behavior in the s channel.

Naturally the form (3.9) is not a very interesting
Regge trajectory from the point of view of strong
interactions. However, as me have seen, this
trajectory is a direct consequence of the assump-
tion of stable spinless cluster propagators and
vertices. A more realistic case will of course
involve internal exeitations and higher spin effects,
which mill have direct consequences for the form



I EIF MATSSON

of the trajectory function. We will not consider
the general spin-averaged bootstrap case here,
but just notice that with stable spin-1 clusters,
instead of inserting the low-energy amplitude
itself, we get the trajectory function

1 1~ y,'y,', (1+x'„.)

~II ~ ~
~I II2 II2

1 1 1

g' 2t-4m'
Sv [(4m'-t)t] '~' (S.lo)

PI +Ps
y„. (1+x„)

The corresponding nonplanar bootstrap model,
which is more in line with the original idea in the
planar ABFST model, would be an interesting sub-
ject for a subsequent work.

1 1

yiy2 (1+x(2)

The last step in (As) (and similar in higher order)
crucially depends upon the relation

I I
Xt 3I2' ' n &
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APPENDIX

For the sake of generality we will here prove
the form (2.9) in case of an over-all mass ex-
citation for the two throughgoing particles. In
(2.8) this is expressed by insertion of p, '-m, '
= 5M, '. For the ith prong with n attached quanta
the corresponding part of the amplitude is then
given by

which cannot be exploited in the unprimed case
with the definition (A2), (AS) because 5m, ' x 0.
For n=3 we get

1 1

yz»(I+xI2s) „,,~, (r) yiy2

1 1
I I I

y»3
I

X123

y»3(1+x»3)

1

1+xI2

(As)

Here the last term is triple-correlated and we can
then write

1 1I4„—V'
~ ~ ~ ~

'''
~ (Al)

y, + 5m, y„(1+x„)+5m,
perm

%'e have here used the same notations as in Ref.
11:

3
L ~I ~I~!~I ~ ~3 1+&t

+ higher correlations~

~ ~
1 ~ -x'y'

~I2 ~ n =2&tPt '(&I+&2+'' +&.)

+k'+. . +k '
I n

j
x&2 ~ n

—(y» ~ ~ n) 2~ k~ ,.k, .
s&t

(A2)
&'I &2~3

~ ~

3

QI2e ~ on $12~ ~ ~ n n ~t j (A4)

However, in order to carry out the factorization
and partial factorization respectively with 6m, 2 &0 where we have used the relation y3' = yI23 JI2 The

last term in (AQ) is also triple-correlated through
the factor (y,'») '. Iterating this procedure for the
nth-order amplitude we get

XI2' n ~SI2 ~ ~ ~ n ~ 1
" 1A„=I II —,+g, &, Xs3't

xgt
1+ x,',

x 2g k, k, -(s-l)5~'
a&tI

For n = 2 we then easily get

+ higher correlations (A 10)

which proves (2.9) if we put 5m, -'=0 in (A10).
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