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The notion of allomorphic corrections to S-matrix elements for semileptonic processes, which
by definition are absent in the lowest nontrivial order of perturbation theory, is introduced
and analyzed. The complete fourth-order allomorphic corrections to the leptonic weak currents
are calculated in an arbitrary gauge model of weak and electromagnetic interactions, treating
the strong interactions (assumed mediated purely by gauge vector gluons) to all orders. These
results are used to analyze the induced leptonic pseudoscalar current in charged-pion decay,
and it is shown that weak restrictions on particle masses suffice to preserve the V-A structure
at the leptonic vertex to O{aG+). A preliminary discussion of the allomorphic corrections
to hadronic weak currents is presented in the context of neutral-kaon decay (E~ —p, p'). lt
is shown that in theories in which the kaon field dimensionality is two or less, the usual sup-
pression mechanisms involving charmed quarks probably do not suffice to remove induced
neutral, strangeness-changing currents in 0(eG+).

INTRODUCTION

The structure of the higher-order corrections
to weak-interaction processes in perturbation
theory has been a long-standing problem of par-
ticle physics. The difficulties associated with the
study of such corrections in previous weak-inter-
action theories (e.g., the Fermi theory, or the
intermediate-vector -boson theory) arose directly
from the nonrenormalizable structure of the under-
lying field theory, so that no sensible, unambig-
uous treatment of the plethora of infinities arising
in higher order was possible. However, with the
discovery of spontaneously broken unified gauge
theories of weak and electromagnetic processes, '
and the subsequent proof of renormalizability of
such theories, ' a systematic attack on the problem
of higher-order corrections has become possible.

In this regard, the study of higher-order correc-
tions to semileptonic processes seems most
fruitful at the present time. From an experimental
point of view, such processes offer a phenomeno-
logical variety which we do not find in the purely
leptonic processes. From a theoretical point of
view, semileptonic processes are considerably
simpler than the purely hadronic ones, primarily
for two reasons. First, in the semileptonic case,
we at least understand fully the structure of the
"leptonic end" of the diagrams, at which strong
corrections are absent. Second, in purely had-
ronic processes studied to fourth order, the prop-
agators of the weakly interacting bosons (gauge
particles, Higgs scalars) can appear both in the
same or in two separate independent loops, where-
as in semileptonic processes the fourth-order cor-

rections involve at most one loop.
There is by now a considerable literature on the

subject of unified gauge models, ' and in many
works the question of higher-order corrections to
semileptonic processes has come under scrutiny.
However, a study of these corrections in the con-
text of an arbitrary renormalizable gauge model,
and treating the strong interactions nonperturba-
tively using the tools of current algebra and the
Wilson operator -product expansion, ' remains to
be done. As Weinberg has shown, ' such a general
attack may be very useful not only in deriving gen-
eral formulas applicable to arbitrary gauge the-
ories of weak and electromagnetic interactions,
but also in deducing general constraints on the
strong-interaction field theory from such phenom-
enological information as the absence of O(n) vio-
lations of parity and strangeness in the strong in-
teractions.

In this paper we begin the model-independent
study of fourth-order corrections to semileptonic
processes. The "allomorphic" fourth-order cor-
rections to the leptonic weak currents are derived
and shown to be gauge-independent, unitary, and
finite. By "allomorphic" we mean, roughly speak-
ing (see below, Sec. I), those corrections which
cannot be absorbed into a renormalization of the
zeroth-order parameters of the theory. Our re-
sults are applied to a study of charged-pion de-
cay, and in this context it is shown that with only
fairly weak restrictions on the particle masses,
which in turn depend only slightly on the detailed
structure of the strong interactions, dangerous
pseudoscalar contributions to the leptonic cur-
rents are in fact absent to O(o. Gr) in general gauge
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models. We also present a preliminary (and in-
complete) discussion of the allomorphic correc-
tions to the hadronic weak currents, in the context
of neutral-kaon decay. %'ork on the general struc-
ture of the hadronic end allomorphic corrections
is in progress.

The order of presentation is as follows. In Sec.
I, me define the aJ.lomorphie corrections to lep-
tonic weak currents. In Sec. II the fourth-order
contribution to these corrections arising from the
tree diagrams (simple vector or Higgs-scalar ex-
change) are extracted. Section IH contains a dis-
cussion of the one-loop diagrams involving two-
boson exchange between the leptonie and hadronic
ends of the diagram ('box" diagrams). The allo-
morphic corrections involving hadronic matrix
elements of the product of two (hadronic) currents
a,re shown to be separately gauge-independent,
unitary, and finite. In Sec. IV, the allomorphic
corrections contained in vertex corrections at the
leptonic end are extracted. In Sec. V, the contri-
butions exhibited in Secs. II-IV are combined and
all gauge-dependent terms, zero-mass Goldstone
poles, and infinities are shown to cancel from the
allomorphic contributions. Section VI summarizes
the results of the preceding and provides a simple
prescription for obtaining the correct answer. In
Sec. VII, we apply our results to a discussion of
charged-pion decay in general gauge theories.
Section VIII contains a preliminary discussion of
the other types of allomorphic corrections to
semileptonic processes, mith particular emphasis
on the absence of neutral, strangeness-changing
to O(nGr) in the context of kaon decay. A summary
of our methods and results is presented in Section
IX. Finally, some useful auxiliary material is re-
1.egated to Appendixes A-C.

I. ALLOMORPHIC CORRECTIONS
TO LEPTONIC PEAK CURRENTS

In the following, we shall be concerned with the
calculation, to fourth order in the coupling con-
stant of the weak and electromagnetic interac-
tions, of a certain class of contributions to arbi-
trary semileptonic processes. By the latter, we

mean all processes involving a single lepton line,
and arbitrary incoming and outgoing hadrons. As
far as the weak and electromagnetic interactions
are concerned, the calculation will involve a com-
pletely general renormalizable, gauge-invar iant
Lagrangian containing fermions, Higgs scalars,
and vector gauge mesons. %e will assume, tem-
porarily, that the strong interactions are mediated
by vector gluons' and that there are no elementary
hadronic scalar fields. The consequences of re-
laxing this last assumption will be discussed in
Secs. VII and VIII.

Consider the structure of the matrix element
appearing between the lepton spinors in a general
contribution. In the tree approximation, this ma-
trix is a linear combination of Vukama coupling
matrices (see Appendix A) F,. and the fermion-
gauge meson bare vertices &&y" t„. In higher or-
der, me expect contributions of this type to re-
ceive infinite contributions arising from coupling-
constant renormal. izations in the I" s and t 's.
Calculation of such higher -order contributions
would require a detailed, and complica. ted, re-
normalization program. Also, since such contri-
butions mould usually be masked by the appearance
of similar terms in lomest order, the results
would be of limited physical interest.

On the other hand, higher-order contributions
to semileptonic processes involving corrections
to the leptonic vertices which cannot be written as
a linear combination of F; and &„,y" t are interest-
ing both physically and from a technical point of
view. Such contributions will henceforth be
termed "allomorphic" (with the implicit under-
standing, until Sec. VIII, that we are referring to
the leptonie end). They are analogous to the
higher-order corrections to natural zeroth-order
mass relations which have been much discussed
in the literature'-here, of course, me are con-
cerned with corrections to physical 8-matrix ele-
ments, rather than propagators. Evidently, the
allomorphic corrections to any physical, on-mass-
shell S-matrix element must separately be gauge-
independent, free of unphysical singularities due
to zero-mass Goldstone poles ("unitary"), and
finite. Naively, one might expect that the renor-
malization eounterterms mould affect only non-
allomorphic contributions, and could be neglected.
It is a remarkable feature of non-Abelian gauge
theories that this is not, in fact, the case: Such
eounterterms are essential to the proof of gauge
independence, unitarity, and finiteness. This
point is further explicated in Sec. II and Appendix
B, where we make the appropriate brief excursion
into renormalization theory. Finally, me expect
the allomorphic contributions to be of considerable
physical interest, since, by defAnfion, they are
completely absent in the lowest nontrivial order
of perturbation theory.

II. TREENRAPH CONTRIBUTIONS; RENORMALIZATION
COUNTERTERM S

Since we are calculating to O(g ), any renormal-
ization counterterms to be included in the calcula-
tion of allomorphic contributions must appear as
insertions in tree graphs. %e shall see that such
counterterms can give a gauge-dependent, allo-
morphic contribution —in the following, we show
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—Pi(r-pl+~ )0i+S; jii+j„„&J. (2.1)

Here Z,&o„contains only hadronic fields. The lep-
tonic and hadronic fermions will be distinguished
by subscripts I, Ii respectively. Zq,.d(g", , W"„}is
just the quadratic part of the unrenormalized Lag-
rangian involving the weakly interacting Higgs
scalars and gauge vector mesons. Unrenormalized
fields and currents are distinguished by the super-
script u. Here the currents

S",. =- -$"r,.q"

that the only counterterms relevant are the fermion
(i.e. , lepton) mass and wave-function renormaliza-
tion. Before proceeding, the reader may find it
useful to review the summary of our notation and
conventions presented in Appendix A.

The effective unrenormalized Lagrangian' for
generating the tree diagrams is evidently

2'tree = Zquqd(/~i, W ~~ }+ Zistrong

(2.3)

Cg„=Z~+ ZcT,

&ii=& - g+&q-d(iji,", &".„)—$i(&gN+~)0i

(2.4)

I c = Ii[2,'(t&-N+~)+(&~k+~)~, )0i

To repeat: 5m and Z2 (both of which are matrices
in the internal space of the leptons) are adjusted
so that all radiative corrections to external lines
cancel. In particular, 5m includes the finite,
gauge-independent symmetry-breaking corrections
previously calculated by steinberg. ' The calcula-
tion of Z, is outlined in Appendix B.

Substituting (2.3) into (2.1), the effective Lagran-
gian for computing tree graphs becomes

(0 i I-'it i + 0 i, F; ili i }

=(S",), +(S"„), ,

(2.2)

+ gmij '-i,iI', (&,'&~y" t„+&,y t r, ,)i', W „

—$, (2,'r,. +r,z, )y,y, [to O(g')] . (2.6)

=-&(li&gr, f ij i+0n&g&i, ta&«)

-(Sr) „+()g) „

involve both leptonic and hadronic fermions.
The only renormalizations concerning us are

those that break the zeroth-order symmetries of
the theory. Coupling -constant renormalizations
(i.e., redefinitions of I;, I ) may be ignored, since
the only permissible redefinitions conserve the
zeroth-order relations prescribed by the gauge in-
variance of the theory. For example, suppose the

gauge group is simple and the leptons form a sin-
gle irreducible representation. Then the only al-
lowed renormalization of the t 's is a redefinition
of the single coupling constant g buried in t, or
in other words, an overall scalar multiplicative
renormalization. This clearly does not give rise
to an allomorphic contribution. Similarly, we
need not consider renormalizations of the Higgs
scalar or gauge vector propagators (cf. Sec. VIII).
However, mass and wave-function renormalization
of the leptons, if carried out (as we shall) in a
fully physical, on-mass-shell manner (so that all
radiative corrections to external lines cancel) wj.l],

give rise to gauge-dePendent allomorphic contri-
butions, provided, as is usually the case, that
zeroth-order symmetry-breaking terms appear in
the fermion propagator at the one-loop level. To
derive the required counterterms, we therefore
need make only the following two renormaliza-
tions:

Of course, we need never explicitly consider the
strong-interaction renormalizations —the appro-
priate counterterms are contained implicitly in
2 s&fofig and matrix elements of strong Heisenberg
operators are understood to be finite, renormal-
ized quantities.

First, we show that the two tree graphs (Fig. 1)
arising from Z„sum to a gauge-independent
O(g') contribution, plus an O(g ) allomorphic,
gauge-dependent contribution. Since we are work-
ing to O(g4), we must regard the lepton spinors
in the amplitude to involve the physical mass ma-
trix m to O(g')-the O(g') asymmetric corrections
to the zeroth-order mass will, as we shall see,
give rise to the O(g }gauge-dependent contribution
mentioned above, plus an implicit gauge-indepen-
dent allomorphic contribution, also of fourth or-
der.

A short calculation yields the following result
for the sum of vector and scalar exchange graphs
arising from Zii, to O(g'):

Pg P; P)

FIG. 1. Tree-graph contributions to semileptonic
processes.
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5S""= 68„'"',+ 5S " (2.8)

6sg- = -t(2w)'6(QP)[6 „ii"(q)(j „"&alii V~&qy
"t8 U,

+ t,',.(q)&s, &„v,r, U, ],
(2.7)

involving the zeroth-order mass matrix, then
(2.9) is clearly seen to implicitly involve O(g')
allomorphic contributions.

The second, explicitly gauge-dependent, O(g')
allomorphic contribution arising from the graphs
in Fig. 1 is

6S,",= -t(2v)'6(QP)[t(q). ,& jg&„Ug, y„t.U,

+ ~ii(q }&Si~Fl ~fri Ui]

(2 9)

where we have introduced the convenient abbrevia-
tions

6ss~on =i(2v)46(QP)(e )};&S., &r,[q] iiU~

xy, [t ii, y~6mt] U; .
Here

[q]~8= —.[((q'+u') '. 8 - (&wq'+u') '~8]

(2.10)

6(QP}=6(P, +q, P~ -q~-),

& jg&„=-&F( j~(o)(f&, &s, &„=-&F(s,. (0)[f&,

(q). i=-i(4~ q' +u') ' ii,

(q) =
(r„.,q'-+M') ', , +(e.~),(e,~), (q)„8

Evidently, DS„"G, is f -gauge-independent, as it
must be, for there are no renormalization counter-
terms available at O(g') to absorb any uncancelled
$ dependence. The allomorphic O(g') contribution
is found to be of two forms. First, there is an
implicit allomorphic contribution which arises
from the replacement of the zeroth-order mass
matrix in the lepton spinors in (2.9) by the leptonic
mass matrix corrected to O(g'). If these cor-
rected spinors are expanded in terms of spinors

(2.11}

and 6m' is the finite, g-independent O(g') correc-
tion to the lepton mass matrix. ' Vfe need not be
concerned with its explicit form here, but merely
note that the only relevant parts of 6m& in (2.10)
are the contributions from scalar and vector ex-
change [i.e., Z, (p) in Appendix 8, Eil. (84)]. The
momentum-independent contributions in Z, (arising
in part from tadpoles) involve linear combinations
of F; matrices, and are hence not allomorphic.

Finally, we calculate the O(g ) allomorphic con-
tributions arising from the asymmetric renormal-
ization counterterms in Scr. Only the last two
terms in Zcr are relevant (the first two are in-
volved only in radiative corrections on the ex-
ternal lepton legs), and we obtain simply

6Sc'r' = (2v}'6(QP)(j „"&r~(q)„8&g(22ttx. 8+Ii,r, 8r, ) U;

—(2w)'6(QP)(e, x),&s, &,[q] sf(rt$, &t& tit+8t&gt8z, ) U, —t(2v)'6(QP)&s, &, 6~(q}V~(Stre+ rid, ) U,

=-5Scr'&, &+OS~ &s (2.12)

These contributions are clearly gauge-dependent.
As we shall see below, the gauge dependence in
(2.10) and (2.12) will eventually cancel against
gauge-dependent terms arising from one-loop dia-
grams.

III. ONE-LOOP CONTRIBUTIONS: BOX" DIAGRAMS

At the one-loop level, there are four diagrams
involving two-boson exchange, as indicated in
Fig. 2. Their contributions are

box
WH

8Sbox
yN

SSbox

PEG. 2. "Box" diagrams for a general semileptonic process.
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M~p'@ = -6(QP) Ji
dE 8:g8(E)a"„(},(q —E)rang(E)

x frql'}, E}&(q~—E)E~y&E„U(

6S~b'g = -6(QP) Jt dl &J'r,'g(E)l}aq~~(E)ra „8„(q—l)

x
Uyf ~y

"t„n"'(q, + l)1"~ U~,

asee -='a(Qp) J dl s)„t})de,(I)de, (q —}}
x V,I,n'(q, -E)r, U, ,

(3.2)

(3.3)

(3.4}

5s'„'„"-=-E5(QP) Idl vs;(E)E),„'„,„(E)~„'„.(q —l)

xU, E,y" E„E},'(q, E)g,y('E, U, , (3.1)

where 6(QP) = 5(P&+qz -P; —q;). The two-current
hadronic matrix elements $8', $,"8, and $;, are
defined in Appendix A [E(i. (A18)].

The next step involves substituting the explicit
expressions for the propagators (A5) into (3.1)-
(3.4), using the relations prescribed by local
gauge invariance [in particular, E&Es. (A3), (A10),
(A13), (A19), and (A20)], and segregating the re-
sulting contributions according to the structure of
the particular hadronic matrix element involved.
Recall that all contributions which merely amount
to a gauge-covariant renormalization of the lep-
ton-scalar and lepton-vector vertices are dropped.
This procedure yields the following terms:

ae,';) =-&I,')„ae),a(ZP) fel( t})(r;d) (q) —I}a)e. }) Il)„ea'(q; ~ l)r i}}(e.a))(q —I)„

+E V I', 'E(q, E)r—,U,.(e.z), (iE,~),Egq E]„,}[E].,
as,'}=-&s,)„a(rp) fd)(Ir })( )d)lq}r), rl(e.l}(e,l}(e,e,l},[q.

+ By[I' A~(q~ —E}I'~+I'~de}~(q;+E)I" ]U, (e+) (88},,nf, (q —E).}[E]„(}.

(3.5)

(3.6)

As there are other one-loop graphs leading to
contributions involving a single-current matrix
element at the hadronic end, we should not ex-
pect 5S&b» or 58&~"& to be gauge-independent. A

glance at (3.5) and (3.6) confirms this expectation.
However, two-current hadronic matrix elements
occur only in 5Sb'", so that their contributions
from the box graphs should be separately $ -inde-
pendent. A detailed calculation confirms that the
requisite cancellations do indeed take place, and
we are left with

ae)",;")=--la(Zp) fdle„'e(ll(l) „tq —I}~ )

«gfpy„fy Es (qg —l)&gy pfs U;

(3 'I)

as(", ,")= -a(QP) Jdl 7;"e(I}de)(})(q—I)„,
x Uy(I'~ a~ ((q IE)E~y p E„

+E~y, f n~(q, +E)I'))U;

(3.8}

Ils) ""
)

= la (QP) Jdl e;;(l)a(l)a) (q —I),.

x V~1'},A~(qy E)1'qU, (3.9)

In addition to being explicitly (-independent, these
contributions are "unitary" —they involve propa-
gators with poles only at masses of physical par-
ticles. In particular, the "gauge-independent,
unitary" scalar propagator l}~&(q} has no poles at
q' =0, corresponding to Goldstone bosons. %e

q) qi ) qf f}i

IIq
I

$q
I

Vl
SSyw

vI
»ws

VI»ss
FIG. 3. Vertex-type corrections |first variety) to semileptonic processes.
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conclude this section by noting hat &S&,), &S&', s),
S '" are evidently finite.OS& ss& are

IV. ONE-LOOP CONTRIBUTIONS: "VERTEX"DIAGRAMS

ra hs giving rise toThe remaining one-loop gr p
or hic contributions are just the one-loop

Th f 11 t tw 1ton-vector vertices. They a cn

F 3 xn wh h only lepton scalar
ton-vector vertices appear suc erm

t VI, andesi nated by superscripforth be esig
trilinear boson vertexFi . 4) in which there is a tri &near

). At th' point the analysis he-
i — summary of our re-

i ted by VII . is
what technical —a sum

is resented in Sec. VI. Explici y,suits rs pr
of the first variety aretributions of the graphs o e i

found to be

l (7& y)'t s~(q~ —t)t&y q q; -l)g, y'~, U, ,
" =' ") A' ( )()(QZ) dt's),„,.(), ,WW ~J o. Zl f)tP8v ~ (4. l)

)d ~~a) dt t &&(t)Vtr;t &(qt —t)t&y"tBt &(q; —t)r, U;t's" = ~(~VFr&.,s.(q (4.2)

~t t'( —t)r, t'(q, —t)l-, y't, U, ,)S )= 8;) Q~)q)5(QP)f d)k S„t))VI)&y „y—;~;— 't U

- t)r. t '(q, - t)r, U,f'Se'e=- S )~it', «)d(EI') I) «&~)(t)W'~& (qg- (4.4)

before, the analysis proceeds by substitutingA

the explici e pt ex ressions or e
for cancella-'

ns and examining orthe above equation,
m lo ing the arsenal

A d' A O f' d

of $ -dependent terms, employing e
s exhibited in Appen ix

ber of such cancellations, unumber o su
) t'll auge-dependent.(as we should pex ect

issue

g
t 'butions accord-a ain we segregate the con r~ u ioOnce aga~n, w

h d nic matrix elementnature of the hadronic m
'

nt to separate out atinvolved. It is also convenien o s

au e-indePendent con-this stage some obviously gauge-'
tr'b tions. Thus, we write

VI VlSvl gS +gSvl +gS@&+gS

&»,Gl + &~&,GD+'5S 0+5S&g) Gl + &g)+ ' " +fS" (4 5)

nd GD refer to "gauge-inde-(the subscripts GI and G re ' -' e-
pen end t" and "gauge-dependent", respective y .
One finds

VE
&Syww

qf-g

ql
q-2

kq
I

vHSs„
qg-p

q-

qg -g

q-J
Y
kq

I

»swy
VH8 syy

s second varie ) to semileptonic processes.FIG. 4. e. 4. V rtex-type corrections (
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»P , . ,((=}") .(5.}, 55.(ZU)f«[((), Ul, „.'(., ))-(»"5555(q),)-(qql, U

—&»5(l) Vy r. &'(q y
—l)&»y" ~8&'(q; —l)r 5 U] (4.6)

55;,', , , =(;5), (5 rU)) s( q)f [5(()),U, (ql,,s'(5, — ) },U5( ;5—}14q lU„,

d.~, (i) V, r, g~(q, l)r, n.'(q, —l)r. , v, )

+ (8 X), g
~ dl[(L)„q V~ (g„}y"l ytq."5"(q, —/)g~y„t(; —&~y "tel)5~ (qq —l)q'~y„t[)t ~)v;

g

g, (l}V,(r„t,n'(q, —l}r, —r, n'(q, —l)t, r, )v, ]

(4.'l )

&s&[, oo —— i(jap)sl(q)a86(EP) dl[lj&() V&(L&y"&&&[)t& + L}»y"t&t 8& (q; —l}r»(8()q(.)»

—(8yX}»r» (55~ (qq —l)&~y" t

Sty�)

U, (4.8)

55['„„=(S,),5(rU}f ql -sq (51[i]„U,()qlq ~ ,), U,
. (5q,, —})F,(555}, —tqql), U, sqtq, ))r,}q)U,

+[qj„[l]„(8 ),q(V (y [lyt8t ym]+. it, gl l (55~(q, —l)r (8 x)

—(8y}((}»r» hU (q~ —l)i r~gt [}tg)U,

, (kq'+l(') ', 8 (8 Z)

x[(l)} (, vga»y" l„& (qy —i)L„y„lets —&ey" ly tsn'(q, —1)&»y„ls)v(

n.,', (1)V,(r, ~'(q, —i)7,r, -r,l,~~(q, l)r, )v ) [ .5 (4.9)

Next, we turn to the contributions arising from the second variety of vertex diagrams (Fig. 4). The cal-
culations are tedious, though straightforward; we merely summarize the results here. Taking the diagram
involving three internal vector propagators first:

55"' = -'(5 ).55»55(EU)f "l[(q„q.",(5) -S.S.', .(q))S„""5.(l )S["„,tq —(X)".)„

x V~g~y" t8,6 (q~ -1)f~y~ ty 5 U(

(l n,', ,(l) i„n..' .. .(—1))n,'~,„,(q)~,"„,, (q

~ &j", )„V,f,,y" l„,~'(q, l)f,,y»'t„, v, —

((l +q)„h„" -„.(q —l) —(1 q)„sf~-„(q —/))n„"8., (q)nf"„p.(l)

x(j s ~ )zsVyfey tz, & (q& —l}r&y" t, v,.j
—r C&II xSVII xc VII r e&I

WWW; (S ),Gl WWW; (8 ),GD WWW", &f ),Gl WWW; ( f ),GD (4.10)

where, discarding as usual terms which merely renormalize the bare scalar and vector lepton vertices,
one finds

55,"",, „,,„(5), 5„(q}q „=(5', ,5).(S),,5(EU)f 5)(() ;,(q —l), , U(q.q.5 S'(q, —()(, l"„..U;, q
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6S'..„.„,„=«(C.)..c„,(8, !),&S; &„6(ZI') d/f(q' —2q /)fq)8, (l) .(q —/)«, ~

X/!fr«y" t,A «(qf —/)gwy„tv U,

+«(/)..[/'[q]8 V(q /Jt, ;-+(q]wv&q-/)«, +{q}8,(q —/J«, ]
x Vf/«gt„~ A«(qf —/)r„(8v, A. )„U;

— (q l),-[(q l)'[q-). P)..'fq). „(/)..'&q), ,[/)..7

x Vf(8n. P. ),rfa~{qf —/)g«/tv ~ U,

+[[/].. (q —/)«, {q'(q —/)[q]«V-(q)t v}

+q l(q —l), ([/) .(q), —(/)..[q)II,}]
x (8n A. }f(8V iA)„Uf r, 6 (qf —/)r«UIq~, (4.12)

6SIVIVIV: If!,GI «(ilV)nBGBV «(q)8'V& js ~F! (Z

—2/;«yv. tn ~ EV(qf —/)/WgtV, + i(8„iX)fr, h«(qf —/)/Wy, , tV,

—i/, y „,t,~'(qf l)(8, , z)„—r„}U, , {4.13)

6Swlvlv; (f),GD (~lv}n BGBv 6(q) «I'v&2 Bl&F«6(Q+)

x d/(i(l' 2q l)[l]„„,(q /}zv, (8 !I},vf1, t««{qf —/)gwy, I,U,

+ i(q ' —l')(l)„„,[q —/]«v, (8v, x), V~t«y, ,t, t«~(qf —l)I', U;

+/. (q'(/J. .(q I);+-[lJ..(q-l), (/)..fq-l) „)(8.&),(8, iI),

x Vf r!~ (qf —l)r U,} .

Again, in deriving {4.11)-(4.14), iiberai use is
made of the relations imposed by local gauge in-
variance, especially Eqs. (A13) and (A19).

The graphs containing two internal vector lines
and a single internal scalar line give the explicit
contributions

6S "II = -i(j ",&z, tI,„,,„( q)(gZ f8, 88)!I.),.6(g~)

x dl a~„q l z~]', , (E)

x Ufr«y" ts. t«&qf l)r U, —

6S,',",=(S,)„,~,',(q)(/;, f8, 8,)~),.5(g/ )

dl a"„,,„,(/) a wII
"~,„,(q —l)

x Uf f«y" t„D' (qf —l) /;«y" tII, UI

while those graphs involving two internal scalar
lines and a single internal vector line are found
to contribute

6SVII'II« =(j 8&r, a8vn„(q)(g~8 ),,5(QP)

x dl(q 2/)"z~ (q —/)n, ~,(/}

(4.15)

6Swew = «&&.
" &sft . . (q)(/;gf8, 8-8)~) 6(gl')

xi7fr, ~'(qf l)r V, , —

6S74 =«&S, &„&,'a{q)(/' 8.}n6(Z«»

(4.16)

x

dt's~,

I, a, f', , (q I)

x Pf r» 6 (qf —/)/ IIy ta1 U! (4.16)

x dl 2~ —E)~g'„,„~)g~ |',& —~

x Vft«y t8t«~(qf —l)I' U~, (4.19)
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5Ss"i'„=i&S;)~,&,', (q)(/;s8 ), 8(QI')

x dl q+l)t'g~„s„q l g)@ l

x Uyl' ds(q~ —/)t~y "ts U, (4.20)

5S " ' -=6Set//~+ 6Sq@u + 5S~~@+6S

+ 6$@g@+ 6S@QQ(

6Svrr (0, w) + 6S v&i{4, &)
~d) sGI &&& aGD

+ 6SYII{$,&') + 6S v1I(4g ~')
&S),Gi + (S &,GD (4.21)

Substantial cancellations of $ dependence occur
between these two sets of contributions, so it is
convenient to define

Again, dropping all terms which are manifestly
not allomorphic, we find after a somewhat tedious
calculation

x dl -i g~ 8, 6}8 A, ) g~ q —l +3' ')„ l 88 U~&~ypts. ~ qf —l I A, U;

-i(lg(8, 8s)A },(tg/'+M~) '
I (q —/)ss. U~I'qA (qt —/)/syqtsi U,

+/„(8./;, }, [&' (/)(y, (q —/V+M) '„t,', (q -/)(/;, /-'+M'}-', .] U, I' t'(q, —/)r, U, ],
(4.22)

+ (/ pq +M ); s(8 s& s)~, (q —/) s s.ts~g (/) Vt I', lss(qt - /)/ s l't s.U;

+(/; q'+M') ', , i(8, /; },,(/)„,a,', (q —/)U, g,(g-/')t, .&'(q, —/)I', U;

—&(~g(q) i(8s/;g)yi(/;y/'+M') 'ag(q —/}ss UF'a~'(q~ —/)&s&'s U

(q)'i(8s/;y) ((fy(q —l) +M ) y (l)ss Uf/sgts & (q, —l)I, U,

—(q)ss (8sg@),(8s A. ),hs, (q —/)(fs/2+M2) '„,U~I' 6 (q~ —l)I' U, ), (4.23}

)sg (q) ' &(Q&)

dl -i(&i,(8, 8s)A},(/)ss, "' (8„Z)„(8y.X), U~&~y„ts n (qf /)I', U, -
q —/

-i(g~ j8, 8 jA) (q —l)ss. "" (8(X) (8~, X), V~I'~h (qt —/)t~y ts. U;$2

+/„(8sg~8~), ((8s,g), fq /]ss, /s, .(/) (8s, g) [/]ss, t f (q I)) U,l' ~s(q, -/-)r, U,.

(4.24)
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5~ &s),GD ( i }ftl (Z+)
t

2+ 2 -1
x

~
d/ (g,(8., 8 s}X),.(/). ,(q —l)», q ", ""' (8,Z},(8„,~},/Tft, yUt. ,~t'(qf /)g, ,y„ts, U,

g

+t(q —L) (8s&s8„z)f([q]ss.t))tf(l)(8s z};—[l]ss Aqf(q)(8s. x),)
)l2 2 + 2)-l

X VfI'„As(qf —/)fsgt~t /lq

+t(l) (8s/s8+)f([q]ss, lqs~, (q —/)(8s, k), —[q —/Jss, ts~f(q)(8s, X),)

~ (q,ltt, ll, "'St,(q)(55, 5), — ", "'itt(q —l)(tt, ll}
x V,/;, gt. ,~s(q, —/)r„U, .

+ (8s&s8 A)f(t)„„.[q —/]ss. t)sf(q)(8„X) (8s, z)„

+ (8sP, 8„~),(q —/). „,[/]ss, ~,', (q)(8, ~),(8s,~).
+ (8s&s);(t) s~ (/)&,'g(q)[q —l]ss /'(q —/}(8s ~}s

-(8s/;s)„l), ,„(/)((q'+g') 'q„(1/q')(8„X), (8y X)f(q —l)ss (8s A. )„

+ (8s&s}f(E)s(q —/)tslf(q)[/]sst/ (q —/)(8s A)

(8s&-~)f(t i.(q —/)(&q'+u') '» (1/q')(8, ~);(8, ~)f(/)ss'(8s'~)

(8s&s)-f5~i'i(q)&. , (q —/)[/]ss q'l(8s ~ / )

+ (8sg, 8g}f(q)„.,(8„,~),t.', (l)[q l].», (.8, , ~),
—(8s/;s}fqt (~s(q)&s;(/)[q —/]ss q (q —/)(8s ~)s

(8srs},qt -g'.(/)&,', (q —/)[q]ss q /(8s &);

—(8s/s}fq&ss(q —/}& f(/)[q]ss q'(q —l)(8s ~);

)$2~ 2 ~1
—(8s&s}f,6~5(q —l), ""'(8qk) (8„x),(q)ss. (8s A), VfI' zt'(qf /)r„v, [

(4.25)

Finally we investigate the contribution of the graph involving three internal scalar lines, given explicitly
by

5S ' =-(5;),f;, 5(QP) Jdld;; (q)d; (I)S„(q—l)U I';5"(q —l)I', U;

where

44S 5(" I+ C4,GD (4.26}

555(t „= (S)„f„,„.q(QP) J dl () d(lt ) 5d( ttl) SUtI,qd'(5, —l)I, U, (4.2 "t)

8s~sgs, =(S,), (5QP) dl Pf1,~"(qf —/)r, U, j[M', 8.],„,(8„,~),[q].„,Zf, , (. /)t).,'„(q l)

+ [~', 8s],'s ~ (8s ~)fl/Jss &"(q)&s's (q —/)

+ [/}4', 8„],,j,(8„,X),[q —/], .E~, .(q)h~, ,(/)

+(M 8 8'},.(8 tX) (58tsA) [fq]~~ [I]/st st„s.( q—/).W 8.8„~), (8. ~),(8, ~).[q]..[q /J„~;, (-/}

+ (~s8s8y); t(8 st 5(.);(8y.t))s[/] s s.[q —/]y y
tb, ;; (q)} . (4.28)
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In deriving (4.2 t) and (4.28), we use the Glashow-
Weinberg relations (A14) to eliminate the trilinear
scalar coupling matrix f & t., from the gauge-de-
pendent terms. Note that 5S@@.o& is separately
gauge-independent, unitary, and finite.

V. GAUGE INDEPENDENCE, UNITARITY,
AND FINITENESS

We have already seen [Eqs. (3.7)-(3.9)] that the
allomorphic contributions involving two-current
hadronic matrix elements arising from the box
graphs are separately gauge-independent, unitary,
and finite. In this section we verify that the same
is true of the contributions involving the matrix
elements (j"„}~Is (S,}zz.

First, consider the $-dependent terms involving
the hadronic matrix element of the weak vector
current, (j~~)~&. We regroup these terms accord-
ing to the structure of the Eeptonic matrix element.
Thus

4, = -i(js )r, (&&, r~[e~, e~)e &&)(e„&&),(q) && ~5(QP)

(iii) Similarly, we find for contributions of the
form U&g&y, t A~I,.U,.

g, =-i(j," }„(~,r, ]e., e,j e,~)(e, ,&&),.(q), .„5(QP)

x dt, , (t)„Ufr~y„ t t&~(qf — )I'&U{.
(q —t)'

(5 4)

(iv} The contributions involving the leptonic ma. -
trix element U&I",& (qi —L)I'), U; are found to sum to
the gauge-invariant result

8.=(j' }pl(q) (e &ge(&~)gd(QP)

dli, 6, .X,E~ q-/}

(e, &) Z.'(t)(q )»'~
8 () &&

(q t)2

+ t&S&,~&, cb —= Q8; . (5.1)
x U, l, t& '(qf - I )I',U, (5.5)

(i) (t, consists of all terms in the sum (5.1) in
which the lepton propagator has been cancelled so
that the resulting leptonic matrix element is inde-
pendent of the loop momentum /. Namely,

S), -=)tt')'&fd)(- ()„),(s),s)))„s,()s&sy sisss(), "

+ l i(j.,}re(q}.(&[t])~

&&~g4y" its t ts'tU(& (5.2)

The first term in (), arises from 5S&,.'& oo [Eq. (4.8)]
and the second arises from 68cr &» [Eq. (2.12)].
One readily sees that g, contains no allomorphic
contributions, thus providing us with our first
example of the role of renormalization counter-
terms in cancelling the gauge dependence of one-
loop allomorphic corrections.

(ii) 4, is defined to contain all the terms involv-
ing the structure UII',. t)t'(qt —t)r&y„ tyU, After a.
brief calculation employing the usual arsenal of
gauge-covariant interrelationships, we find the
gauge -independent result

(v} Finally, we are left with the gauge-invariant
part of DS~Q, &, ,

8, =(2&t) (j"„}r&5(QP)(q) 8

"U~(22 ( 4y'&&+t &y'&&'. ,o) }U( . (5.6}

The first two terms in (5."t) are readily seen to
separately satisfy unitarity since they involve only
the "unitary propagators" (k) 8, 6;,(k), from which
unphysical zero-mass Goldstone poles are absent:

The calculation of &, G, is discussed in Appendix B.
This concludes the proof of gauge invariance of

the allomorphic terms involving hadronic matrix
elements of the weak vector current. Next, we
show that such terms sum to a unitary, finite re-
sult. Summoning the explicitly gauge-invariant
contributions, which so far have patiently waited
in the wings, we obtain the complete contribution
involving ( j~~}rz.

ss&) . , (()d (sl ss(&')=') f S){())„.))s(ss'ssss'(ss ))Sss„ssss'(s ))(ss.s(&-{
—6&s&(t)g&I(st& (qt —l)rt)y)(tsar (q( —t)1 &U&), (5.8)
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5Sw'ww. (» o( f--(&w)ascs&~(q)B'y(~8')pl5(ZP)

X dL l t p ~L
&

s Uf 2Lvt&~Z V~tk pf ~l &&Z t)r i +2&&

—2g~y, i„,n. (qq —l)I~gty pi( e„, ())) r~b, (qq —l)g~y„, tq

—ig~y;t„.b ~(q~ —l)(e~ X)),r), )U;. (5.9)

The last t|wo terms in (5.7) combine to give a unitary result:

~(/), GI + ~& — 2~ ~a gg ~ ~g~ + Uf 2,GI~C~v 8 ~((~v 8 2,GI
&=2

~()" ) (q} 0(QP)f d([-i((e(&, s) )y;, (9 — )( )as Uy(t l„4 ((r — )(' (),.

—f(~,(e„e,'f~), S,', (IMq I)»,—U, r,Z '(q, I)q, ~—„f,,U,

+ 2I „(e.&,)„n,,~ (l)n, ~
(q l)U, r,n. '{q, 1 )r.U, ] (5.10)

The contributions (5.8), (5.9), and (5.10) taken
separately involve ultraviolet divergences, which
are all logarithmic. Nevertheless, ~S'" is finite.
To see this, it is sufficient to replace the various
propagators in the loop integrals by their asymp-
totic limits as l-~:

2
A~(q~ —I), b, ~(q, —I)- —,&(, ',

the asymptotic behavior of the various integrands

5s&') .ar -6&")zr(q) 85(&

dl
x

l 2 2 g~ 'y gUf&g&~y~tstgU

+ a(Cy) '(, (Uyr(, r"teC~ 'r(U()

—:8C, , (5.12)
(I) (), (q-I) ()-(4) '

8 I2,

&ga(I), &pa(q-~)" (&e) ')a
I 2

(5.11)
~ v'

5swww: (/) ~ Q( C('gh(q) 8')'( f ()')El(IIY ) ())' (E
dlx

2 2 Ufg&t, y, , t&,U,(I')'
Making the replacements (5.11), and using (811)
to extract the divergent part of ~2 GI

=—3C, , (5.13)

dl
()s'„",",,')+ g, --,'f& j~,&„(q)„.,(e.)„(q,)-' 5(gs') {„),U, r, ~„&,-'r„U,

=2

() )(e) (s(}(g&)".J ( .((($((~ } „(~~4 lr'4 (' (() ~ &,}'r. , '.,

{5.14)

X~+X2+X3-Q . (5.15)

In calculating X„X„X„wehave of course ignored
all manifestly finite terms. The proof of finiteness
is concluded by noting simply

There remain noir only the contributions involving
the hadronic matrix element of the weak scalar cur-
rent (S()». We first prove, in complete analogy
to the preceding, that these contributions sum to
a gauge-invariant quantity. It is convenient to cal-
culate first the quantity
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0 (S) .GD +»»,GD+ Fl', (S»

= -»(2»») (&(XA)»&S»&rq»5(QP}
"

Ury4[ s, yqdm]U; —»(2~ (S»&sr(g sq +M) '»r Ur(zs. G» 7r + Frzs G, )U

+ (»)'&S»&sr(t»»') qs' Ur(20. G» rs&'S+ t S&tSzs.G» }U

+&S»&sr'(ZP}

p~~ ~ ~ I'. + q~-~ ~ ~8 ~4~ +~~ ~~~~m +

+ [q]~s[l]r s(6 r»}»Ur(»f sg'[t„, fs]& (q, —l)y, [is, y,m] -y, [t„,y,m] d (qr —l)ig0$[tsq ts])U»

gq2+ p2+, ' (6~r )»(f))sUr(& sy"'r s '(qr I)& -syph s '0]+ &sy "['s 'r ]~'(q» - ')1sy) '0) U»

(q2 + 2 -1"(S.~),Z,', (I)Vg. r~'(qr l)y [Es y I ]+y [fs y I ]d, (q l)I )U; (5.16)

A glance at the bracketed terms in (5.16) shows
that the tree-graph counterterms have reduced the
leptonic matrix elements in the vertex graphs of
the type in Fig. 3 (involving three coupling matrice
between the spinors) to structures which appear in

the remaining one-loop contributions (namely,
those involving only tao coupling matrices between
the lepton spinors). We are now in a position to
examine for cancellation of gauge-dependent quan-
tities. We define

@p+~~ &8&+ ~~VS W; & SP .GD+ ~~ (8&,GD + ~~4/4, GD
— @f~

box VII VII(4, S ) VII

= j.

(5.17}

(i) In s')» we group all terms involving a leptonic
matrix element of the form Urgsy

"f r». s(qr —I)
& &~p&~& U& . A straightforward calculation yields
the gauge-invariant result

6» = i&S»&sr(&w}ascsy s(gs'k)» o(QP)(q)s , -

d& q'-2q'~ l „~ q —& gy ~

x Ur &sy" t~ ds(qr —l)fsystr U» (5.18)

(ii) Next, we group terms involving the structure
d (qr —I)i'sU». The result is again gauge-

independent:

gs
= '&S &r r(6 r sd-sr'}r o(QP)

( ) nn Ur&s&'n &'(qr -I)i'sU»](es ~)sd»r(q) I", —(es X)d,„'»(q - I)
q —/' q

(iii) Similarly, we find

»'
i»&sS, &~ (B rg s('»sr»), .o(QP).

(5.19)

»fl(q —/) Url"~r» s(qr —l)&sgt U; (&s i)060(q) ss —(Hs q();»»)~~(l) (5.20)

(iv} The terms involving leptonic matrix elements of the form Vri' d (qr —l)I'„Uare»depressingly com-
plicated; nevertheless, after much algebraic manipulation, we find the remarkably simple, and gauge-
invariant, result:

q, =(q) q(pq') J
q) ()&F qq(qz——l)I' ()~(8&qq&qq), (qq xl, (q)q

q" (q, x) r(q(q —))

+ ." (I)rr (e„~).&a'~(q -I)

+ s +»q (1)(»»y ' q»)»)(q —I)rr '
q

q
(t»s q))»((es)s»d»(l)+(t»s)»b's»(q —I))

(v) FinaHy, we are left with the gauge-invariant part of 60:

(5.21)
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&, =--(2 )'(s, &„o(EP(((e.i(, ,"'((,y, (t„~,n ]r(, ( (a'~ (*-',(,((i', „( r, , „(U,

+(2v)'(s, )„,o(QP)(e A), , Lr»(, o, g~gt((+gtgttz, o, )U, . (5.22)

Having verified the gauge independence of these contributions, and hence of the entire O(g') allomorphic
corrections, we now turn to the question of unitarity and finiteness of the terms involving (S,)». Adding

in the explicitly gauge-invariant contributions, the entire contribution of this form is given by

(5.23)

After some algebra, we find that the unphysical zero-mass Goldstone poles in the separate terms in

(5.23) cancel exactly, and we are left with the following manifestly gauge-invariant, unitary expression
for 58'~'.

5S"'=(Si}»5(ZI')
I

t(2-v)'«'» «)V» «'.o( r»+r»". o()U»

dt[t;, (q)((t).,V, t,y" t.A'(q, l)r, ~'(—q, t)~,~.t—,f»,

—t(~~((l)V»I', t(.~(q» l}F,t(.~-(q, —l}l, I», )

+2(g,e, e ~}»A~»(q)(l).„,(q- I)» V»g, y" t..t '(q»-t)r. ,y„t, U,

+»(e„g,)„A,', (q)((q- I)... t,', (i)V, r, t t'(q, i}r,tfIt.-, U,

+(I) ~ t ~~ (q l)V»ft, kt -A'(q» t)ra U()-

f. .. t(„.-(q)t(»» (lZ).„.(q- l)V»r, t( (q» l)r„.U, -
-(e.f.)., V, F, A'(q, —l)F, U, ((e. ~), (q).. t,', (q-i)Q, (t).(e. ~), (i)..A.', (q- t)t,'.(q)

+(e. ~), (q- l).. ty', (l)~(~.(q))]I . (5.24)

We conclude this section by noting that the allomorphic component of (5.24) is in fact finite. The diver-
gent terms in (5.24) involve (asymptotically as I-~) leptonic matrix elements with the structure

V»5r»U, =-V»(a(& ) '„&r»t tz+a(f ) '
((t t((r»+b(f, ) '„r,f, -'r, g, -'r,

+5(g,}-'„,r, 7, -'r, g, -'r, + c(g,)-'.,t.r, t, + d(t,} '„FE,--'r, g, -'r, ) U, . (5.25)

&c[t~ x«r»l =(en)a» r( ~

= 5I'~ .

(5.26)

(5.27}

VI. SUMMARY OF RESULTS

Before proceeding to the more detailed study and

applications of our results, it may be useful to
provide a simple prescription for generating the
correct answer. The fourth-order (leptonic) allo-

However, 5I'~ merely constitutes a gauge-covari-
ant renormaiization of r». In fact, using (A3),
(A4), and (A13), one can readily show that 5I'» sat-
isfies exactly the same zeroth-order constraints
as I'&.'

morphic contributions have been seen to arise
from basically three sources:

(a) One source is the "implicit" allomorphic cor-
rection obtained by using the lepton mass matrix
corrected to O(g') in the tree-graph contribution
(2.9). In other words, the leptonic spinors appear-
ing in (2.9) must be defined with leptonic masses
including any one-loop corrections to zeroth-order
symmetries. These corrections have already been
calculated in general models by Weinberg' (see
also Appendix 8}.

(b) Another source is a contribution arising from
the asymmetric wave-function renormalization of
the leptons in a, Physical, on-mass-shell renor-
malization scheme:
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(2v) (2 )gI('q) ))6(gl )~f (z 2 Q& C&&r, f
)&

+ l~& „t8z 2 Q) )U&

—i (2v)'(S, )~, a@(q)5(QP)V~(z t
o& r, +r, z, o, )U& . (6.1)

z, « is the gauge-independent wave-function re-
normalization constant introduced in Sec. II. The
logarithmically divergent part of z, « is explicitly
calculated in Appendix B.

(c) A third source is a contribution obtained
simply by evaluating the one-loop graphs depicted
in Figs. 2, 3, and 4 in the generalized Feynman
gauge (6.2). This contribution may be expressed
as

eS = eS""+eS"'+aS"'- eSone loop

where

gSbox gSbox + gSbox + gS box
&ys & &ss»

(6.3)

(6.4)

with S&&&&, S&~'z &, S&~ &
given in (3.7)-(3.9), and

M&& & + 5S&y
) + &&S&& ) (6.5)

where 58',~', , are given as the right-hand sides of
equations (5.8)-(5.10), respectively. Finally, 5S
is given explicitly in (5.24). 5S,„,„, is clearly
gauge-independent and unitary, since $ dependence
and unphysical Goldstone poles are both absent
from the propagators (6.2). However, as pointed
out in Sec. V, 5S,„„„stillcontains infinite allo-
morphic terms, which have been shown to cancel
exactly against similar terms in 5S~.

The enormous utility of the general $-gauge cal-
culation presented above is emphasized by the ap-
pearance of the contribution (6.1}. We are auto-
matically alerted to the necessity for including
any missing terms (provided, of course, these are
themselves gauge-dependent) by the failure of all
$-dependent terms to cancel. The cancellation of
zero-mass Goldstone poles from among the various
contributions provides yet another useful check on
the calculation.

Our results may be obtained, therefore, by
writing down, in the generalized Feynman gauge,
all terms which could lead to allomorphic correc-
tions. Of course, we could use any other gauge,
but the unitarity of the result is most clearly mani-
fest in this gauge, which seems to appear "magi-
cally" at the end of the calculations.

Here (q) )&, h&~& (q) are basically the gauge vector
and Higgs-scalar propagators in a "generalized
Feynman gauge" characterized by the replacement
(-0g-

( q). 8-=(t q'+&') '.
&),

(6.2)
a&@,(q}-=(tqq'+M'} '„+ q," (8„&&)&(e~&&),.

If one adds, for example, elementary hadronic
scalars to the theory, then there may be additional
terms in the interaction Lagrangian leading to ad-
ditional contributions —the new scalar fields may,
for example, contribute to the weak currents.
However, the contributions we have calculated
will still be present, and since the asymptotic be-
havior of two-current hadronic matrix elements is
very sensitive to the presence of elementary
strongly interacting scalar fields, ' they can be
used to test for the possibility of inconsistency of
theories containing such fields with the phenom-
enological data. Such a test will be the major ob-
ject of Secs. VII and VIII.

VII. INDUCED PSEUDOSCALAR EFFECTS:
CHARGED-PION DECAY

As an illustrative application of the general re-
sults derived above for the leptonic end allomor-
phic corrections, we investigate the general na-
ture of the constraints placed on possible gauge
theories of weak and electromagnetic interactions
by the charged-pion-decay branching ratio 1", „„/

This quantity, as a result of the very
small mass of the electron, is extremely sensitive
to admixtures of pseudoscalar interactions in the
lowest-order V-A leptonic currents. In fact, one
easily sees that an effective pseudoscalar current
of O(aG&, ) would lead to a correction of O(1) to the
branching ratio. The phenomenal agreement of the
V —A theory with experiment [up to inevitable cor-
rections of O(a) to the branching ratio, partially
electromagnetic in origin] then requires the elimi-
nation of any induced leptonic pseudoscalar current
in O(aG~).

The constraints derived mill depend slightly on

the assumed theory of strong interactions. Never-
theless, it will be seen that gauge theories tend
readily to preserve the lowest-order V- A struc-
ture of the leptonic weak currents, given only some
very loose and plausible restrictions on particle
masses. Even the presence in the theory of an
elementary pion does not lead to insuperable diffi-
culties —it will be seen that an additional constraint
on vector-meson masses suffices to make such
theories "safe." It may be mentioned here that the
situation is quite different in the case of the had-
ronic end allomorphic corrections, a preliminary
discussion of which is presented in the following
section. Such corrections are apparently much
more sensitive to the presence in the theory of ele-
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ml mh-pne ~ (7.2}

for theories in which the pion couples to a charged
physical Higgs scalar, and [cf. Eq. (C18}] when

3 2 2ml mI, -m@ mw (7.2')

otherwise. In any case, theories in which both the
leptonic and hadronic fermions are considerably
less massive than the weakly interacting scalar
and vector particles are automatically "safe."

We will now study the contributions involving
hadronic matrix elements of the product of two
currents —these arise from the "box" diagrams of
Fig. 2. To even estimate the magnitude of the in-
duced leptonic pseudoscalar current here, we need
to make some assumption concerning the strong
interactions. %'e will consider three imaginable
situations:

(i) The pion is elementary (or couples to an ele-
mentary field, which amounts to the same thing).
This statement, of course, only has an objective

mentary, strongly interacting scalar fields.
Before proceeding, we note that dangerous

pseudoscalar effects are assumed already absent
in Lowest order; either by virtue of the structure
of Yukawa couplings [e.g. , in simple theories such
as the original %einberg model, ' or the Georgi-
Glashow O(3) model, ' the charged Higgs scalars
are unphysical] or by removing all physical scalars
to very high mass.

The contributions involving the single-current
hadronic matrix elements (j„")«,(S,)» are dis-
cussed in detail in Appendix C. The condition for
effective pseudoscalar contributions to pion decay
of O(aG~) to arise in 58"' is found there to be

(7.1)

Here m, is a typical (heavy) lepton mass, corre-
sponding to a particle with which the electron
mixes, and q is a typical lepton momentum. In
theories in which the electron mixes neither with
the muon nor with some other heavy lepton, m,
must be taken as the electron mass in (7.1} in

estimating the induced pseudoscalar effect in n

-e P, , which leads to an O(a) correction to the
branching ratio. But theories containing such mix-
ing effects are interesting from the point of view
of computing the electron mass, and (7.1) shows
that they lead to no dangerous terms in 5S"'. In
fact, (7.1) implies (with q =0.1 GeV for pion decay)
dangerous contributions only when m, ~ 104 GeV, if
we take m ~ ~ 30 GeV.

The story is rather similar for the 58'~ contri-
butions. Here (taking for definiteness m, s m@
& m ~, with m@ a typical Higgs-scalar mass) the
leading induced pseudoscalar contribution becomes
O(&rG~} when

meaning if anomalous dimensions are small (less
than u&uty, say), as we shall assume.

(ii) The pion, although not itself elementary, has
the quantum numbers of a bound state of two ele-
mentary hadronic scalars.

(iii) The operator (constructed solely from had-
ronic fields) of least dimension coupling the pion
to the vacuum is gy, f. A sufficient, though not
necessary, condition for this situation to obtain is
simply that the theory contains no elementary had-
ronie scalars.

It will be assumed in the following that there are
no superheavy fermions and that the Higgs and
gauge mesons are of comparable mass. Also, con-
tributions in which photons participate lead only to
an O(&r) correction to the branching ratio (photons
do not mix the electron with either the muon or
some other heavy lepton) and may be ignored. As
a result, the only diagram which ean conceivably
lead to an O(aGr) allomorphic effect" is the two-
vector-exchange one [cf. Eq. (3.7)]:

1
, jt V

&&
& t.2 aka&, &&a&8(I)

(7.4)

where 4 8 &, is some dimensionless tensor of or-
der unity. If 7"„&&(I)is asymptotically constant as
I-~ (in the deep Euclidean sense), t&8(,,&- aG~,
whereas if 7"8(I) SO(1/I) in this limit, &&8&&t&

-Cz, since both factors of m z serve to suppress
the contribution (recall that &&8&&» is by definition
a purely weak contribution}. We will now employ

&&

toity„t

~r ~(qf —l)y, t, U, ,

(7.3)

where the prime on (I )~„,(q —
/)&&& indicates that

these propagators are projected onto the subspaee
of massive mesons (t&, f&, r~ are assumed unity
for simplicity). We may immediately conclude that
models without massive neutral currents [e.g. ,
the Georgi-Glashow O(3) model] are automatically
safe [subject only to the constraints implied by
(7.1) and (7.2)], since in such models (&8&,, &

gen-
erates only hQ =0, ~ 2 currents corresponding to
W'O', W'5", W W exchange. For the rest of
this section, we will therefore assume that we are
dealing with models which do contain heavy neutral
gauge mesons.

The effective pseudoscalar contribution to 5S&,, &

is of order
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the Wilson operator product expansion" (OPE) to
analyze the asymptotic behavior of &"()(I}in the
three situations envisaged above.

(i}If the pion couples to elementary scalar field
field(s} 42, the leading term in the OPE for 6'" ()(I}
ls

IF" F(I)-«F«„( F,,(t')g"" ~I, ,(I')

&&(0IC,'(0) Iv) . (7.5)

2 h I(0I(FBI )
W'

(7 6)

Here m„ is a typical quark mass and a t) 2(1'),
b„& 2(l') are dimensionless coefficient functions
which, in the spirit of our assumption of smallness
of anomalous dimensions, will be assumed to be
asymptotically constant. The factor of m„arises
because all the couplings in the hadronic part of
the Lagrangian which are not invariant under
g-yhp, C)2--42 (such as the quark-mass terms,
and trilinear couplings in the hadronic scalars)
involve such a factor. In the symmetric limit in
which such couplings vanish, the single scalar
(0 I@2(0)Iv) contributions to the OPE also must
disappear, since the currents j" are even under
the transformation cited above, while 4~ is odd.

Inserting (7.5) into (7.4), we find a contribution
of order

x ( 0 I x,(",'C,'(O)4,"(0)
I v), (7.7)

so that gy"„&(I) is still asymptotically constant and
the same conclusions obtain as in (i).

(iii) If there are no elementary hadronic scalars,
or more generally, if the lowest-dimensionality
operator linking the single pion state to the vacu-
um is gyhg, the asymptotic behavior of gy2&(I) is
given by

From (7.6) one sees that theories in which (a) the
pion is elementary, (b) there exist heavy neutral
mesons, and (c) the electron mixes with the muon
or some other massive lepton (m, ~m„) potentially
generate an unacceptably large induced leptonic
pseudoscalar effect of O(aGr) in pion decay. How-
ever, we immediately see from (7.6) that this prob-
lem is cured simply by introducing a superstrong
symmetry breaking in the vector-meson mass
matrix so that the gauge mesons responsible for the
mixing are removed to the superheavy regime
(m ~ » mass of meson mediating aS = 0, aQ = 1
weak current).

(ii) If the pion is a bound state of two elementary
hadronic scalars, the situation is similar to the
above. Now one finds

«F(F(I) «(.F,,(I')g"" ~ F.F,,(I')

g
If lv ]I

~
V 0F"s(l)-a(0, & a„s(I')~g""+b s(I') , g" —bs„—(I') , g (+ „c—(()l') . ..' +e"'„d„(l')—, y2II) v

bs(f j) a 2 2 & o I Oyhk I &)
'L~ g j

-Gr2qm, (0I)I)yh(I) I v) . (7 9)

This contribution is of similar magnitude to those
arising in 5S, and is already quite small enough
without any additional assumption of superheavy
gauge mesons.

The scalar, tensor, and pseudoscalar contribu-
tions [by a chirality argument analogous to that
given in (i) above] involve an extra factor of m„,
reducing the asymptotic behavior to O(l/12), rather
than O(l „/12) as above. Since only vector or axial-
vector currents are involved in (7.8) [both in
6:"~()(l) and on the right-hand side], there are in
fact no anomalous dimensions associated with any
of the coefficient functions a„e, b z, t.- z, d z.
These arerigorously constanl"' as I2-~. Insert-
ing (7.8) into (7.4), we find

To summarize, the presence of elementary had-
ronic fields coupled to the pion (either linearly or
quadratically) places additional, but fairly weak,
constraints on the structure of the weak interac-
tions. Clearly, in a wide range of gauge theories,
the lowest order V-A structure of the leptonic
weak currents is preserved to at least O(o.Gr), ir-
respective of the structure of the strong interac-
tions.

VIII. HADRONIC ALLOMORPHIC CORRECTIONS:
NEUTRAL-KAON DECAY

The fourth-order allomorphic corrections to
general semileptonic processes may conveniently
be placed in three categories. First, there are
the leptonic end allomorphic corrections, which
are obtained by computing that part of the cor-
rected leptonic vertex which does not arise from
insertions of the "lowest-order" currents j~~, 8,.
The general theory of such corrections has been
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presented in Secs. I-VI.
Seconal, there are the contributions which arise

from corrections to the intermediate vector or
scalar meson propagators. These corrections
(to fourth order) evidently leave the zeroth-order
structure at both the leptonic and hadronic vertices
unaltered. The allomorphic part of such contribu-
tions is obtained by computing the one-loop correc-
tions to the vector and scalar propagators, ignor-
ing terms which can be absorbed in a redefinition
of the zeroth-order parameters of the theory.
Note that (if we imagine all the Higgs-scalar par-
ticles made sufficiently massive) such contribu-
tions need not be considered in calculating induced
leptonic pseudoscalar corrections. %e will not
consider further such "propagator allomorphic"
effects.

Finally, there are the hadronic end allomorphic
corrections —these are just the corrections to the
hadronic matrix element which cannot be written as
a linear combination of the lowest-order matrix el-
ements (E(jg(I), of (E~S, [I& of the hadronic weak
currents. As a specific example, one frequently
constructs theories in which, for particular ha-
dronic states ~I), ( E), and some specific hadronic
current j,", (E(j,"}I&vanishes exactly, to all orders
in the strong interactions (see below). Any non-
vanishing value (in higher order of the ureak inter-
actions) for the coupling of the gauge meson as-
sociated with j," to the states

~ I), ~ E& would then
correspond to a hadronic allomorphic correction.

The complete discussion of the hadronic end
allomorphic corrections will be presented in a
future publication. In the following, we analyze
the hadronic end allomorphic terms arising from
the "box" diagrams solely. The particular ha-
dronic allomorphic terms to be examined are
those corresponding to the appearance of neutral
strangeness-changing currents (b,Q = 0, b,S = 1)
to O(aG~) in neutral-kaon decay. The decay
Z~- p,

'
p, is suppressed relative to K'- p'v„by

a factor & 10 '-O(e'). Consequently, neutral
strangeness-changing currents are absent to
O(aGr), although they may occur to O(a'Gr)
(compare pion decay). Qf course, unless some
specific suppression mechanism is operative,
one expects to find such contributions. %e will
therefore be concerned with the general circum-
stances under which such a suppression mechanism
can be successful. In particular, we will confine
our attention to the mechanism suggested by
Glashow et af." (henceforth referred to as QIM),
and, as mentioned above, we mill only investigate
the neutral strangeness-changing currents gener-
ated in the two-boson exchange diagrams, ignoring
weak corrections to the strong vertex. It will
appear that the GIN mechanism is probably insuf-

ficient in theories in which the kaon field dimen-
sionality is two or less, but suffices to remove
dangerous contributions from the two-boson ex-
change graphs for a kaon field of dimensionality
three ("fermion-antifermion bound state"). The
failure appears unavoidable in theories in which
the kaon is regarded as elementary.

The GIN mechanism is implemented by intro-
ducing an additional quark (denoted 6") in such a
way that whenever the strong interactions are ex-
actly invariant under an O(2) symmetry between
the 6" quark and the usual proton quark 6', then
6' and (P' may be redefined in such a way as to
effectively eliminate the Cabibbo angle. The re-
sult is the vanishing of the neutral two-current
matrix element between states of nonequal strange-
ness, to all orders. Since the additional. quantum.
number associated with the new' quark 6" has not
beer detected experimentally, it is extremely
likely that 6' and (P' differ considerably in mass,
if indeed the latter exists. As a result we expect
that the two-current hadronic matrix element
(0(jzo „(x)j~o,(0)~K~& no longer vanishes, but
mill be proportional to b, m, -=m(I -m(f. The ex-
traction of a factor of the quark mass difference
lowers the asymptotic behavior of the Fourier
transform of the above matrix element. Our task
is to examine the circumstances under which such
a suppression of asymptotic behavior suffices to
remove the specter of an induced neutral strange-
ness-changing current of O(nGr).

In analogy to our study of pion decay, we con-
sider three possible situations:

(i) The kaon is elementary. Assuming as usual
that the effects of scalar exchange are minimized
by making the Higgs mesons massive (w@-m~) and
avoiding superheavy fermions, only the two-
vector exchange diagram can conceivably yield an
0 (o.Gr) contribution. Application of the OPE
yields, in analogy to ('l. 5),

so the purely weak contribution arising from
8"'W exchange is too large."

58&j,.&

- nQ~qzg m, (q~
- kaon momentum).

(ii) In theories in which the kaon behaves like a
bound state of two elementary scalar fields, the
GIN mechanism succeeds in suppressing those
contributions in which the weak currents hook
onto fermions. The OPE yields in this case
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x (0 ~

X(N) C,R(0@8 (0)~ ffo )

and the suppression of asymptotic behavior leads
to an O(Gz') contribution. However, there are
still contributions in which the weak currents hook
onto a st."ala~ line. Since theories with elementary
hadronic scalars may violate' natural conserva-
tion of strangeness in the slang interactions
(i.e., apart from ad koc choices of the parameters
in the Lagrangian) there is the danger of O(o.')
and O(o.'Gz) contributions arising both from purely
weak and from electromagnetic effects, as indi-
cated in Fig. 5.

(iii) Finally, we consider theories in which the
kaon behaves effectively as a fermion-antifermion
bound state. Consider for definiteness a theory
in which the strong interactions are mediated by
gauge vector gluons, and in which the gauge
symmetry of the strong interactions commutes
with that of the weak interactions ("colored quark"
model). Contributions involving photon exchange
are suppressed beyond O(a'Gz) in such theories,
as such contributions necessarily involve a neutral,
strangeness-changing weak interaction followed
by (two-) photon exchange.

Finally, we note that the lowest operator in the
OPE for S'~8(f) is /X', so that 6~8(f) is asympto-
tically of order am, //'. Both factors of vector
meson mass serve to suppress the purely weak
contribution, and l)S&&» is now of O(Gz').

Of course, one must also investigate the hadronic
allomorphic corrections to the strong vertex, as
these might conceivably lead to unsuppressed
O(oG~) neutral strangeness-changing effects.
%'ork on this problem is in progress. However,
it seems clear that, unless some special addition-
al suppression mechanism is at work, the sugges-
tion of Glashow et al. does not suffice to remove
induced ES = 1, hQ = 0 currents to O(aG~) in
theories in which the dimensionality of the kaon
is two or less.

IX. SUMMARY AND CONCLUSIONS

In this paper we have presented what may be re-
garded as the first step in the formulation of a
general theory of higher-order corrections to
semileptonic processes, namely, the evaluation
of fourth-order allomorphic corrections to the
leptonic matrix element. We also discussed brief-
ly the other types of allomorphic corrections
("intermediate propagator" and "hadronic end"),
a complete treatment of which is reserved for a
future publication.

wzg"

W, Z'
+

o(~GF )

O(ot'GF )

4'I
FIG. 5. Contributions to kaon decay in type {ii) the-

ories.

The general machinery developed was used to
investigate the conditions for the absence of (a) an
induced leptonic pseudoscalar current to O(o,Gr)
in charged-pion decay, and (b) an induced neutral
strangeness-changing current to O(o.Gz) in neutral—
kaon decay. Here, the use of the Wilson operator
product expansion was crucial in allowing us to
derive rigorous and general order-of-magnitude
estimates for the various contributions. The basic
conclusion seems to be that the presence of ele-
mentary hadronic scalars, although possibly plac-
ing additional (and plausible) constraints on the
masses of the weak gauge vector and Higgs me-
sons, does not necessarily lead to an induced
O(aGz) pseudoscalar contribution to pion decay.
Theories without elementary hadronic scalars
preserve the lowest-order V-A structure of the
leptonic weak interactions with only very weak
restrictions on particle masses. On the other hand,
the absence of neutral strangeness-changing cur-
rents to O(aG~), as ensured by the Glashow-
Iliopoulos-Maiani mechanism, seems to depend
crucially on the usual interpretation of the pseudo-
scalar mesons as fermion-antifermion bound
states.

A detailed application of the formalism developed
above will perhaps have to wait until a greater
variety of phenomenological information becomes
available, especially concerning the as-yet-unseen
weakly interacting Higgs-scalar particles and
heavy vector bosons (which presently must be
admitted to exist in a quasimythical realm). How-
ever, it is clear from the discussion above that
many theoretical constraints of a general nature
can probably be obtained from a consideration
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of the phenomenological information already at
oul disposal.
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APPENDIX A: NOTATION, CONVENTIONS,
AND OTHER PRELIMINARIES

As in Ref. 5, our metric and Dirac conventions
are

y4ypy4 y)1

%'e deal throughout with a general model of the
type espoused by steinberg, ' containing weakly
interacting fermions, scalars, and vector gauge
particles, and strongly interacting vector gluons.
The strong and weak gauge groups are assumed
to commute.

Leaving out the strong gluon kinetic terms (ir-
relevant as we work throughout in a "strong
Heisenberg" representation), the quadratic part
of the Lagrangian is (after shift)

g„„, = -~(B„W „8W-„)(fll ) a(B"Wa 8 "W-a} a(t g-)(f 8„@(8"Pf-~ P aW „W( l)l(g-, 8'+ m)g- ~M'(, ill, ql,.

2F (e-„W" )(B„W~)+ (1/2$)(/~8„X), (&@8 fl), Q, Qf -8& m* 8"ut„-(1/$) p'

where f, W„„,
gauge vector,
respectively.
and gauge and
ing relations:

P„~~ represent the fermion, weak
shifted scalar, and ghost fields,
The usual constraints of Hermiticity
Lorentz invariance imply the follow-

[g„r ]=[l'„t ]=[g„e„]=0, (As)

The matrices t„, f& may contain y, 's, but we
assume that the zeroth-order mass matrix m
has been diagonalized to remove y, 's.

The propagators are found to be [with p'
—= (X, f pe~ 8 SX)]

„a„(l)=g„„(l)„a+l„ l „[l]„a,

A,', (1)= (g, l'+M')-' .

+ —,()l'+P') ' a(8 X), (eel)f, (A5)
I
$2

~'(1) = (ft-,g'+ m)-',

& a(l)=((tl'+u') ' a,

where (l) &, [l] a are defined as follows:

where v', t, 6) generate the weak gauge group
in the adjoint, fermion, and scalar representa-
tions, respectively. For any matrix X, X=-y, Xy4.

&~ =ta

{A4)

(l) a:—(CIl +p )

= 1
[ l]„a—= —,(()1'+ p'-) '~a-(l}„a) . (A6)

It is also convenient to define a "gauge-indepen-
dent, unitary" scalar propagator

2,', (l) (t.,l'+=-M')-'„+, '(8„&),(8,&)f
(~} g

n i 8

= a,~f(l )-[l]„a(8„X),(eel)f
= [(g,l'+ M')-'H]„

-» [(Cw 1'+ V') 't'w(u') 'flfgl . (A V}

In the last identity, II is the projection operator
onto the subspace of physical, massive scalars:

II„=8„+(P') '„a(e„x),{tqeall), ,

(fl„),=(e ~), (e,~)f .

In our calculations, we use fermion spinors
normalized, for free fields g, by

(0~$(x}~q, ) =e"&'U, {q,),

(qf ~ $(x}~ 0) Uf (qf )e "f

(A8}

(suppressing spin and internal labels) for initial
and final fermion states. [These spinors contain
factors of (2ff} 3f'(m/E}"'t& "' relative to con-
ventionally normalized spinors. ] The Dirac
equation in momentum space is

f (qf }(~&f If + m) = (fl, 4, + m) U, (q, ) = 0. (A1o)

The weak interaction Lagrangian is given by
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& w
= k(&w)nscs«s(e((wn» evwn((}w «ws-k(&w)nscn«scs(»w((w uw(w» i(-& ((8(() (((8„4' ()P (w((-(esI ((eat) (Pfwa ((ws

1 1
2(6sC@8»t )((4(q ( W((Ws(( 2 ( f((k 4(4(4 k 4,

f((klan(kf

Ak 4( 8» ~ri cas«~sW«
4

1 ,(6',g,e.x),y, + q."w~„+s, y, (A 11)

where the vector and scalar currents linking the
fermion and boson systems are

j„„(x)= ig(x-)sky„ t g(x),

S, (x}-=-(t (x)I;(l(x) .
(A 12)

f„k (e„z)(= [6„,M']„,

f((k (6 1.)((es«)( = -(M'6 8s1)k

f„,(6 X)((esX. ),.(6«X)k =0.

(A 14)

Finally, we summarize the current-algebraic
results which we shall need. Here it will be as-
sumed that the strong interactions are mediated
purely by gauge vector gluons. It is then at least
plausible that Schwinger terms in the time-space
canonical commutation relations (CCR's} are c
numbers and may be dropped in computing 8-ma-
trix elements. Finally, to ensure renormaliz-
ability, we must insist on the cancellation of tri-
angle anomalies. The relevant CCR's are then'

[j,'(x, t },j s(y, t )] = i5'(x-y)c s«j «(x, t )-

Finally, as shown by steinberg, ' local gauge
invariance leads to the bevy of relations (all of
which will be crucial for verifying the $ indepen-
dence of our results)

[t„, yi ](= (8„)(,y,I'(,

[t., y, ]«=«((8.~), y,i;;

&I ('&„-=&I
I I".(o}II&,

(s, &, -=&I'ls, (o)II&,

~»",(I) -=d e-""(I
l T{j~(x)j,(0)) lI&,

z„",(I) =- d e '"&I
l -T{j&(x)s,(0)j lI),

5:„(1)=- dxe '"&I"
I T{S((x}S((0)]II& .

Using (A15)-(A17) one obtains (q=P, I'«)-
q»( jn )El (en')( &S()FI ~

I„S""s(l)=-(c„s«&j "«&(«+(8 Z)( 5:("s(l)),

(q-l)„Z(' s(t) =c„»&j",)„-(esk), O.",(I),

(q-/)„S "(„(I)= -i(6„)„.& S,. &r,

-(8.1.),. s, ((-q)I, (A2o)

l„(q-l)„F"„"s(l)=c,s«l„(j «), i(6 es-1),(S, &,

+( 8~), ( es),1S„.(l);

S&",(I) =S s»(q-l),

p ((„(I ) = S "„((q- l ),

r„(I)= 5„(q-i) .

5"„(I)-=dxe ""(I'lT{S,(x)j('(0)j lI), (A18)

+ c-number Schwinger
terms, (A15}

[j„'(x, t), S, (y, t)]=5'(x-y}(6 ),(S((x, t). (AI6}

e„j"(x}= i(8„X)(S,-(x) . (A17)

Let lI), lI' & be arbitrary hadron states of total
four-momentum P„P&, respectively. %e define
(all fields in strong Heisenberg representation)

Also, the equations of motion (in the strong Heisen-
berg representation) imply

APPENDIX B: RENORMALIZATION
OF THE FERMION PROPAGATOR

In this appendix, we discuss the fermion (i.e. ,
lepton) wave-function renormalization in a com-
pletely physical, on-mass-shell renormalization
scheme defined by the absence of external-fer-
mion-leg radiative corrections. In other words
if Z, '"-=1+a, is the wave-function renormalization
matrix for the fermions, 6m is the mass counter-
term, and Z&P) is the fermion self-energy (all
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computed to one loop), we choose ~2 and 6m by
requiring

lim, (Z(P)+5m-(ig, , P+m)z, —z,'(ig&P'+m})
p p. i r, . +m

x U(P;) =0. (Bl)

On general grounds the self-energy Z(P) can be
shown to take the form

Z(P) =&'(P')(t(t P+m)

being careful to keep terms involving (ir„&P+'m)
on the extreme right or left, we find that the self-
energy can be written as follows:

Z(P) = Z, (P) Z, (P) "-.(P),

Z, (P) =
2, ), dt(k r"t.&'(P —t)t r.te(l). e

—F.~"(P - t)F, ~,', (I)), (B4)

+ (tq, P+m)A(P'}+ It(P'), (B2)

where A(P') and B(P'), in Dirac space, involve
the identity and possibly y, .

Repeating %einberg's calculation of Ref. 8, but
+,r,[t„[t., r, m]] dl;, (a5)(l), e

dl[l]„{'t t, +r-, [r, , t ]&'(P —t)t„)('&,P )} .

Z, (P) arises basically from vector and scalar
emission-reabsorption diagrams, and is separate-
ly gauge-independent. It is momentum-dependent
and hence will be involved in the calculation of

In the following, we will denote the contribu-
tion of Z, (P) to the wave-function renormalization
by z, o, . Z, (P) is, of course, momentum-inde-
pendent, and contributes solely to mass renormal-
ization. In calculating Z, (P), a term has been
neglected involving factors of (tt,, it+m) on both
the right and left: Such a term is evidently, from
(Bl), irrelevant to the determination of either
sm or zz. Z, (P) is clearly gauge-dependent; its
contribution to &2 can be directly read off from
(B6) as

The "P" in (B"t) is to be interpreted as the mo-
mentum of the spinor on which &2GD acts. To
justify (BV), we note that

lim . (Z (i&„P'+m)+{il„,P+m)z
1

~.i l'
„i +m

—W" (P')(ig, P +m) —(ig,P +m)~(P'))

"&(P;)=0 (B8)

is satisfied automatically for any given A{P') by
defining

«(P;) =-~(P )I (P,).
Finally, it remains to calculate &2G, . Writing

zmon —
(2 )4 dl[l]~e

x(-.'t„te+t.t '{"P"—t)r, [t„r,m]}.
(av}

Z, (P) =( C.P m)&., (P')

+A or {P'}(il t, & +m }+&oi {P'}

a short calculation yields

(810)

(P') =
2,}. dtik& (P- l}[t.D(P —t)te(t). e+ , &,'D(P —l)F,'~,',(I-)],

z
&Gl(P )-2(2 )4 dt(4k~(mD(P —l}+D (P —l}m)te(t)~e —I", (mD(P —I) +D (P —t)m}I,'Zi. ..(t)}

—A~o, (P')m —mA „(P'), (B12)

where we have introduced a modified Yukawa cou-
pling matrix l,'—= g& 'I', and a. denominator matrix
D(P —l)=—{(P—I}'+pe 'm&& 'm} '. The gauge-
invariant wave-function renormalization thus

arises from two sources:

2GI 2D 2P ' (B12)

From (BS), (B9), and (B10) the logarithmically
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divergent contribution to ~, G& is given directly as

&2,n =&m("p'") . (814)
In the evaluation of Ao, (P') it is convenient" to
diagonalize the boson mass matrices. Introducing
the appropriate transformation matrices

f(t ').2= Pf(u. ')O..O8. ,

(816)
f(M')' = Qf(M«')O1«O «

p2 g 1/2~2' -1/2 (g2)T

M2 g
-1/2M2g -1/2 (M2) T

0

and using the explicitly unitary form (A7) for
6,2(t), we may recast (Bll) in the following form:

it't ft/4o, (P )=, dl tent(P —f)) Q t„D(P —l)t„(l'+g„2) '+ Q I'„D(P —l)I'„(l'+M„') '
N, Ng&0

where

t„=—C „„(f12 "')
8 t 8,

"«=O~«(&e "') /I"/ ~

'[t„,&,m-]D(p —I)j, '[t„,r,m]
n, p &o

(816)

(817)

(816)

(816) will be evaluated using the dimensional cutoff of 't Hooft and Veltman. " The calculation yields the
following Feynman parameter integral for ~, D:

«" /21' 2 ——2'x) dx(1-x) g t ("P'"x(1—x)+xm'+(1 —x)Tt„')"" 't„
0 n

+-', Q I'„("P'"x(l—x) +xm'+ (1 —x)M„')"" 'I'„
S krhr~o

g, -'[t„,q,m ]("p"'x(1-x) + xnP + (1 —x) i2„2)""-' t. , '[t„,r,m ]
n, fl &o &n

where I( is the continued dimensionality of the
Feynman integral in (816), and m —= g& 'mt& 'm.

~, & arises from the on-mass-shel. l derivative of
Bo,(P'). The electromagnetic contribution can be
directly calculated in the usual way, as the charge
generator commutes with the fermion mass ma-
trix. However, the calculation of the nonelectro-
magnetic contribution, z,"&, for a general gauge
theory is complicated by the noncommutativity of
the various matrices involved. This computation
is best performed in the context of specific mod-
els. We merely note here that the contribution of
&, ~ to the allomorphic 8-matrix component is
separatel. y gauge-independent, unitary, and fi-
nite —the last property following from the fact
that &,~ arises as a momentum derivative of the
logarithmically divergent Bo,(P2). Finally, the
following order of magnitude estimate holds for
the nonelectromagnetic part of z2& (m„m z are
typical lepton and Higgs-scalar masses, respec-
tively):

,„-O~ G... , G, ,)).ms
2, (820)

In particular, for m, '~ m@', there can be no
O(n) purely weak contributions to z», a.s there
certainly are to ~».

AePENMX C: EVWLU~TIOW OF SS&»gS&i'

In this appendix, we reduce the allomorphic con-
tributions involving single-current hadronic ma-
trix elements to integrals over Feyn~an parame-
ters, at which juncture model-dependent specifica-
tions and approximations are most conveniently
applied. We define
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Our object will be to calculate J», 8&, 8 . We will
assume, for algebraic simplicity, that the invari-
ant matrices 1'& = ps= g» = 1, and that (with no loss
of generality) any y, factors in the fermion mass
matrix have been removed by redefining the fer-
mion fields.

It is very convenient to work in a representation
in which the various mass matrices are diagonal:

f(I( )as = gf((((tq )Ctqtq Csn q

fermion squared-mass matrices, respectively.
The external spinors correspond to eigenstates

of fermion mass, so

(U()q ='apl u(q(), m ~'ILq~ = mq&, I,
( U~)» = u(q~)%1»q'», m»'(lp» = m~'ll » .

(C3)

Matrix elements involving antileptons can, of
course, be obtained immediately from crossing
relations. We will also need the various coupling
matrices in this representation:

(C2)
X]=-& I'g'~f Xg=& I'g&

(C4)

with p.', M2, and m' the vector, Higgs-scalar, and
]

The calculation is best performed using a dimen-
sional cutoff': Particularly useful are the formu-
las

[t, t', r" ] fq't['t, =-l", t"t'](t' m,*) '((q, —t) tq, '}''((q, -t)' ~

1 X1
=zv dx( dÃgD(«(t «2, q(t qmqm»m»m, )

0 0

x [1 (3 —,'((), Z'(3 ———,'(()((x, —«, )q", + (1 —x,)q,"),
1'(3 ——,'(()((«, —x,)q", + (1 —x,)q,")((x,—x,)q,

" + (1 —x,)q,")

+r(2 —,'((),'g""D(x„x„—q„-q„m„m„m,}j, (C5)

where D(x,x„q,q, ; m, m, m, ) is the denominator function

D(x„x,; q„q, ; m „m„m,) -=x,m, '+ (x, —x )(q,'+ m, ') + (1 —x,)(q,'+m, ') - ((x, —x )q, + (x, —1)q,) '. (C6)

The calculation is straightforward —in stating
the results we employ a summation convention on

repeated indices, modified by the instruction to
sum only over massive vector mesons p, „w 0 when-
ever factors of (I(„') ' appear; similarly, the sums
involving definite-mass Higgs rnesons omit the un-

physical Goldstone particles. Note also that the
mass scale employed in defining the arguments of
logarithms is arbitrary, since the logarithmic in-
finitiesin58' '+~~ ", as shown in Sec. V, are
not allomorphic. We find

&s„=(&,)s„+(&,) s „+(J,)s„+(&,) s„ (Cv)

1)s]t ( ) j (»2, E~([ty[t t s ~t[ty[t I s»2, F) ( '

(C8)

The other contributions are

First, the explicitly finite contribution from wave-
function renormalization is given by (cf. Appendix
B)

1

(J2) s &
——»w dx(1 —x)u(q&)

~
2y~(r„)zz(r„&s) zz ln( q&'x(1 —x) + xmz' + (1 —x) I(„2)

+ 2y „(rsr„)»~(T„)~, ln( q, 'x(1 —x) + xm~'+ (1 —x)I(„')
+ (II»)„~y„(X»&s)~, ln( q(, '«(1 —x) + xm~' + (1 —x)M»')

+ y„(7' sI[»)»~(]I»)~, in(q, 'x(l —x) + xm~' + (1 —x)M»')

[()I()»,y„(]t,rs)~, in(q~ x(1 —x)+xm, +(1 —x)i(„)(e„I[.),(e„z), 2 2 2

+ y»(& s X()»g(X()gi »(q('«(1 —«) + «m~'+ (1 —«)V. ') j [ u(q( ),
(C8)
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I

(J, ),„=-??' dx,
Xg

lnD(x„x„' qf, q, ; g„,m~, mL)r„(~„)pf(72)~L( „),
+ 2?C?? ag C8 2 Cg m 1~(x?~ »2~ qf ~ q~ i? ~ my~ /lm)( )pfy (Tm)~?

2 qf q? N Z ?, )(X??)pfy2( 8)ZL(XN)LI

(e„x)„(e„x),
'(Xk)Pfr, ( 2)gL(X? )L?

~n

—lnD(x„» ', qf, q;M, m, M )(0 880) „(X„)pzy&(xp)z?

(e„x),—lnD(x„x„qf, q;M„,mz. ?L )(0 ese, x)» 2 (X?f)p~y2(X?)~?

(e„x)k+lnD(x„x, ;qf, q; i?„,mf, Mp)(0 8??8„X)p "
2 (Xk)pfrk(Xp)zf

&n

(e„x),(e,x),+1~(x x qf, q; u. ,m~, V, )
"

2 2
'

(X ep 888 X)(xk)pJ'y2(X? &r?
Pff PP

(C10)
[in (C10), 0 refers to the transpose of the orthogonal matrix 0],

1 X
g

(z4)??„=??' dx, dx?u(qf ) )-2D(x„»2; qf, q, ; g„,mf, mL) '(7„)p~
0 0

x[(Q(qf, q, )-?f')r„4(q„q )(?&2), +2?m (7??), (q„—Q„(q„q,))
—2i (&8)~LmL Q„(qf, q?) - y„mf(7'2) ~LmL] (7„)L?

4L 2' 26 C??'2 CQ mD(x?& »2 'qf qi Pk mZ Pm) (qf& Q2 (qf q? Wrk )pg

x(?Q(qf, q?)+2mf)(& )ff

D(xly xkt qf t q? tM?ftmgtmL) (Xff)pf( ? 'Nqf ) qj)™j)'3 2( ??)ZL

&&[-?(4(qf, q, ) —0)+mL] (XN)L,

, (e„x),(e„x),
D(x? »2 'qf 'q? I mf mL) 2 (Xk)pj'( ? Q(qf q? )™,)y„(7&)„

&& [ i(Q(q-f, q, ) —f)+mL](X, )L,

+ 2?D(x x qf q;M„,m„M,)-'(O 'e,O),„(q, —Q„(qf, q)) (X„)pf
x (-ig(qf, q)+mf)(Xp)f?

+ 2? D(x?y »2j qf p qpMNs mph' lkk) (0 82 82k)?? 2 (qf Qk(qf t 'q)) (Xff)pg
(e„z),

x( —i g(qf, q) +mf) (X, )f,
2iD(» x '

qf q'?L mf Mp) (0 828„X)p "
2 (q, —Q, (qf q))(xk)pf

r (8.&)k
p

x(-? Q(qf, q)+mf)(X p) ~,
(e„x),(e, x),2? D(x »2 qf q lk mg Mp) '(x, 8, 828.x) "

2 '2 '
(qf —Q2(qf, q)) (xk )p J'

Pp
1

x (-?Q'(qf, q)+mf)(x? )Lf
1

c??7 QC72 C $(2Dyxx??yqf y qy /?2 pm' y i?k /

[24(7„)p~(-? Q'(qf, q)+mf)y„(&, )L? —2y„( .)pf( ?Q(qf, q)+-m~) 4(, )~?

+? (8.&)f (Xf )pf(-? Q(qf, q) +my) r (& )f
—r„( „)„,(- (?~(q, , q)+m, )(e,x) (x ) ]

+ (( 8?|, 8 }x)„D(x„x„qf,q, IL„,m~, M„) y„(7 )p~(-z Q (qf, q) ™~)(X„)~f

+(/88, 8„}X)„D(x„»2;q„q;i?„,m~, M„) '(X„)pf( ip(q? „q)+mf) r„-(7„)~, ??(q?) .

(C 11)
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In (C11) we have defined the four-vector quantity (C 12)

Q(x„x„q„q,) -=q, (1 —x, + x, ) + q, (x, —1}

=-Q(q„q. ) . (C 12)

Again, we first have the contributions arising from
the convergent part of the wave-function renormal-
ization:

We proceed similarly with the contributions in-
volving the hadronic matrix element (S,}~1, namely

I

(S,), =-i (2«)'V, («J',I",+i,x, ,)U, .

Next, the terms from 5S~ yield

(C14)

1

(&*); l~= -f&**(&- )&(ei)

x ~2(r„)~~(r„X&) ln{qz'x(I —x) + xm~'+ (1 —x)p„'}

+2(X~ r„)~~(r„)~r ln(q, 'x(1 —x) + xm~'+ (1 —x)p„'}
(+X )«zz(X XNy)zri {qy x(1 «)+«mz +{ «)iifN }

+ (XJ X«)EJ(X«)zl »(q& '«(1 —«) + xm~' + (I —«}~«'}

(e„X),. (6„X},'
[(Xf Xj)pg(X, )~, 1n{q, 'x(1 —x)+xm~'+(1 —x) p, „')

(XI )Fg(XR XJ }Jl ln(qf «{I x) «mg (I «)9g) ] +(q'( ) &I (C15)

while the remaining logarithmic terms are

(8,), =2iw dx, dx, R(qq) 41nD(x„x„.qq, q, ; p,„,m~, m~)(v'„)~~(X, )~~(T„)~,
0 0

nD(«1 «2 q&, qt ~N mg m«)(XF)EJ(XJ )zI(XE4I

(e„X)„(e„X),+lnD(x„x2; qz, q, ; p„,mz, mI ) " "," '(X„)zz(X&)~~(X,)zz, u(q, ) (C16)
l~n

[here again, the (uniform) mass scale used to define the logarithms is arbitrary, as far as the allomorphic
contributions are concerned],

1 X $

(g.), = ' &, &, (,)] („., „.. ., „)(.),
0 0

[ 4Q(qf q( ) (Q(qf qi ) q}(XJ)ZL +4m/(XJ)JLmL

+» @(qf ql )(Xg)gLmL+2zmJ(X))z1(g(qy, qi) —g)](~ )LI

—D(x„x,; qq, q, ; M„,m~, m«) '(X„)„~(-ig(q~, q, ) + m~} (X, )~~

&& [i(4- 9'(qg, q( )}+m~](X«)~~

, (e„X},(e„X),D(x «2 qf q$ P mg mI ) (Xk )pg{ i Q(qf ~ qf ) ™z}(XJ)J'I,
~n

[i{-fI gq, ,q})+m]( iX4z

4(+8, 6„),DX( „xqx, , q; g„, mg, ) '(T„)~,(i@(q, , q)+2m')(&, )„
+2i (8„0),„D(x„x„q~,q;M„, m~, p„) '( X) ~r{if(q~, q)+ m, }g(&„)~,

—»(~„)», ' D(«„«„q„q;~„m&, ~.) '(X&)~&( iQ(qj q)+mJ}4(~„)ge-(e,X), e, X),

Pp

+2i (&„0),„D(x„x„q,, q; y„,m„iaaf«) '4(&„)~~(-i@(q~,q)+my)(X«)~z

—» (e„)~a . D(x„x„qy, q, V. , m~, Vp) 4F(&. )z~
(&~ &)a (4&)a

Pp

x{-iQ(qg, q)+my)(Xa )rr
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f, j-.kOj rrOkpD(x„x»qr qjMx mr, Mp} '(X„)pr( i-Q'(qj, q)+mr)(Xp)rr

(e„x)j.(e„z)j.+f,j «Okp
" k" D(xr) xk,'qj, q; ir„,mz, Mp) (Xj')pz

~n

x( iq(q„q)+mr)(xp)rr

(ep X}k(ep X}k+fjj koj N 2 D(xr& xki qj q Mrr r j k) (Xrr)p/
p.p

x( i g(qj, q) ™r)(X»' )rr

(e„x),,(e„z)j.(e, z), (e,x),.fjjk 2 2 D(xr'1 x2i qf 1 qt i k ™rj k) (Xj )pr
&n &p

x(-iQ(qj, q)+mr)(Xk }rr
—(0'e„X)je„O)»D(x„x,; q, , q; u „,m„M, ) '(Xx)pz( ig(qr-, q)+mr) (Xpjrr

(e,z), (e,x), ,+(0 e„x)„(8„)», D(x„x„qr, q; jr„,m&, P,, ) '(Xrr) pr
Pp

& (-iQ(qj, q)+mr)(Xk }rr
—(0 8 X) (ego)j D(x,&x;qj, q;Mjr, mz, jr ) '(X rr) pz( iQ(qj q-)+mr)(XP)rr

(e„x),,(e„x)j.+(0 eked. ) (ep)jj " ' " D(x„x„qr, q; ir„,m, jrk) '(Xj)
&n

(- 9(, , )+ )(X )„( ). (C17)

Finally, we find for S~

1 Z1
=-irr dx, dx B(qr))(0'8 0)NpD(x„x, ;qj, q;Mrr, mr Mp) '(Xrr)pr( iV(qf q)+-mr)(Xp)rr

0 0

(e„x}j (e„x}j'—( ~80) 'jp k ( r~ kiqj qi Irk~ z~ r) (Xj)pr
~n

( V(qj, q)+m-r)'(Xp)rr

(eked)k(eked)k 1—(0 8 }„,. D(xr~ xki qj ~ qiMN~mz~ irk) (Xsr}pr
Pp

x( ig(qj,-q) ™r)(Xk)rr
(e„x)j(e„x),. (e,x), (e,x),.+ " "

2 2 (8 )j k D(x» xk 'qf ~ q j™rV'k) (Xj )Fr
Pn Pp

x{—if(qr, q) ™&)(Xk)&r( rr(qj ) . (C19}

In estimating the magnitudes of the above con-
tributions, one may use (with some care) the fol-
lowing relations:

m~-typical (massive) gauge vector mass,

m@-typical Higgs-scalar mass.

?Pl

Xj, l', -e . &~(&pr -e
PPg

r„, t, -e, (j~}pr
PPg $f jjk

(C 19)

Using (C19) and (C20), together with the estimate
(ignoring logarithms), valid for any r'easonably
continuous f(x„xk),

J
1 z1

dx, dx, f(x„x,)D(x„x,; q„q„m „m „m,) '
0 0

where

m, -typical lepton mass,
m„-typical hadronic ferrnion (quark) mass,

(C20)

-(max(q, ', q, q„q,', m, ', m, ', m, '))

one easily obtains the conditions (7.1), (7.2) for
0(aGp) pseudoscalar contributions in pion decay.
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on Higgs meson masses.

~~In asymptotically free theories, those coefficients
which vanish in strong Born approximation [namely
C~B(l2)] will of course vanish logarithmically in the
asymptotic limit l —~.
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