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Deduction of asymptotic Steinmann relations from the Regge hypothesis
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The analytic structure of the double-Regge vertex, which has previously been obtained from the
Steinmann relation, is derived by using a natural generalization of the Regge hypothesis.

I. INTRODUCTION

The general requirements of Steinmann' on the
discontinuities of many-particle scattering ampli-
tudes have been recently applied to asymptotic
Regge terms. This has resuLted in restrictions on,

the analytic structure of such Regge terms. ' We
suggest here that a very natural extension of the
basic Regge hypothesis itself makes the Steinmann
structure for Regge terms mandatory. This ex-
tension of the Regge hypothesis assumes a Leh-
mann-type neighborhood of analyticity for general
group-theory angles. This same assumption has
already been applied elsewhere to derive proper-
ties of the asymptotic six-point function. ' How-
ever, its relation to the Steinmann question has
not been explored before.

The point of view which we adopt in this paper is
that the group-theory variables, rather than the
invariant variables, are the fundamental ones for
expressing Regge asymptotic behavior. As we
show, this approach can lead to the appearance of
several terms in a given Regge asymptotic limit.
The principle by which we include these distinct
terms is important and needs some explanation.

A key feature of our procedure is the introduc-
tion of extra group-theory variables so that the
number of such variables exceeds the actual num-
ber of invariant variables. The extra group-theory
variables specify how one of the Lorentz frames in
the problem is chosen. This arbitrariness in the
selection of the Lorentz frame we refer to as a
"gauge" freedom. Since the scattering amplitude,
which is a Lorentz invariant, cannot depend upon
how this particular Lorentz frame was picked, a
change in the group variables resulting from a
change of frame (called a "gauge transformation" )
must leave the amplitude invariant. This invari-
ance of the amplitude under a gauge transforma-
tion of the group variables shows that the ampli-
tude is not an independent function of the extra
group variables. It also shows that the use of dif-
ferent values of the group variables —which are
connected by a gauge transformation —must lead

to the same value (in our case, asymptotic limit)
for the amplitude.

Our basic assumption is that the Regge asymp-
totic limit may be taken in the group variables in

any way that leads to the desired limit for the in-
variant variables and that Lehmann-type analy-
ticity exists in this limit in the group-theory an-
gles. Thus a gauge transformation on the group-
theory variables in the Regge asymptotic limit
gives an equivalent description of the limit with the
same analytic properties and with nothing new added.

However, in certain special limits, we show that
the same limit in the invariant variables can be
achieved by different group-theory variables uhick
are not related by a gauge transformation. The
absence of a gauge transformation relating the
variables in these special limits is underscored
by the different analytic properties of the ampli-
tude when approaching such limits. Since we re-
gard the group variables as fundamental, we must
take each of the distinct (i.e., unrelated by a gauge
transformation) ways of approaching the limit as
valid and, hence, include each term in the asymp-
totic behavior. Thus we find within the group-
theory discussion a natural principle for adding,
in some cases, several Regge terms in the asymp-
totic limit. In the problem we consider, this set
of terms is just that required by the Steinmann
relations.

The ability to regard Steinmann relations as
contained within the basic Regge structure may
have useful advantages. Our results illustrate
once again how tidily the assumption of Regge
behavior meshes with certain over-all conditions
that scattering amplitudes must obey. In this
connection we point out how a potential conflict
between Regge behavior and the Steinmann rela-
tions is avoided in one case by the special kine-
matic character of the Regge limit.

We consider here the five-point function in the
double-Regge limit; however, the approach can
undoubtedly be applied more generally. The sub-
ject of signature, which seems to be a separate
issue altogether, is not introduced.
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II. REVIEW OF DOUBLE-REGGE LIMIT

In this section we present a brief review of the
standard treatment of the double-Regge limit for
the scattering amplitude of five physical spinless
particles. In the next section we will consider the
double-Regge limit in the case where one of the
particle's momentum is spacelike; the standard
treatment can be used for that case with only
minor modifications.

Multi-Regge limits of scattering amplitudes are
most naturally derived when the amplitudes are
expressed in terms of the squares of momentum
transfers and group variables. 4 The group vari-
ables express the dependence of the amplitude
upon transformations between body-fixed Lorentz
frames, i.e., frames in which subsets of the ex-
ternal momenta and momentum transfers have
specified values which are functions of the exter-
nal masses and momentum transfers in the subset. 4

Multi-Regge limits give asymptotic expressions
for the amplitude when several transformations
between the body-fixed frames are large.

Ne consider the reaction P, + P, —P, + P, + P,
(see Fig. 1). We define the usual invariant vari-
ables

s = (P, +P2)2,

t2 =(P, —P4),

s, =(P, +P,)',

s2 =(P~+P,)~.

(2.1)

%e also define the following four body-fixed
frames:

Frame I. The four-momentum transfer Qg Py

P3 has a positive ~ component; the other com-
ponents of Q, vanish. The x and y components of
P, are zero.

Frame II. Q, has only a positive & component.
The x and y components of P, vanish.

Frame III. This is the frame in which Q, =-P,
—P, has only a positive z compon, ent and which is
related to frame II by a boost in the s direction.
The boost parameter is entirely determined by t „

and m5 -=P~ .
Frame IV. The momentum transfer Q, =-P, —P4

has only a positive z component. The s and y com-
ponents of P, vanish.

We note that each of frames I, II, and IV are
defined only up to an arbitrary @ rotation. This
fact enables us to express the amplitude, which

FIG. 1. Double-Hegge dna, gram.

is a function of five independent variables, as a
"gauge-invariant"" function of a larger number
of variables.

The transformation which takes one from frame
I to frame II must be an element of the group
O(2, 1), the little group of the vector Q, . We de-
note this O(2, 1) element by g, . Similarly, the
transformation from frame IV to frame III must
be an O(2, 1) element of the little group of Q,
which we will denote by g, . The little group ele-
ments can be parameterized by

g, =R,(g&)B,(gg)R, (kr) (i= 1, 2), (2.2)

T ~ P (t )P (t )(cosh) )"&i'&'(cosh( )
-+ oo

x F(t„t„~). (2 &)

In this expression P, and P, are the standard Regge
residue functions for each end of the diagram in

Fig. 1 and I' describes the double-Regge vertex at

where 8, denotes a rotation about the ~ axis and
B„denotes a boost along the x axis.

The amplitude can be expressed as a function of
t „ t „g„and g, . The gauge invariance of the
amplitude alluded to above can now be easily
understood. A redefinition of frame II by an arbi-
trary angle g leaves the value of the amplitude un-
changed but transforms the variables P,- into P, +X.
This freedom of gauge implies that we can set

or |It2 but not both, equal to an arbitrary
value. Alternatively, the gauge freedom in this
case implies that the amplitude depends upon (It),

and Q, only in the combination & =- (II, —p, . Sim-
ilar reasoning implies that the amplitude cannot
depend upon g, or .g„assuming the external par-
ticles are spinless.

The double-Regge region is obtained by allowing

(, and g, to become asymptotic, while the other
variables are held fixed. Assuming that the lead-
ing singularities in the angular momentum plane
are poles, the leading term of the five-point ampli-
tude in this region is given by
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the center.
Equation (2.3) can be cast in a more familiar

form by expressing it in terms of t„ t„s„s2,
and x=—s,s~/s. To do this we note the following
asymptotic relations between. these variables and

the group-theoretical variables':

coshq = (m, ' —i, —t,)/[2(-t, )'"(-t,P"] (2.5)

a(a, h, c) = a'+ h'+ c' —2ab —2ac —2bc . (2 6)

In the physical region the several ~ functions ap-
pearing in (2.4) are ail positive. Equation (2.3)
now becomes

i3,(t, )P.(~,)( &,) "-"'( &,) "-"'V(i„~„&),
8g82

K fixed

(2.7)

where we have absorbed some t-dependent factors
into the definition of the double-Regge vertex
V(t„ t„x). Henceforth, we will refer to V(t„ t„~)
as given by (2.7) as the double-Regge vertex.

III. DERIVATION OF STEINMANN RELATIONS

In this section, we show that a natural extension
of the Regge hypothesis implies the Steinmann ana-
lytic structure' for the five-line amplitude in the
double-Regge limit. %'e shall assume that the
double-Regge vertex in Eq. (2.7) can only possess
singularities at & = 0 and a =~.' If this were not the
case the double-Regge limit would contain, spurious
asymptotic singularities (e.g. , there would be sin-
gularities in s whose location would depend upon

s, and s,).
The Steinmann relation' prohibits simultaneous

discontinuities in overlapping channel invariants
in the physical region; this implies that the double-
Regge vertex can be written in the form'

V(t „t„z)=x &i'&~ V, (t „, t„g)

+x ~2i'2'V (i t K) (3 i)

where V, and V2 are entire functions of a. Now 1;

s, - A."'(t„t „m,')A."'(t„m,', m, ') cosh(„/(-2t, ),

s, -X"'(t „, t „m,')X'"(t„m,', m, ') cosh), /(-2t, ,),
(2 4)

K-&(t ~, t2, m~2)/[2(-i )~ 2(-t )~~2 (coshq- coscu)],

where

in the double-Regge limit becomes"

T~ p, p2
— (s2) V, (t„ t2, g)

S~ e82 2

K fixed R2
+ (s,) & — V, (t „t „x)

8~

(3.2)

The required Steinmann structure is apparent from
(3.2); for example, the first term has a discontin-
uity in &, but none in s, if V, is an entire function
of ~. The essential feature of the Steinmann con-
dition on the double-Regge vertex expressed in Eq.
(3.i) is that it gives the singularity structure of
Vat x equal to zero. We now show that this sin-
gularity structure follows naturally from an ex-
tension of the Regge hypothesis. Qur assumption
is that the amplitude, and specifically the asymp-
totic form of the amplitude is an analytic function
of the group-theory angles in a region which in-
cludes the physical region. We also assume that
a term must be included in the asymptotic behavior
for each of the distinct (i.e., unrelated by any
gauge transformation) ways of approaching the
asymptotic limit by means of group variables.
This assumption seems to be a natural generaliza-
tion of the analyticity of the elastic scattering amp-
litude in the I ehmann ellipse.

Reference to Eq. (2.4) shows that the neighbor-
hood of ~ equal to zero is not in the physical re-
gion for the scattering of physical particles.
Therefore, in order to apply our assumption we
will consider the case in which particle 5 has a
variable mass and analytically continue in the
mass; direct physical meaning can be assigned to
such considerations by realizing that a five-line
amplitude, in which one particle has a variable
mass, is a factor of the residue at a Regge pole
in the six-line amplitude.

Specifically, we consider the five-particle
scattering amplitude in the region of m, ' for which
h(t „t „m,') & 0.' The Regge analysis for this case
is very similar to that of physical particle scatter-
ing. We mention only the modifications.

In frame II Q, has only a positive ~ component
and only the x and a components of P, are non-

vanishing. Frame III is the frame in which Q, has
only a positive ~ component and which is related
to frame II by a rotation about the y axis. Frame
II is now defined only up to an arbitrary y boost.
A redefinition of frame II corresponding to a boost
B,(q) leads to a complicated gauge transformation
of the variables. We may use the gauge freedom
to set either @, or Q, but not both equal to zero
(or x).' The rest of the analysis in terms of the

group variables proceeds as in Sec. II. The final
result for the asymptotic behavior of the ampli-
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tude in the gauge P, =0 is given by

T, ~ P, (t,)g(t, )(cosh), ) ' "'(cosh/, ) "2 '2'
g~, pa~on

&&E(t„t 2, Q2; m 2) . (3.3}

According to our assumption I is an analytic func-

tion of (It), in a region which includes the real line
from 0 to 2m.

Ne can express this result in terms of the vari-
ables I, » t„s» s„and ~ by using the following
asymptotic relationships between these variables
and the group-theoretical variables:

s, -g"(t„m,', m, ')[-z(t„t„m, ') ]~' sinh(, /(-2t, ),

s, - p, '~'(t„m, ', m, ')[ x(-t„ t„m,')]~' sinh4 cosp, /(-2t, ),

((- A(t-„ t„m,') cosQ, /[2(-t, )~'(-t, )'~'(i —cosp, cos8)],

(3.4)

where

~i+4 ™s'
2( t )'~2( t )&2 (3.5)

despite the fact that they both map into the sa.me
limit in the invariant variables. The easiest way
to understand this remarkable kinematic fact is
to parameterize the little-group elements by

We note that by letting $, -+~, $, -+~, and taking
the limit

a
2 (sinht', )

~ (3.6)

we can reach the Begge region s, —,s,-, K-0
as a physical Regge limit. Using (3.4} in the limit
(3.6) we can write Eq. (3.3) in the form

T p ($ )p ($ )( s }ay(ty)( $. )n2((2) g ~((2)

x y, (t„t„»;m, '), (3.7)

where V,(t„t„((;m, ') is analytic in the neighbor-
hood of z equal to zero.

It is clear that there is another contribgtion to
the limit s, - ~, s, - ~, and g -0 which is identical
to Eq. (3.7), with the indices l and 2 interchanged;
this term comes from the limit g, —
p, --', v -b/(sinht', }~ in the gauge p, =0. This con-
tribution must be regarded as distinct from the
first term because the limit p, --,'m in the gauge
p, =0 and the limit p, --,'m in the gauge p, =0 can-
not be connected by any gauge transformation,

g; = &,(7;}f}.(n; +„(x(}~

The gauge-invariance principle can be expressed
by the statement that the amplitude can depend
upon X, and y, only in the combination 5 =y, —X,.
The limit (3.6) in terms of the new parameteriza-
tion is given by q, -+~, g, -+~, 5-+~, whereas
the limit corresponding to the second term is given
by g, -+~; g, —+~, 5--~. Since no gauge trans-
formation will change 5, these are obviously dis-
tinct limits. According to our approach each of
the two above contributions must be included addi-
tively. '

The fact that two different Regge terms can con-
tribute to the same region in the invariant variables
has been exploited previously by Jones, Low, and
Young' and by Abarbanel and Schwimmer' in con-
nection with the asymptotic behavior of the six-
line amplitude.

To summarize, for the case in which A.(t„&„m,')
&0 the asymptotic behavior of the amplitude in the
limit s» s, - ~ with the other variables fixed is
given by

(3.8)

where V, and V, are entire functions of g. The
term in brackets in Eq. (3.8) can be identified
with the double-Regge vertex defined by Eq. (2.V).
This result can now be analytically continued in

m, ' to points which correspond to physical particle
masses. Since the singularity structure in g is in-
dependent of m, ' over a range of m, ', this singular-
ity structure must be independent of m, ' for all
m, '. %'e thus obtain the analyticity structure of

the double-Regge vertex which has previously been
derived by using the Steinmann relations.

IV. DISCUSSION

Vie have shown that analyticity in group-theory
angles leads to a structure for the double-Regge
limit which has heretofore been deduced only by
employing the Steinmann relations. %'e would like
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here to make more precise the analogy with Leh-
mann-type analyticity. The general double O(2, 1)
expansion for T, may be written'

T,(t1» t2» $1» $2» 4') — Q e Tsrn(t»» t2» t'1» $2)»

(4 1)

5m 1 5' I&
4')

Om ~I) mO (4.2)

Our requirement of analyticity in group angles
assumes that the series expansion (4.1) exists in
some neighborhood of the region 0 «(II) «2m. Alter-
natively, one may regard Eq. (4.1) as a Laurent
expansion in the variable z = e'~ In terms of z,
the analyticity assumption is that T, be analytic
in a small annulus about ~z

~

=1. This is analogous
to the Lehmann-ellipse analyticity of the Legendre
series expansion in terms of the P, (z). By con-
trast the expansion in terms of variables E, and $,
in Eq. (4.2) is not a series expansion but a con-
tinuous sum over l, and l, ; this expansion exists
even in the presence of singularities in the sub-
energies and can be made the basis for an asymp-

totic series which is, of course, not convergent.
%e now turn to a discussion of the functions V,

and V, of Eg. (2.1). As mentioned in Sec. III, V,
and V, must be entire functions of g. Thus either
V, and V, are independent of z or they are singular
at g = ~. As discussed by DeTar and %eis' V, and

V, cannot be constant if there are particles lying
on the trajectories e, and a, with spin greater
than zero. Thus presumably V, and V, have essen-
tial singularities at g = ~, since values of t, and t,
exist with a, and e, equal to integers of arbitrary
size. This could lead to an inconsistency with

Regge behavior if it were possible to reach g = ~
in the double-Regge limit in the same manner in
which the q= 0 limit was achieved in Sec. III. The
inconsistency would arise because a Regge expan-
sion in the physical region of the type we are con-
sidering in Sec. III must always yield an asymp-
totic power behavior in g. However, an essential
singularity can never be so represented. A sys-
tematic study of all limits that can be reached
using the techniques of Sec. III reveals that the
z = ~ limit can never be achieved in this way; thus
the inconsistency is avoided.
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