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Duality constraints and the baryon spectrum
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It is shown that the exact duality constraints on the baryons, when taken with the baryon
spectrum of the harmonic-oscGlator quark model, allow SU(6)+-symmetric and crossing-
invariant solutions for a wide class of reactions involving the pseudoscalar-meson-baryon
scattering. A simple prescription is given for the construction of these solutions. Implica-
tions of the solutions on the signs of the resonant amplitudes in SU(3) inelastic processes such
as xN nA are deduced and compared with the higher-symmetry predictions.

I. INTRODUCTION

It has been known for some time that duality,
when combined with the SU(3) symmetry and the
absence of exotic particles, leads to exchange de-
generacies among the trajectories in meson-bary-
on scattering amplitudes. ' The patterns of the ex-
change-degenerate trajectories and their coupling
strengths are determined by solving the duality
constraint equations.

The self-consistency of such a scheme has been
a subject of much debate in the past. It was found
quite early ' that the exact duality constraints on
meson-baryon scattering amplitudes imply the ex-
istence of nonsymmetric baryonic states as 70
with L =0 (L is the total quark orbital angular mo-
mentum). Empirical nonexistence of such states
ha~ been considered as a serious difficulty of the
theories. A proposed solution to this difficulty
was the "broken duality" approach "' mhich rejects
the duality constraints coming from the MM - bb

channels. Such a proposal does not seem to re-
ceive good experimental support, however, since
there has been yet no convincing empirical evi-
dence in meson-baryon scattering which favors the
duality constraints coming from the u channels
rather than those arising from the t channels. '

Another outstanding difficulty of the baryon dual
theories has been that concerned with the s, u

crossing properties of the baryon spectrum. '
Since s and u channels are formally the same in
meson-baryon scattering, we have not only to re-
quire forbidding exotic states in all channels but
also to ensure the crossing invariance of the bary-
on spectrum. Until now several attempts" have
been made to accommodate these requirements in-
to constraint solutions; however, as yet no satis-
factory solutions of the baryon exchange degener-
acy seem to exist which fulfil the requirement of
s, u crossing invariance. As mill be made clear in
the following, these points are also intimately re-

lated to the problems of the t-channel vector-ten-
sor couplings into baryon and antibaryon, which
are not determined and left arbitrary in the usual
approach of duality. "

As regards the difficulty of predicting unob-
served states mentioned above, a new type of pos-
sible solution has x ecently been proposed by
Rosner, "who pointed out that the exact duality
constraints on the meson-baryon scattering am-
plitude can be made consistent with the observed
spectrum of the hadrons if me allow the momen-
tum-transfer dependence for the ratios of the resi-
dues of the baryon Regge trajectories. This ob-
servation originates from the work of Mandel-
stam, "who noted the difference in the relative
weights of the symmetric (56} and mixed-symmet-
ric (10) representations in s, f and s, u dual me-
son-baryon amplitudes which come from different
topologies of s, t and s, u duality diagrams. Indeed,
we find the following combinations of the symmet-
ric and the mixed-symmetric representations for
(s, f) and (s, u) dual amplitudes:

(s, f ) = f(L)(15[56],+16[70],),

(s, u) =g (L}(15[56],—8[70],) .

Here f(L) and g(L) denote the L dependence of the
s-channel baryon Regge trajectories in s, t and

s, u dual amplitudes. The sum and difference of
these two terms give the baryon spectrum at L
= even and odd integral values, respectively. Thus
if we allow f(L) gg(L) and assume

f(o):g(o)=1 ~

f(1):g(l)=1:1,

then we can eliminate from our spectrum the un-
observed states 70 L =0 and 56 L =1 and we end up
with the baryon spectrum predicted by the harmon-
ic-oscillator quark model, " "
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L=O L=1 L=2 L=S

70 56, 70 70, 56 (3)
ality constraint equations are given by

P (X„)/, P,'=0 for j=10, 10~, and 27,

This possibility of the harmonic-oscillator spec-
trum providing an acceptable solution to the exact
duality constraints on meson-baryon scattering
was conjectured quite early"; however, interest
in this possibility has only recently been revived
by Ref. 11.

In this note we investigate this possibility in de-
tail a,nd show that in this ca,se there indeed exist
consistent and factorized solutions of the baryon
exchange degeneracy for a wide class of reactions.
In all our solutions the meson and baryon ex-
change-degenerate trajectories appear as U(6)~
multiplets; also, the ratios of their coupling
strengths in each partial-wave amplitude possess
the values prescribed by SU(6}„. All of our solu-
tions fulfil the requirement of the s, M crossing in-
varianee of the baryon spectrum. The crossing
invariance will be realized by making specific
combinations of the quark-spin doublet and quartet
baryon trajectories in the direct channel corre-
sponding to definite W'-spin exchanges in the t
channel. Our solutions include all the reactions
possible with the external mesons and baryons be-
longing to 35 and 56 of SU(6)~ representations. So-
lutions for the processes PB- P'B', PB- P'D',
and PD - P'D' (P, 8, a.nd D denote the pseudosca-
lar-meson octet, baryon octet, a,nd baryon deci-
met, respectively) and those previously obtained
by Hosner" (quark-spin quartets) and by the pres-
ent author" (quark-spin doublets).

We first derive our solutions by directly solving
the duality constraint equations in Secs. II and III,
and then give a simple prescription to obtain these
solutions without recourse to the SU(3) crossing
matrices in Sec. IV. The implications of these so-
lutions on the amplitude signs in SU(3} inelastic
processes are deduced and compared with the
higher-symmetry predictions in Sec. V. Finally,
Sec. VI is devoted to summary and discussions.
Technical details about the way of solving the con-
straint equations are given in the Appendix.

Throughout this paper w'e confine ourselves to
the discussions on meson-baryon scattering and
we do not consider the difficulties of exact duality
associated with baryon-antibaryon scattering.
These problems are out of the scope of the pres-
ent article.

II. SOLUTION FOR PSEUDOSCALAR - MESON—
BARYON SCATTERING

In this section let us consider the ease of the
pseudoscalar-meson-biryon scattering. The du-

and

g(X„,)/, r'P,' =0 for j =10* and 27,

for this process. Here X„and X„, are the s, t a,nd
s, «SU(3) crossing matrices for the case 8+8- 8+8. P,' and v' are the residues and signatures
of the s-channel Regge trajectories, a.nd the sum-
mation i runs over different SU(3) representations.
We shall use the normalization of the octets as

[8r/D', E///~s
= VD'D[888]3

-4v 5 (E a[S.,], +D E[8,.],)
+ 12E 'E[8„],,

56 70

(10, 4) (8, 4)

(8, 2) (10, 2)

(8, 2)

(1, 2)

56 70

(10, 4) {8,4)

(8, 2) {10,2)

(8, 2)

(1, 2)

(3')

As will be shown immediately below, such an ex-
change-degeneracy scheme applying separately to
each quark spin is indispensable to obtain the
crossing-invariant results.

Then, by making use of the SU(3) crossing ma-
trices" and solving the duality constraint equa-
tions for each quark spin, we find the following so-
lutions for the pseudoscalar-meson-baryon scat-
tering. ""Details about the way of obtaining them
are given in the Appendix.

The solution for quark-spin doublets is

(s, t) = f (L)([8„,], + ~[1],

(s, «) = g(&)(l 8„.], —~[1].
-+[8„,].-+[10].) .

(5)

The solution for quark-spin quartets is

where E+D =I''+D' =1 and suffices to the octets
are the E/D values at each vertex. Labels of the
SU(3) states are put into square brackets, and
their coupling strengths outside.

We consider in the following the ca.se of the
quark-doublet and quark-quartet trajectories which
a,re separately exchange-degenerate in the baryon
spectrum of the harmonic-oscillator quark model.
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(s, t) =f(L)(%[10).+~[a „.l, ),
(s 33) =g(L)(r'-[10].—~[s „.l, )

Here f(L) and g(L} are the same as those which

appeared in Etl. (1) and we have chosen the over-
all normalization such that the coefficient of
[83~3], is unity.

Trajectories 8~„(octet with F/D =3) with S
(quark spin) =-,' and 10 with S = 3 are identified as
those belonging to 56, and 1, ~8/3, and 10 with S
=-,', and 8 „,with S =

& belonging to 70. Then, in
the above solutions the relative meights of the 56
and 70 representations differ by a factor -2 in
s, t and s, u terms just as in Etl. (1). Hence by as-
suming Eg. (2) we can eliminate the unobserved
states 1, 85/3 and 10 with S = —,

' and 8 „,with S =
&

at I.= 0 and also the states ~8» mith S=-,' and 10
mith S = ~ at I.=1. Then me are able to obtain the
spectrum of the harmonic-oscillator quark model.

In the above solutions (5) and (6) we have fixed
the relative normalization between the quark-spin
doublets and quartets in such a may that they ful-
fil the requirement of the s, u crossing invariance
of their baryon spectrum.

These points may be illustrated as follows.
Since the exchange of the quark spin —,

' or ~ in the
s channel corresponds to the exchanges of the
quark spin (W spin) 0 and 1 in the t channel, if we

make an appropriate linear combination of the W',

=-,' and 5', =& solutions to single out the 8', =0 or
W', = 1 exchange in the I, channel, then the baryon
spectrum should close under s, u crossing in this
combination. By making use of the SU(2) crossing
matrix me find the following combinations corre-
sponding to definite W spins in the t channel (for
the definitions of the W spin, see Ref. 19):

(w, =o) =--3' Ms(w, =-3') -33 Ms(w, =-'.),

(Wt =1)=-3(W5 =3)+3(W.= 3).

--,' M6(s, u} =g(L)(-~35 [I],+[8„,],
—+[8„3],-~[s „,],
++[10],),

=g (L)(-~[I].+[.8...).
T5 [ 5l3]5 %K [8-I/3)u.~[»l.). (8)

The s, u terms of these equations must cross into
themselves when multiplied by the s, u SU(3) cross-
ing ma, trix. By substituting our solutions (5) and
(6) into Etl. (t) one can check that this is indeed
the case as follows.

(i) W, =0:

(ii} W, =1:

—p(sq tl) =g' (L)(-~5[1 )5 + [83(3)5

-~[s„,], +~[a „,J,

-~[1o].),
=g (L)(+[I].—[8„,).

+ ~[85~3). -3'5 [8- &3).

+ g [»J.) .

Structures of their t-channel couplings are given
by the following expressions (subscripts to the
octet amplitudes in the t-channel denote the cou-
plings into meson-meson channel).

(I) w, =o:

--,' v 6 (s„ t) = f(L)(~[IJ,+[8„,],
+~[a„,], +~5[8 „,J,

~[»J.),
=f(L)(+[1], ~~5[8.,),

++[8..),),
RIll

(ii) W, =1:

-&(s, t) = f(L)(~[I).+ [8.„).
+g[s„,), ——,', [8 „,],
—g [Io).),

=f(L)(~[I],";~5[8..),
+~»[s„],+~5' M5[s,.],
+ 108[8 J

Here the trajectories 1 and 8 with symmetric cou-
plings at the meson-meson vertices are identified
as those belonging to 36 with I. = odd, and the tra-
jectory 8 with antisymmetric couplings as belong-
ing to 36 with L =even. Then Eels. (10) and (11)
correspond to the electric and magnetic couplings
of the vector- and tensor-meson exchanges at the
baryon and antibaryon vertices. Their F/D ratios
are given by F/D =~ and ';, respectively.

Hence, by requiring the crossing invariance of
the baryon spectrum we are at the same time able
to determine the relative strengths of the quark
doublets and quartets in the s channel and the
SU(3) structures of the vector-tensor exchanges
in the t channel. Note that if we had restricted
ourselves to only requiring the absence of exotics
in all channels, the 8', = ~ and & solutions mould
have never been related to each other and hence
their relative strengths or the t-channel couplings
would not have been determined. In these respects,
our approach of duality supplemented by the cross-
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ing invariance has a much stronger predictive
power than the usual approaches.

Next, by making the sum and difference of Eqs.
(5}and (6}, we find that the residues of the baryon
Begge trajectories are given by

Here u, (I,} and v, (I,) are defined by

u. (I ) =-'l.f(f )+ a'(I )),
v. (1-)=+f.f(L)+-'g(f )J,

(14)

~a„= u, (I,},~

belonging to 56
10 = P u, (I.},l

(12)

and characterize the I dependence of the baryon
Begge residues for 56 and 70 multiplets. The
signs + and —refer to even and odd I. values, re-
spectively. They satisfy u (1}=0 and v, (0) = 0.

On the other hand, the residues of the meson
Begge trajectories are given by

1 = ~8' v, (1.), 8~„= -', v, (I,),
belonging to 70.

10 = ~9v, (I,), 8 „,= +v, (I ) I

(13}

8„=1 for W=O,
belonging to 36 J. =even,

~8„=$v 6 for W=1

1=32, 8„=1 for 5'=0,
belonging to 36 I, =odd.

1=+@6, B~„=age for W=l

Here we have normalized 8(W=O, I, =even) =1.
Note that there is no momentum-transfer depen-
dence in the ratios of the residues of the meson
Begge trajectories.

The above solutions (12)-(16)possess striking
consistency with SU(6)~ as follows.

(i) The meson and baryon exchange-degenerate
trajectories appear as U(6}~ multiplets.

(ii) The octet F/D ratio of the baryons at the
pseudoscalar-meson-baryon vertices are predict-
ed to be '-, for quark doublets belonging to 56, ~5 for
quark doublets belonging to 70, and -3 for the
quark quartets of 70. Also, the F/D ratio of the
meson octet at the baryon-antibaryon vertices is
predicted to be ~ for 5'=0 and -', for 8'=1. These
values agree with the SU(6)N, symmetry.

(iii) The ratio of the strengths of the baryons
~8„and 10 belonging to 56 is predicted to be 1:Q
for their couplings into I'B. Also the ratios of 1,
~8/3, 10, and 8 g/3 belonging to 70 are predicted to
be 1:~2. ~ . ~. These values are the one pre-
dicted by the invariance under SU(6)~ [for the
SU(6)~ Clebsch-Gordan coefficients, see Ref. 20].

(iv) The ratios of the mesons 8(W=O), 1(W=1),
and 8(W=1}belonging to 35 are predicted to be
1:+ v 6:$M6 for their couplings into PP-BB
These values are also in accord with SU(6)~.

We find nowhere in our solutions predictions which
disagree with SU(6)~. Such was certainly not the
case in the broken-duality approach. ~' For in-
stance, the F/D ratios of the quark doublets be-
longing to 56 and 70 were both predicted to be
unity, in disagreement with SU(6)~.

Thus we have succeeded in constructing a cross-

ing-invariant and SU(6)~-symmetric theory of the
baryon exchange degeneracy for the pseudoscalar-
meson-baryon scattering with the baryon spec-
trum of the harmonic-oscillator quark model. We
shall show in the following that such solutions ex-
ist also for a wide class of reactions with the ex-
ternal mesons and baryons belonging to 35 and 56
representations. Since the search for the exis-
tence of such baryon duality solutions seems to
have been one of the main theme in the theory of
baryon exchange degeneracy, their successful
construction will provide a considerable step for-
ward in our understanding of the duality constraints
on meson-baryon scattering amplitudes.

From the theoretical point of view, we consider
that our solutions surpass those of the broken-
duality approach in the following respects. They
consist in (i) the impartial treatment of the duality
constraints arising from f and u channels, (ii) the
strong consistency with the higher symmetry pre-
dictions, and (iii) the closure of the baryon spec-
trum under s, u crossing. From the experimental
point of view, our approach has the apparent ad-
vantage of taking over almost all of the empirical
successes of the theories of SU(6)~ or the naive
quark model. At the same time it does not share
the empirically unsuccessful predictions of the ex-
act SU(6}~ on the relations between different rela-
tive orbital angular momenta for a single reso-
nance decay (these points will be explained in Sec.
V). In this way our approach provides a consistent
and empirically successful basis for a baryon
bootstrap where the constituent-quark description
of the hadrons merges quite naturally with the re-
strictions arising from duality.
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III. SOLUTIONS FOR 35+56 35+56

Next let us enumerate our solutions for the pro-
cesses possible with the external mesons and bar-
yons belonging to 35 and 56 representations. In
terms of SU(6)„ the above solution for PB- P'B'
is identified as the one for (8, 3)+(8, 2)- (8, 3)
+(8, 2). Since the duality constraints do not de-
pend on the "magnetic quantum numbers" W„ the
same solution should apply also to I'I3- V, B' and

V,B- V,'B' (V, stands for a transversely polar-
ized vector meson). Then, by making use of the
naive vector-meson dominance we reproduce the
well-known SU(6)~ results on the electromagnetic
couplings of the baryons: tz~/tz„= -z, lz*/tz~
=';v 2, pure Mi transition for B production, the
Moorhouse selection" for the couplings of the 70
S=2 baryons, etc. %e call this the solution for
the process 1 (8, 3) + (8, 2)- (8, 3) + (8, 2) hereafter.

Other solutions are also obtained by making use
of SU(3) crossing matrices and by directly solving
the duality constraint equations like Eq. (4).

Our solutions are enumerated as follows.
(i) Solution for the process L, (8, 3)+(8, 2)

—(8, 3) + (8, 2}.
1

S 2'

(s t) [Sz/z J + ~[1] + 4lz[sz/z] + ~~~ [10]

(iv) Solution for the process 4, (8, 1)+(8, 2)- (8, 1)+(8, 2).
S

(s, t) = [S ), + 24[i], +4[8„,], +12[10],

= 48[1],+ 6 ~5 [8„1,+ 18[8..]„
(s, «) =[a ], —12[i],-2[a„,], -6[1O],

= [8 )„-»[i]„-2[8„,)„-6[»]„.
(v) Solution for the process S, (8, 1}+(8, 2)- (8, 3) +(8, 2).
W

1
S

(s, t) = [8„,„],+ -", [i],+ s [8„, „,],
——'; [io],

=+[1],+ 6[s„l,+ —", ~5[8..l,

+ a Ms [8,.], + —", [a..]„
(s, u)=[sz/3, 8 ~[1),--;[85/3 z/g).

+ -,'[10],
= [s.... i.—~[1].——; I 8„., „,J.

+ ~[10]„.
(vi) SoLution for the process 6, (8, 1)+(8, 2)
(8, 3)+(10,4).

1
2 i

(23)

(24)

(, ) =Is...].- '"lil. —' [8„.). — '. [iol„
3

lVS

(s, t) = @[10],+ @[a „,]„
(s, u) = @[10].-~[8 „1,.

(18)

(s, t) = [8„],- 2[8„,), - -; V 3O [10),
= —v 15 [S,], —3M3[8,]„

(s, u) = [8„],+ [8„,], + -', ~30 [1O],

= —azv 30[10]„+7[8 „,J„.

(25)

(ii) SoLution for the process 2, (8, 3) + (8, 2)
—(8, 3}+(10,4).

W 1
S

(s, t) = [8„,], —~~[8„,], + Tr ~30 [io]„
(s, u) =[8„,], + -', [S„,l, —@~SO[1O]„

W', = 2.'

(s, t ) = —,
' M3 [10],+ ~ ~10[8, ]

(s, u) = —;~3 [10],—'
v 1O [8 „,J, .

(iii) Solution for the process 3, (8, 3)+(10,4)
—(8, 3) + (10, 4).

1
S

(s, t) = [S„,l, + [8„,], + y[10]„
(s, u) =[8„,l, —~[a„,], —V'[10J„

3
S

(s, t)=[10],+ ~z[a, ]

(s, u) =[»1.—~z[8 „,1, .

(20)

(21)

(22}

(viz) Solution for the process /, (8, 3) + (8, 2)
—(8, 1)+(10,4).

W

(s, t)= —;v3O[iO], +[S „,],
= ~is[a, ], +3Ms[s.]„

(s, u) = ~ ~SO [10],—~[8 „,],
= -[S.]„-[8„,]„-a ~SO [10J„.

(26)

(27)

(28)

(vzzz) Solutzon for the process 8 (8 1) + (10 4)
—(8, 1)+(10,4).

3W'
S

(s, t) = [iO], + —,
' [8],

= v 5 [1],+ —, M2[8,], + z /10[8 ],

(, )=[10).--:[8],
= [ioJ„-—,

' [8]„.
(zx) Solution for the process 9, (8, 1)+(10, 4)

—(8, 3)+(10,4).

the same as Eq. (27).
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In the above we have suppressed the overall I.
dependence of the s, t and s, u terms. Crossing-
invariant expressions for the processes 2 and 3
are given by the following equations.

(ii) Solution for the Process 2, (8, 3) +(8, 2)
—(8, 3)+(10,4).

w =I

-3(s, t) =[8„,], —&[8„,], +[8 „,],
-. vr ~30 [10],

= v»~15[8,],+yM3[8.], „

—3(s, u) =[8»q»], + /[a„,], —T~ [8 „,]
+ g ~30 [io],

= -[8...].—4[9„,]..&[8 „.].
—g ~30 [10]„.

(29)

W, =1:

;~10(s, t}=[a„,], +[8„,], +[8 „,].++[10],
=+'W5[1], +~f2 [8,], ++~10[8,], ,

(31)

(s, u) =0.

Note that the solutions for the processes 4, 5, 8,
and 9 are crossing-invariant by themselves and
those for the processes 6 and 7 cross into each
other under s, u interchange.

%e remark on the following points in the above
expressions:

(i) The meson and baryon exchange-degenerate
trajectories appear as U(6}„multiplets. The rela-
tive weights of the 56 and 70 representations in

s, t and s, u terms differ by a factor -2, and hence
they enable us to recover the harmonic-oscillator
spectrum by Eq. (2}.

(ii) The E/D ratios of the octet baryons at the
PB and V, B (V, denotes a longitudinally polarized
vector meson) vertices are predicted to be $ and
~ for quark-doublets belonging to 56, and they are
~ and ~ for quark doublets belonging to 70. The
E/D ratio at the PB vertices is predicted to be
—7 for quark quartets belonging to 70. These val-
ues agree with SU(6)v.

(il'i) Solution for the process 3, (8, 3)+(10,4)
—(8, 3)+(10,4).

W', =0:

MS (s, t) = [8„,], + [8„,], + P[a „,], + q&[10],

=+~5[1],+v~2[8, ], +~»7 ~10[8.]„
(30}

~3(s, u) =[8„,],—,'[a„,l, —;[8„,].+,'[iO],

=[8„,]„-v[8„,]„-v[8 „,]„+~[10]„,

(iii) The octet E/D value of the mesons at the
J38 vertices are predicted to be ~ for S'=0 and ~2

for W= l. These values agree with SU(6)„.
(iv) The ratio of the strengths of the baryons 8

and 10 belonging to 56 is predicted to be 1:Q» and
1:1 for their couplings into PB and PD, respec-
tively. Also, the ratios of the strengths of 1,
8(W=T), 10, and 8(W= j) belonging to 70 are pre
dieted to be 1:Tr

'. +:+~, 0:1:$:$, and 1:v .
~'.0 for their couplings into PB, PD, and V, B,
respectively. These values also agree with SU(6)r.

(v) The residue ratios of the meson trajectories
8(W=O}, 1(W= 1), and 8(W=1) belonging to 35 are
predicted to be 1:—pe: v'v 6 and 0:1:—,

' l3
for their couplings into PP and PV, . Also, the
ratios are predicted to be 1:—$ M3: $ and 1:
—& ~10: 3' M5 for their couplings into BB and DD
These values again agree with SU(6)r.

(vi) The factorization property for the Begge
residues,

[ P(AB -CD}] = P(AB AB)P(CD - CD),

is always satisfied in our solutions. [Note that
there is overall-sign ambiguity in our solutions
for the SU(3)-inelastic processes, 2, 5, 6, 7, and

9. %e have arbitrarily fixed their signs by taking
the coefficients of the trajectories of 56 to be posi-
tive. ]

Hence we have succeeded in constructing a con-
sistent set of crossing invariant and SU(6)r-sym-
metric solutions for all the processes involved in
35+56- 35+56. [Solutions for the processes vlith

the external mesons belonging to (1, 3) of 35 can
automatically be made crossing-invariant and
SU(6)v-symmetric, since there do not occur any
exotic states in these reactions. ]

It is to be noted here, however, that while our
constraint solutions predict the SU(6)r-invariant
vertices for each individual partial-wave amplitude
in meson-baryon scattering, they do not share the
predictions of the exact SU(6}„on the relations be-
tween the amplitudes involving different final-state
relative orbital angular momenta for each reso-
nance deca, y. These distinctions arise whenever a
resonance decay can proceed via more than one
partial waves into its final state. The reason is
that the duality constra, ints apply only separately
to each partial-wave amplitude, hence the relations
between the amplitudes involving different final-
state relative orbital angular momenta are left
arbitrary and do not necessarily obey the con-
straints of the exact SU(6)v.

In these respects our approach shares the same
point of view with the l-broken SU(6)v," "which
uncouples the relations between different orbital
angular momenta while preserving a,ll other rela-
tions as in the exact SU(6)r limit. The distinction



TOHRU EGUC HI

between the exact and broken versions of SU(6)~
will be made clear when we discuss the signs of
the resonant amplitudes in processes such as mN- mb in Sec. V.

IV. PRESCRIPTION FOR THE CONSTRUCTION
OF THE CONSTRAINT SOLUTIONS

Next let us consider a simple prescription for
the construction of the above constraint solutions
(17)-(31). Making use of this rule we can derive
these solutions even without recourse to the SU(3)
crossing matrices. The existence of such a pre-
scription is not at all surprising, because our so-
lutions possess strong consistency with SU(6)~ and

hence they can be derived directly from the con-
straint solutions at the SU(6) level.

Our prescription is as follows: Start from the
constraint solution (1). Choose a particular reac-
tion involved in 35+56- 35+56. Replace the SU(6)I
multiplets in Eq. (1) by the sum of their SU(3)
xSU(2) contents and multiply each of them by the

product of its respective SU(3) scalar factors ap-
propriate for the process. Then, we obtain our
constraint solution for the reaction. Crossing-in-
variant expressions are acquired if we choose a
definite 5' spin in the t channel.

Let us next illustrate this prescription in the
case of the pseudoscalar-meson-baryon scatter-
ing. We start with the constraint solution at the
SU(6) level:

(s, t) = f (L)(15[56],+16[70J,),
= f (L )(14v' 10 [1J, + 8 M6 [35 ],

—i2 Ma[35,],),
(s, u) =g(L)(15[56],—8[70],),

=g (L)(15[56]„—8[70]„).

Next we replace 56 and 70 or I, 35L„and 35~ by
their SU(3) xSU(2) contents multiplied by the prod-
uct of SU(3) scalar factors. " We illustrate this
for the two cases 8', =-', and 8', =0.

(1) w, =-,':
[56], and [70], are replaced as follows.

[56],—!
— — — [8„],+

!

t' 35 56 56 ) ' ( 35 56 56 ) f 35 56 56 ) ([8..]. [8..].)
((8, 3) (8, 2) (8, 2)f, ((8, 3) (8, 2) (8, 2)f, ((8, 3) (8, 2) (8, 2) f,

]i = k[ 2is]
35 56 56 i '

( (8, 3) (a, 2) (8, 2) ).

35 56 70 i' 35 56
[70],- — — — [11,+

(8, 3) (8, 2) (1, 2) i (8, 3) (8, 2)

7O)
(

(8, 2) i.

+
I

((ai3) (ai2) (Si2) ia (si3) (ai2)
([8..1. + [8..].)

(8, 2)

+ [8..],+! — — —
!

[10],=~3[i], + —,', [8„,],+~(ioJ, .35 56 70 ( 35 56 70

(8, 3) (8, 2) (8, 2) j. ( (8 3) (8 2) (10 2) f

Then Eq. (1) turns into

(s, f ) = f(L)(Ir(8.„).+12(1j.+ v(8, .j.+ H 10].)

(&, &) =~(L)(y[8„,], —6[i],—v(8„,], —P[10],) .

These expressions are proportional to E|l. (17).
(ii) W, =0:
[1],, [35 ], , and [35 ], are replaced as follows.

[i],— — — —
I

— — —
!
[1],=-+~15[1]„35 35

(8, 2) (8, 2) (1, 1) f (8, 3) (8, 3) (1, 1) )
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[35,], t
56* 56 35e ) I 35 35 35s i

(8, »r. &(8, » «, »

I' 56' 56
[35„],-

~

( (8, 2) (8, 2)
~~ [8..], = v'M2[8..], .

(8, 3) (8, 3)

Equation (1) changes into

(s, t) = f (L)(-8 v 6 [1],—~30[8 ],- 3 v 6 [8„],),

( 35 56

((~, a) (P, ~)

z 'i(» 56

(yi c) j (, (+' a') (f)', &') (y, c) ]

and its corresponding (s, u) term is given by

(s, u) = —Q/e g(Z, )(- ~[I],+[8„,], —+[8„,],

-+[8 „,], ++[10],).

The above equations hold for both s, t and s, u

crossing matrices and for any values of (a, a),
(P, b), (o. ', a'), (P', 5'), and c."

Our experience tells us the validity of this state-
ment. Its mathematical proof may be in order;
however, we have not yet attempted it.

Then the above equation is indeed proportional to
the crossing-invariant expression (8}.

Readers can easily check that all of our con-
straint solutions (1'I)-(31) can be reconstructed in
this way from a single constraint solution, Eq. (1).

%hen expressed mathematically, our prescrip-
tion is equivalent to the following statement: "If
we have

g [SU(6) crossing matrix]„P' =0

for jc 56, 70 or 1, 35,

then it follows that

g g [SU(3) crossing matrix]s~P'C'„, =0
y

for 51, 8, 10 or 1, 8.

Here the summation with respect to i runs over
different nonexotic SU(6)v representations and the
sum y runs over all the SU(3) contents of the
SU(6)v multiplet f The coe. fficient C&, is the
product of the SU(3) scalar factors

V. AMPLITUDE SIGNS IN INELASTIC PROCESSES

As we have remarked in Sec. III, our constraint
solutions do not predict the SU(6)v invariance for
the vertices when a resonance decay can proceed
via more than one final-state relative orbital an-
gular momentum. In this respect our predictions
are similar to those of the extended version of
SU(6)~ in which the amplitudes involving different
angular momenta for each resonance decay are un-
coupled from the other while all other relations
are preserved as in the exact SU(6)v limit. It is
known that in the case of the pseudoscalar-meson
emission vertices the predictions of this modified
version of SU(6)v are equivalent to those implied
by the transformation between currents and con-
stituents in the free-quark model. ~' '7

Let us next consider the signs of the resonant
amplitudes in PB- P'D' in order to illustrate the
above points. In this reaction the baryon reso-
nances of spin J with I.=J+-,' can decay through
two relative orbital angular momenta I =8+-,' and

~ & into their final states. Each partial-wave
amplitude in the extended version of SU(6)v is
written as

T~''" ~''"-yaz~'"'a~''„~22 [products of SU(3), SU(2) scalar fact'ors],

T "" ''"-+(-I) "'a '"'a~''" [products of SU(3), SU(2) scalar factors].

Here T ~
' ' denotes the resonant amplitude of spin

t with the initial and final orbital angular momenta
l and l', respectively. The coefficients a~ are the

reduced SU(6)v matrix elements and are taken to
be universal for the couplings within a given multi-
plet The I, =.0 constraint of the exact SU(6)v im-
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plies a specific relation between a~ and al. . Factors put into parentheses in the above equations
are the abbreviated form of the expression

(
35 56

(8, 3) (10, 4)

66 B &88
(a, a)) (I D If) (; (8, 3) (8, 2) (~, ,),. k» &I , .i.

where It and (a, a) label the SU(6)~ and SU(3)
xSU(2) classifications of the resonance and the
sum over I corresponds to d and f coupling when

a is an octet.
On the other hand, the resonance couplings in

our constraint solutions are predicted to be

T~ -+(n. (I ), t. (I ))

[products of SU(3), SU(2) scalar factors].

(33)

Here the + sign in front of the equation signifies
the overall-sign ambiguity of our constraint solu-
tions for SU(3) inelastic processes. Note that with

only the factorization condition

[ T ~
' '(AB- CD)] = T ~(AB- AB)T ~ (CD- CD)

we cannot rule out the functions like (-1) u, (I.) in
the above equation. These functions are, however,
rejected because of their nonanalytic L dependence.

Then, by comparing the above expression with

Eq. (32), one finds that the duality constraints on
the amplitude signs in PB- P'D' imply a definite
sign, irrespective of I, for each product of two
reduced matrix elements a~ and a~ . This is be-
cause the functions u, (I.) and v, (I ) are required
to be positive-semidefinite for I- & 0 and hence
each product a~ a~ is also predicted to have a def-
inite sign for I ~ 0 (positive-semidefiniteness of
u, (I,) and v, (l, ) is necessary in order to avoid the
negative-norm states in elastic processes).

From the viewpoint of the algebraic structure
of the pseudoscalar-meson emission vertices, our
predictions imply that one of their two components,
I., =0 or I., = I, is always dominating the other in
the pseudoscalar-mesonic transitions of the bary-
ons. Therefore, in these respects, we find a
stronger predictive power of our approach than of
the broken SU(6)v schemes.

Headers may easily convince themselves that
the same situations as above also occur in all oth-
er reactions involved in 35+56-35+56. Each
product of two reduced matrix elements is re-
quired to have a definite sign in order to fulfil the
duality restrictions.

The experimental knowledge needed to test these
predictions is as yet quite scant; however, there
exist some preliminary analyses of the amplitude
signs in vN- vb. (Hefs. 28-30) deduced from the

recent phase-shift data. "'3' According to these,
the present solutions of ~N- m~ phase-shift analy-
sis contradict our theoretical expectations, and
are either in gross disagreement with the predic-
tions of the broken SU(6)~ (solution A) or in ac-
cord with them only with the dominance of I,=1
for 70 I.= 1 and I,, = 0 for 66 I.= 2 (solution B) (1
thank J. L. Hosner for communicating with me on
this point). Hence if these are the only solutions
of ~N- n4 phase-shift analysis, they will raise a
serious difficulty for our theories. However, the
experimental situations do not yet seem to be
rigid enough at present to allow drawing definite
conclusions on the success or failure of duality or
the ideas associated with SU(6)~.

VI. SUMMARY AND CONCLUSIONS

In this note we have shown that the exact duality
constraints on the baryons, when taken with the
baryon spectrum of the harmonic-oscillator quark
model, allow SU(6)~-symmetric and crossing-in-
variant solutions for a wide class of reactions. In
our approach the classifications of the hadrons are
the same as in the harmonic oscillator quark mod-
el, and the predictions of their interactions are
equivalent to those of a specifically broken version
of SU(6)v.

This strong consistency of constraint solutions
with the higher symmetry predictions has not been
known in the broken-duality approach. In the fore-
going sections, the mesons and baryons emerged
to behave as if they were made up of quarts and
antiquarks with spin —,

' when our constraint solu-
tions were solved. These quarks should obey the
para-Fermi statistics of rank three to fit in the
harmonic -oscillator spectrum.

These phenomena seem to be the most intriguing
aspect of our approach and are of great theoretical
interest. A fascinating possibility is put forward
by them of unifying the duality-bootstrap approach
with the quark description of hadrons to form a
consistent and complementary picture of strong
interactions. Such a possibility has recently been
advocated by Qell-Mann" in conjection with the
distinctions of quarks. In such a view the nonex-
oticity assumption of duality corresponds to the
approximation of the classification of the hadrons
under U(6) xU(6) xO(3) generated by the charges
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of the constituent quarks and the rough symmetry
under U(6}„xO(2}~ . We have seen in the previ-
ous sections that such was indeed the case in all
our solutions for the reactions involved in 35+56
—35+ 56. Situations on the meson trajectories in
meson-meson scattering 35+35- 35+35 are exact-
ly similar, though we have not worked these out
explicitly in the text.

Another interesting result in this article con-
sists in the assurance of the s, u crossing invari-
ance of the baryon spectrum. These crossing-in-
variance requirements have hitherto been a for-
midable difficulty standing in the way of a consis-
tent theory of baryon exchange degeneracy. In
this note we have overcome this difficulty by con-
structing constraint solutions in accord with

SU(6)~ symmetry and making appropriate combi-
nations of the 8'=-,' and & solutions in the s channel
to single out a definite W-spin exchange in the t

channel. In these contexts the concept of quark's
intrinsic spin plays an essential role, and but for
it the formulation of crossing invariance would

have hardly been possible. These points seem to
choose SU(6)~ as a relevant symmetry for duality
ar guments.

After all, we feel that we have made a step for-
ward in our understanding of the duality con-
straints on meson-baryon scattering amplitudes,
and the theory of baryon exchange degeneracy has

begun to take a good shape. An attractive picture
seems to be emerging in which the duality-boot-
strap type of approach merges quite naturally with
the constituent-quark characterization of the had-
rons.

Note added in Proof. A simple mathematical
proof of the prescription of Sec. IV has been found
and described in Bef. 34.
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APPENDIX: DERIVATION OF THE SOLUTION (5)

We assume the following exchange-degeneracy
pattern;

(1 + Bpgo + Brio + 10) (1 + Brio + 10) ~

where the octets are discriminated by their signa-
tures and F/D ratios. If we assign the above tra-
jectories the strengths c„.. . , c„respectively,
duality constraint equations take the following
form:

—,
' (c, + c,) —$[D'c, + D "(c,+ c,)] + g(c, + c,) = 0,

-', (c, +c,) + ~[D'c, + D' '(c, +c,)] —4[F'c, +F"(c,+c,)] —+(c,+c,) =0,
——,'(c, —c,) + —,'[D'c, + D "(c,—c,)] —8[DFc, + O'F'(c, —c,)1+7(c,—c,) =0,

—,
' (c, —c,) + g[D'c, + D "(c,—c,)] + 4[F 'c, +F"(c,—c,)] ++(c, —c,) = 0.

These equations allow the solution

54
1 25 c2 = 1 y

= 3 162 12
C4 '222' 5 'YS ~ 6 Y5~ 7 W5

The (s, t) and (s, u) terms are given by

(s, t) =c,[8,&,], + (c, +c,)[1],+(c, +c,)[8„,],+(c, +c,)[10],,

=[8...1.+~[11.+ "[8„.1, + "[»]..
(s, u) = c,[8 I,], + (c, —c,)[1] + (c, —c,)[8 „],+ (c, —c,)[10]„

= [8„,1, —- [11,— [8„,], — [10],.

The derivation of Eq. (6) is similar.
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