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The feasibility of Goldstone realization of weakly probed chiral symmetries is examined in the case
that strong interactions are described by an asymptotically free theory of zero-bare-mass quarks and
gauge vector gluons. This investigation is restricted to finding solutions to the homogeneous
Bethe-Salpeter equation for the symmetry-breaking part G of the quark propagator S,

G(p)ys = {S “'(p), s}, in the limit p? — — . Renormalization-group techniques are extremely
useful in this limit, and are used extensively. Their naive application implies the leading asymptotic
behavior G(p) ~ (Inp)~*, where A is a calculable positive constant. More importantly, it is shown
that the Bethe-Salpeter kernel is well approximated by the iadder graph alone, with the effective
coupling g%(p) ~ (Inp)~', when the strong interactions are asymptotically free. Two solutions are found
for G. The asymptotically dominant one, G ,(p) ~ (Inp)~*, is just what was predicted by
straightforward renormalization-group analysis, and does not correspond to Goldstone realization of the
symmetry. The other solution has much softer asymptotic behavior, G _(p) ~ p “*(Inp)*. That this
solution actually corresponds to the Goldstone mode is established by relating it, through the
axial-vector Ward identity, to the Goldstone-boson—quark-antiquark vertex function, whose
large-momentum limit is analyzed via the Wilson operator-product expansion.

I. INTRODUCTION AND SYNOPSIS

In this paper we bring together two important
ideas of particle theory to determine if they are
mutually compatible. The first, and most vener-
able, of these was proposed by Nambu and Jona-
Lasinio’ to explain the fact that the pion is almost
massless and the axial-vector current j,, to which
it couples almost conserved. Their observation,
based on analogy with the Bardeen-Cooper -
Schrieffer theory of superconductivity,? was that
even though a Lagrangian may be chiral-invariant,
3%j,, =0, this symmetry will not be reflected al-
gebraically in S-matrix elements if it is not a
symmetry of the ground state. Moreover, this
dynamical, or spontaneous, “breakdown” of chiral
symmetry is necessarily accompanied by the
presence of massless pseudoscalar mesons, now
commonly referred to as Goldstone bosons.® The
symmetry is not really broken,* of course; the
axial-vector current is exactly conserved, and the
pion remains massless through all perturbative
orders of the Lagrangian.

One of the stumbling blocks to this idea—how to
explain the small, nonzero mass of the pion in a
natural way—was removed by Weinberg®'® in the
course of his work on unified gauge theories of
weak and electromagnetic interactions.” His ex-
planation is that, while the chiral currents are
exactly Goldstone-conserved in the strong inter-
actions, the chiral symmetry is broken in an
explicit and calculable way by the weak and elec-
tromagnetic interactions. This can happen if the
only elementary hadrons participating in the weak
interactions are fermion “quarks,” with the mass
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of the proton- and neutron-type quarks arising
entirely from Goldstone realization of chiral sym-
metry by the strong interactions. The strong
dynamics simultaneously generates the massless
pions as bound states of quark-antiquark pairs.
The explicit chiral-symmetry breaking by the weak
interactions produces a calculable divergence,
8%y, which is nominally of order a ==, Con-
sequently, the pion mass is determined, via
current-algebraic techniques, by a formula equat-
ing (F,m,)? to O(a) times an integral over spectral
functions of weak-interaction currents.®

In a way, this very appealing explanation for the
finite pion mass puts the cart before the horse.

At our present level of knowledge, this proposal
will work only if the strong interactions of the
quarks are described by a renormalizable field
theory involving the coupling of quarks to vector
gluons which are neutral under the weak gauge
group. The important—and to a large extent, un-
answered—question is: Are such interactions
capable of dynamically generating the quark mass-
es and bound-state Goldstone bosons? This ques-
tion has been addressed in Abelian vector -gluon
theories.® While an affirmative answer seems
quite plausible, the approximations involved are
difficult to justify and, in our view, the question
is still open. (More will be said about these ap-
proximations later).

This brings us to the second important idea
alluded to, namely, the asymptotically free theo-
ries of quarks interacting strongly with the Yang-
Mills quanta of an unbroken, non-Abelian gauge
symmetry. These theories were proposed?®
initially to explain the scaling observed in deep-
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inelastic electroproduction.!' Subsequently,
WVeinberg® made a good case for asymptotic free-
dom when he showed that the weak corrections of
order « to natural symmetries of such strong
interactions do not depend importantly on details
of the interaction. This is because these weak
corrections are determined by the short-distance
behavior of the coefficient functions in a Wilson
operator-product expansion'? of two weak currents,
and this behavior is essentially canonical when
strong interactions are asymptotically free.

In this paper we investigate the central problem
which remains, namely, whether Goldstone real-
ization of chiral symmetry is possible in an as-
ymptotically free model of strong interactions.
The Nambu-Jona-Lasinio—Goldstone hypothesis
seems to be the only way to understand the nature
of the pion, and as similar phenomena occur
throughout many-body physics,? this idea must be
regarded as standing on much firmer ground than
does asymptotic freedom. Therefore, such theo-
ries cannot be regarded as complete descriptions
of even just the field-theoretic manifestations of
strong interactions unless they possess Goldstone
solutions.

In passing, we remark that we are not concerned
here with the possibility"® of dynamical breakdown
of the strong gauge symmetry—which would be a
mechanism for raising the masses of the gluons
while maintaining asymptotic freedom.!* Attrac-
tive as this possibility may be, it seems more
important to us that the “weak” chiral symmetries
be dynamically broken and that the pion emerge
as a Goldstone boson.'® Of course, if no sensible
hadronic S matrix exists unless gluon masses are
raised, the question of the pion’s existence can
become moot.

The existence of Goldstone solutions to realistic
theories is never established directly. Rather,

one relies on a self-consistency argument which
makes heavy use of (i) the Ward identity relating
the proper axial-vector vertex function, I;,, and
the fermion propagator, S (see Ref. 16):

a"Tx(p, p+q) = =% S (p +q) =S (p)rs, (1.1)

and (ii) the integral equation for I},

4
T (P, p+a) =y +4° f (‘;—n];a (ST (R, k+q)S(k +q)]
xK(p, k,q), (1.2)

where K is the fermion-antifermion (¢3) scatter-
ing kernel. [See Figs. 1 and 2 for pictorial rep-
resentations of Eq. (1.2) and the kernel.]

This simple argument proceeds along the follow-
ing lines: From Eq. (1.1), the fermion can have
a nonzero mass if and only if I, hasa pseudoscalar
pole at ¢°=0, whose residue is F,®(p, p +q)y,.
Here, ®(p, p +q)y; is the proper pseudoscalar-
fermion-antifermion (Pyy) vertex function, and
F, is the pseudoscalar “decay constant.” This
pole in I3, is attributed to a pole at ¢g°>=0 in the
one-particle-irreducible ¥§ scattering amplitude
T:

T(p, k, Q) =K(p, b, @) +i* [ KSST, (1.3)
(7] o =@ (R +q, k) ;1%-6’(/>,1>+q)~/5. (1.4)

Equations (1.2)-(1.4) imply that @ is the solution
of the homogeneous Bethe-Salpeter equation'”:

©(p, pral=i® [ (S &, k+qyS(k + )] K(p, &, @)

(¢>=0). (1.5)

Finally, Goldstone-realized chiral symmetry is

considered to be a viable alternative for the theory
if there exists a nontrivial solution to (1.5), satis-
fying the Bethe-Salpeter normalization condition,'®

2ig, =" fd‘*pTr{S(p)@(p,wq)yssw +0) 535 ST P+ (D) |S(p+ O (b 40, Py ()|

f

+fd“pd“kTr}S(k)(P(k,k+q)755(k+q)[#1{

Modulo questions regarding the physical sig-
nificance of their results, this program has been
carried out successfully by Nambu and Jona-
Lasinio (in a nonrenormalizable model in four
dimensions)! and, recently, by Gross and Neveu
(in a renormalizable, two-dimensional version of
the same model).’® An important feature of both
models is that the scattering amplitude T is shown
to have a pseudoscalar pole at ¢*=0 in the same
approximation for the kernel in which Eq. (1.5) is
solved.

(p,k,q>]s(p+q)c><p+q,p>yss(m( @=0). (L6

f

In the more realistic, gluon theories, however,
the integral equation (1.5) is so complicated that

K p

@ < G

k+q p+q

FIG. 1. Graphical representation of the integral
Eq. 2.6) for the (unrenormalized) axial-vector vertex
function I'$ (p, P + q).
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FIG. 2. Graphical representation of the components
(a) K; and (b) K, of the color-singlet, two-fermion ir-
reducible, scattering kernel K ;. 4,(?,%, 9). Letters
a,b, c, drefer to external fermion spinor components;
fermion lines are straight and vector-gluon lines are
wavy; shaded blobs represent all possible subgraphs
consistent with the definition of K.

one resorts to a drastic approximation scheme,
as follows®”?% First, the coupled equations (1.5)
(for each invariant function in @) are replaced by
the single equation

P(p*hs=lim @(p, p +q)x
=i f [S(R)P (K S(R)K(p, k,0). (1.7a)
Equivalently, the Ward identity (1.1) implies
{r S7H(p)}=s? f {% Sk}K(p, k,0).  (1.7b)

This is still very complicated, so the second stage
consists of seeking a solution to (1.7) in the limit
p*~ —, where it is assumed that the ladder ap-
proximation to the kernel is valid. By the ladder
approximation, we mean the single-gluon ex-
change graph, in which lowest-order expressions
are used for both the gluon propagator and the
gluon-fermion vertex function.

This scheme, whose spirit we also follow, is
open to two obvious criticisms. The first is that
a solution to (1.7) (also satisfying the normaliza-
tion condition) does not imply that (1.5) has con-
sistent solutions, nor does it guarantee that T has
a pole at ¢°=0. Here, we have not improved on
past work, and we take as a working assumption
that it suffices to examine the question of solutions
to (1.7).

The second criticism is that it is not at all ob-
vious that the ladder approximation is justified,
especially when p*—~ — ., Most of this paper is
devoted to the technicalities of establishing its
validity, when the fermion-gluon interactions are
asymptotically free. In the remainder of this
section, we motivate the arguments for proving
this, and summarize our principal conclusions

regarding spontaneous breakdown.

The question of the ladder approximation is best
answered via the techniques of the renormalization
group,?! which we use throughout much of this
paper. When p*—~ —=, the integral in (1.7) gets its
major contribution from large values of the inte-
gration momentum k. Suppose we replace the
momenta p and % in that equation by «p and k&, and
scale k to infinity. According to the renormaliza-
tion group, the behavior of the kernel as a function
of asymptotic momenta, xp and kk, and the re-
normalized fermion-gluon coupling constant (call
it gg) is governed by its behavior as a function of
finite momenta, p and &, and of the so-called
effective coupling constant, g(k, gz). Therefore,

a perturbative scheme such as the ladder approx-
imation is meaningless unless the effective cou-
pling is small. That this is the case has never
been established in the quark-massive-gluon mod-
el. On the other hand, g(k)~(b1nk)~! as k- in an
asymptotically free gauge theory, so here there
is hope of justifying the ladder approximation.
(Here b is constant determined from group theo-
ry.)

In Sec. II we propose a model of massless quarks
and gluons, define and discuss the Green’s func-
tions of interest, and describe how they are to be
renormalized. Our renormalization procedure
follows closely that of Weinberg® and ’t Hooft,??
modified slightly to account for the assumption
that quarks with zero bare mass have nonzero,
dynamically generated physical mass. All this is
a necessary prelude to Sec. III, in which the re-
normalization-group analysis of K and S is carried
out. Special attention is paid here to the fact that
the external momenta, (p, %, 0), in the kernel are
exceptional.

The principal results emerging from this analy-
sis are as follows?*:

(i) The leading asymptotic behavior of the sym-
metry-breaking part G of the fermion propagator
is (henceforth, we deal with G, proportional to P
by virtue of the Ward identity)

G(kp, gr)rs {7, STH (D, r)}

~. (Ink)~4G(p, g(k)) , (1.8)

where A is a positive constant determined by the
structure of the gauge group and the representa-
tion assignments of the fermions. Therefore, we
expect the asymptotically dominant solution to
the Bethe-Salpeter Eq. (1.7) to have this logarith-
mic behavior at large momentum.

(ii) As k- =, the kernel is given by the ladder
approximation with g replaced by g(k):
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K(kp, Kk, 05 gg) 2 k°K(p, &, 0; g(K))

=3i%g2(k)C [k(k=p)] 72 + O(g*(k) /K2 ~ (K 1nk)~?) ,
(1.9)
where C is another group-theoretical constant.
We emphasize that Eq. (1.9) is not merely the
asymptotic form of just the ladder graph, but of
the entire part of the kernel which contributes in
Eq. (1.7).

The Bethe-Salpeter Eq. (1.7) is solved in Sec.
1V, using the scaling trick p, k-~ kp, kk(k—~ <), and
the kernel (1.9). The expected errors made in
this approximation are such that terms of order
p~2(Inp)® in G(p) are left undetermined. When
written as a differential equation, (1.7) has fwo
possible solutions,

G, (p) /. a, (Inp)~* (1.10)
and
G_(p) 2 a_p™*(np)*, (1.11)

where a . are constants to be determined by the
normalization condition (1.6). The constant A is
the same as that in Eq. (1.8). As far as one can
tell from just solving the Bethe-Salpeter equation,
the error in Eq. (1.11) is of the same order as the
solution itself.

The asymptotic behavior of the dominant solu-
tion, G,, is exactly that predicted by straight-
forward renormalization-group analysis, which
is insensitive to the fact that G is to be associated
with Goldstone realization of the chiral symmetry.
Indeed, G, is the answer one gets when the quark’s
bare mass is nonzero. To decide on the appro-
priate Goldstone solution, the bound-state nature
of the Goldstone boson has to be taken into account.
This is done using the Wilson operator-product
expansion to determine the behavior of the vertex
function ®(p, p +q) in the limit p—~=, (p+q)*/p*
fixed. This leads, through the Ward identity,
G(p)e<lim, _, ®(p, p +q), to precisely the solution
(1.11). Moreover, the Wilson analysis implies
that corrections to (1.11) are down by powers of
», not just powers of Inp. Thus, insofar as def-
inite conclusions may be drawn from arguments
valid only at large momenta, chiral symmetry
in the Goldstone mode seems a viable possibility
for an asymptotically free theory of the strong
interactions. It goes without saying that analysis
at low momenta is needed to firmly establish
this possibility.

I1. SPECIFICATION OF THE MODEL AND
RENORMALIZATION PRESCRIPTION
A. The model

We consider a model in which the strong inter-
actions of zero-bare-mass fermion “quarks” (¥)

are mediated by a set of “colored” vector gluons
(G!) which are the gauge bosons of a strong sym-
metry group G,. For definiteness, we shall
assume G, =SU(N), and that the quarks consist of
n multiplets of G,, each one transforming as the
fundamental representation (N) of SU(N). Writing
(superscript T denotes transpose)

®, @ v @y
Pl o, e Wy | =@ gt ),
(2.1)

® I, 7 ¥,
(PZ mZ ¢3

(T = =

Yy - - )
Cy ANy Tt Yy

the Lagrangian describing these strong interac-
tions is

£==5G,, G + Tr[§%ir"(s, —igz 7 G, 4]
+ gauge-fixing terms + ghost terms. (2.2)

Here, g is the unrenormalized coupling constant
of the theory, and 7; (i=1, ..., N?-1) are the ma-
trix representatives for (N), normalized to
Tr(7,7,)=25.

The theory described by Lagrangian (2.2) is
formally invariant under the “weak” symmetry
group G, =U(rn)xU(n), with transformations gen-
erated by the color-singlet currents

N
FINETE@n% M) =Y bnnihdr,  (2.32)
r=1
F$=Tr@mi ), (2.3b)
isa=Tr@n %y, (2.3¢)
Ir=TrE@ny). (2.3d)

Here, A, (@=1,...,n°-1) are the matrix repre-
sentatives of the representation (n) in SU(z). We
shall investigate the possibility that the axial-vec-
tor currents are conserved in the manner of
Nambu, Jona-Lasinio, and Goldstone.

Actually, because of the familiar triangle anom-
aly,?® the U(1) axial-vector current, j,), is not
conserved. The anomaly causes difficulties in
the Ward identity for j, because it is the only
axial-vector current which can communicate with
two-gluon channels. This does not invalidate the
Goldstone theorem for j,,, however, since the
anomaly vanishes at zero momentum. In prin-
ciple, therefore, it seems we are stuck with »®
Goldstone pseudoscalars instead of the physically
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more desirable #*~1. In the context of a quark-
gluon model, we see two ways of avoiding this
problem.

First, it is possible that the last pseudoscalar
does not couple to physical (on shell) quantities,
in the same way that Goldstone bosons are ab-
sorbed via the Higgs mechanism in models with
elementary scalar fields.” Here, one might
envisage the existence of a bound-state axial-
vector meson (with the quantum numbers of j,»)
whose mass is raised from zero by this process.?®
We should add that the existence of this bound
state is not mandatory (and, in any case, ex-
tremely difficult to prove). Recalling the original
arguments of Nambu and Jona-Lasinio,’! conser-
vation of j;, is consistent with nonzero fermion
mass and no massless pseudoscalar if the fer-
mion’s axial-vector charge form factor vanishes
at zero momentum transfer. The Higgs mecha-
nism is just one natural way of accomplishing this
feat.

A second possibility is that j;, is anomalously
nonconserved in the sense of Johnson, Baker, and
Willey.?” This will happen if the homogeneous
integral equation for the vertex function of @ )‘js)\
has a nontrivial solution. Langacker and Pagels
have argued recently®® that this mus¢ happen,
simply because of the presence of the triangle
anomaly.

Neither of these possibilities should alter the

conservation laws and Ward identities for the
(anomaly-free) SU(n) axial-vector currents, j&,.
Nor are they in conflict with any available data.
Accordingly, we assume solutions to the theory
with no Goldstone pole in j;), and from now on
consider only the conserved currents j§,.

B. Renormalization

We now describe our procedure for renormal-
izing the Green’s functions of this theory. We
shall be interested especially in the fermion prop-
agator and the axial-vector vertex function, their
integral equations and the Ward identity connecting
them. For simplicity, we always work in the
Landau gauge, which is invariant under renormal-
ization; hence, gauge dependencies of quantities
defined in this section and the next may be
ignored.

In a theory described by the Lagrangian (2.2),
with an appropriately defined cutoff, the fermion
propagator satisfies the integral equation

S~Hp)=p-2(p)
L (% guse
=ﬂ—1,g W A‘u' (k)r:‘(p: p—k)
X S(P—k)'h,%ﬂ , (24)

where A#+V is the gluon propagator, and I'} the
gluon-fermion vertex function. The axial-vector
vertex function is defined by

N
SST(p, p S +a)= 5 [atxatyes 0201 (0| 7( 5, i, ) |o) 25)
1
and it satisfies the integral equation (e, b, ¢, d refer to spinor indices)
4
(Tex(B, b+ = M V5)as 2 A +z‘2f(‘217;i [SETE\(k, B+ q)S (R +q) g Koean (s #, q) - (2.6)

This integral equation is depicted in Fig. 1, and
the 2-fermion irreducible kernel K in Fig. 2.

This kernel describes fermion-antifermion
scattering, with the pair transforming as a color
singlet in the channel in which the total momentum
is ¢ (the g channel). As shown in Fig. 2, this
kernel may be decomposed into two pieces: one
(K,) which cannot be cut in the g channel without
cutting at least two fermion lines, while the other
(K,) may be separated by cutting only (two or
more) gluon lines. In equations,

Kicas=E acoap *Eolac,ao
=(K!)GC(K;)db+(K2)qb(K2,)dc . (2.7)

Only K, can contribute to the integral equation
(2.6), because gluons are neutral under the weak
group SU(r)X SU(n). This fact will be useful to us

—

in the renormalization-group analysis of Sec. III.
[Note that both K, and K, contribute to the similar
integral equation for the U(1) axial-vector current
js», whose triangle anomaly is associated with K.}

For our later discussion of large-momentum
behavior of propagator and kernel, it is very
convenient to adopt the zero-mass renormaliza-
tion procedure (ZMRP) of Weinberg?? and ’t Hooft 2
These two versions of ZMRP are essentially
equivalent,?® differing only in whether the theory
is to be regularized by means of a gauge-invariant
momentum cutoff (A),%° or by dimensional regular-
ization.*! Our remarks will be couched in the
language of a cutoff.

According to ZMRP, wave-function and charge
renormalization constants are determined by
specifying the value of the appropriate Green’s
functions when all external momenta p; are fixed
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at a nonexceptional Euclidean point, with p,? coupling g; similarly, the renormalized coupling
=-u? and with all bare masses, my, set equal to 8r=8r(A/iL, g). For example, S~!and I'Y, are to
zero. Renormalization constants are then func- be renormalized by multiplying them by constants
tions of the ratio A/u and the unrenormalized Z,and Z ,, respectively, defined by

—J

22“(—2— , g) =coefficient of #in S™'(p, A, my, &) | 3%

(2.8a)
ZA'1<%, g) =coefficient of ¥\ %3 A, in TE\(p, p+q; A, my, 8) IZ“°2"'=°_“2 . (2.8b)
r
The kernel in Eq. (2.6) is renormalized by multi- chiral symmetry in the cutoff theory, but if m,
plication with Z,2, - 0 “rapidly enough” as A - =, the renormalized
It is also necessary to provide for mass renor- Ward identities will be symmetric again. More-
malization in a theory with m;# 0. Weinberg does over, if Z,~ 0 at the same rate as m,, it is pos-
this by introducing a “renormalized” mass (which sible to have a cutoff-independent my #0, which
is not the position of the pole in S), we can use to parameterize the Goldstone solu-
/A tions.
mgp=Z, (E ,g> mg, (2.9) This procedure seems clumsy. In practical

discussions of spontaneous symmetry breaking
however, it is always necessary to assume the
existence of nonzero masses (for example), while
demanding that such assumptions and their con-
sequences be self-consistent. For now, there

is no other way to deal with quantities which van-

where Z,, is the constant which renormalizes the
mass operator Ezp. To sum up, then, renormalized
Green’s functions I'; are obtained by expressing
m, and g in terms of my and g, and multiplying
the unrenormalized function by the appropriate Z:

A ish in every perturbative order of realistic field
Tr( Dy, 1, Mg, &r) =Zr (7 ’ g) F(pb A, my, 8, theories.
To argue that one can have my; #0, even though
(2.10) my(A -~ =)~ 0, we demand that m; be cutoff-in-
where Z;. is determined by the nature of the ex- dependent. Then, from Eq. (2.9),
ternal lines. d

One obvious advantage of ZMRP is that it pre- 0=A an "R
serves the chiral symmetry manifest in the La- -
grangian (2.2); that is, mg =0 if mo.=0. However, =mg | A 4a Inmy(A)-A d anm(_Jl ,g> ] _
if we presume that this symmetry is only Gold- Ldaa dA .
stone-realized, the procedure will have to be (2.12)
modified somewhat if we are to learn anything
from the renormalization group about such solu- If we identify
tions to the theory. Specifically, we would like to d 5
define a nonzero mass, mg, in terms of which a A A InZ,=A A InZ,
broken-symmetry solution for the propagator may & M fixed
be written = —y(gr), (2.13)

S™Hp, u,mg, gr)=BF(p, L, mg, &r) where v, is the anomalous dimension of the mass
operator, then we can have a nontrivial solution
Mg G(P, Mg, 8p) - (2.11) to Eq. (2.12) with the desired features—provided
Renormalization-group techniques then will be ¥m is positive. Equation (2.13) is approximately
used to analyze the large-p limit of the chiral-sym- true when gy is small, and then v,,> 0 in the theo-
metry breaking function G. ries under discussion (see Sec. III).

Proceeding much as one does in Johnson-Baker- To see that it is possible to have symmetric
Willey electrodynamics,?” we introduce a cutoff- Ward identities even when my #0, we examine the
dependent bare mass, m,(A), into the theory and identity satisfied by the axial-vector vertex in the
continue to define my by Eq. (2.9). This breaks cutoff theory,*?

J

TN, D+ A, o, 8) = =2mo(A)TU P, b +a; A, Mg, ©=rb Ay S™H(p +4, A, Mg, &) =S~ p, A, Mgy, £)r3 Ay . (2.14)

Here, 2m,TI% is the vertex function for the divergence 8 xj‘;)‘ .
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2m AT p, p+aS(p+0)= 3 [ #0191 (0]7(3° 4, 95,0, ) o) (2.15)

and it satisfies the integral equation

mo(M)TE(P, p +q) =mo(A )3 X
+i2f[SmD(A)r‘;s]K. (2.16)

Letting Z, be the renormalization constant ap-
propriate to I';, and denoting ZMRP-renormalized
quantities by a tilde, we rewrite Eq. (2.14) as

PL% = =2my(N)Z , Z, TS
~Z,Z, 7 30 ST 8T ) . (2.17)

Going onto the fermion mass shell (if this has
meaning in an unbroken gauge theory), we see
from (2.17) that my(A) Z,/Z,, is A-independent,
hence Z,/Z, is also. It follows that mT' $=2Z,m, T
=(2,m,/Z,)T'¢ is independent of cutoff, and sat-
isfies

mT$=Z ;myA )z M +i2f["f‘;§]i( . (2.18)

We have already argued that m;—~0as A -, In
the Landau gauge, Z, and Z, are finite through
second order in g, so Z,m,(A) vanishes in the
limit of infinite cutoff—at least for small coupling.
We conjecture that this is a general result. Then
mT ¢ satisfies a homogeneous integral equation,
the trivial solution to which yields the renormal-
ized Ward identity

a*Te\(p, p+q)
- _(%A) (32 S~ Up+q) +S7HP)EN Ys] -
(2.19)

For nonvanishing m, this trivial solution to (2.18)
corresponds to Goldstone realization of chiral
symmetry, manifested by the appearance of a pole
at ¢?=0in I'%,.

This establishes the consistency of our proce-
dure for renormalizing the Lagrangian (2.2) while
maintaining chiral-symmetric Ward identities —

at least for small coupling and in the Landau gauge.

To do better might require a program like that

of Johnson, Baker, and Willey*’—in particular,
showing that to each order in perturbation theory,
one may find a gauge in which my(A - =)~ 0,

mgp #0, and Eq. (2.19) is correct. Such a program
is beyond the scope of this paper, and, in any
case, we believe that it is unnecessary. If we

had not introduced mg, we would get the Ward iden-

J

r
tity (2.19) in any gauge. We view my as a param-
eter to be used in place of the proposed physical
mass m, especially convenient for the renormali-
zation-group analysis in Sec. III.

Finally, we record the renormalized version of
some of the standard formulas associated with
Goldstone chiral symmetries. Assuming that
SU(r) X SU(n) spontaneously breaks down to (alge-
braic) SU(z), we have (dropping the tildes from
now on)

Z
lim ¢*T5\(p, p +9) = —(?) %6, ST (P)} 2
qe—0 2

N

(f) 2mrG(p, K, Mg, 82)% A -

2

(2.20)

This corresponds to a bound-state pseudoscalar
pole at ¢*=0 in I'%,, the bound state transforming
according to the adjoint representation of SU(r)
and as a color singlet:

(D500, P+ ) e = T Fr0(p, p 4 A - (2.21)
Here, ®(p, p +q)¥ is the Goldstone-boson-fermion-
antifermion vertex function, and F, the usual
“decay constant.”

As discussed in the Introduction, the Goldstone
pole really exists only if the homogeneous Bethe-
Salpeter equation for ® has a normalizable solution
[Egs. (1.5) and (1.6)]. The technical difficulties
of establishing this are so great that we attack a
simpler problem instead. Namely, we combine
Egs. (2.20) and (2.21) to get the Goldberger-
Treiman relation,

F, P(p)=lim F"<s><p,p+q)=zmk(5¢) G(p),

q 0 Zz
(2.22)

and seek normalizable solutions to the Bethe-
Salpeter equation for P, or what is the same thing,
for G. The existence of such solutions is neces-
sary, though not sufficient, for the validity of
Egs. (2.20) and (2.21).

III. RENORMALIZATION-GROUP ANALYSIS

The problem before us now is to find a way of
solving the Bethe-Salpeter equation for the mass
function G:

dk
2mR G(p: K, Mg, gR)(75)ab=f(zT)4{Ys’S(k’ K, mg, gR}chac,db(p) k) O;l"',’nﬂx gR)- (3-1)
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It is quite out of the question to solve (3.1) for
arbitrary momentum, so we follow the standard
approach®2° of attempting a solution for large,
spacelike p (-p®>mg?). Our method will be to
analyze the large-momentum behavior of S and K
via renormalization-group techniques. We shall
show that the ladder approximation for K is valid,
by virtue of the asymptotic freedom of the quark-
gluon interaction. This is to be contrasted with
the unjustified assumption of the ladder approx-
imation in the case that quark-gluon interactions
are not asymptotically free.

In addition to preserving the symmetries of the
theory, an important advantage of ZMRP is that
it leads to renormalization-group equations?®?:23
which are more powerful than those derived from
more conventional renormalization prescriptions 33
The new equations are valid and may be solved for
all momenta (though solutions are not always

directly useful), and they permit systematic study
of the effect of mass (mjy) insertions. These
features will be helpful to us in our study of Eq.
(3.1) because (i) determination of the asymptotic
behavior of the kernel is complicated by the fact
that it is evaluated at exceptional momenta (g=0),
and (ii) asymptotic behavior of G is obtained by
mass insertion in the propagator S.

Before addressing the problem of exceptional
momenta, let us review the renormalization-
group equations for S and K. For example, the
equations for the propagator are derived?? from
the observation that

A _ )
2 1(7’g> S7Hp, b, mp, &r)=Z, (B F-myG)

is independent of . With k a dimensionless
parameter used to scale the momentum p, the
renormalization-group equations for F and G
turn out to be

f 2 2 8 | -

)¥ ok ~Bl8R) 5 + (1 +am(gr)lms Py y(gn)( Fkp, ., mg, gg)=0 (3.2)
and

[ » 0 8 l

Ka_K' -B(ggr) B‘é; + [1 +7m(gR)JmR E;n_R +7(gx)+7m(g)z)j G(kp, ik, mg, gg)=0. (3.3)

The functions g, 7,, and y in Eqs. (3.2) and (3.3) are defined by

’
' &

B(gr)=1 5% gr\ /1, g)

’
A

2]
Y 8r) = 1k e InZ,A/u, g)

a
y(gr) =1 @anz(A/u,g)

A

(3.4a)

(3.4b)

(3.4c)

For an asymptotically free theory based on the gauge group SU(), with fermions assigned to # fundamen-
tal representations (), these functions are given in the Landau gauge, for small g, by"?

b 1

Blgg)= - 3 &° b= Eyea [11CSUW)) ~4n T((N)) ] =
2—
y(gr)=fgrt.

Note that ¥, is positive, as was necessary for
my(A)~0as A —~o,

Equations (3.2) and (3.3) are solved by first
introducing the k-dependent effective coupling
constant and mass, defined by

k %85 8R) o g, ga),

an (3.6a)

g(ly gR) =8r

s (11N=2n) (3.52)
(3.5b)
(3.5¢)
and
L)< 1 ok, ) It )
m(1, mg) =mg . (3.72)

From (3.5a) and (3.6a), it follows that
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£~ (b1nk)"1+0 (%) (3.6b)

Also, Eq. (3.7a) has the solution

m(,()='_"’c& exp [—l:” _d;‘(');m)(x)}

~ 2B (1ng)-ele (3.7)

K=o K

In terms of g(k) and m(x), the desired solutions
to Egs. (3.2) and (3.3) are (valid for all k)

£(k)
F(Kp’ u,mg, gR)=eXp [—f _..__dxy(x)jl

B
XF(p, u, m(k), g(k)) , (3.8)
and
& (K) dx
G(kp, 1, Mg, gr) = €xp [—f ) [y(x)+y,,.(x)]]
&R
X G(p, u, m(k), g(k)) . (3.9)

%Ksaz -B(gzr) 52—3 +[1 +%,(gr)]mg

with the solution
£(k)
K(KP, Kk, O;HamR’ gR)=K_2exp [_Zf dx}/(x)
&R

Bx)

The same analysis can be carried out on the
kernel appearing in Eq. (3.1), even though it is
only that part of the kernel depicted in Fig. 2(a),
and it is evaluated at exceptional momenta. This
may be seen, for example, directly from Eq.
(3.1), which we rewrite as

G(Kpa K, Mg, gR)

=K4 f d4k G(Kk) A gR)K(Kp’ Kk, 0; H-,mR, gR)
(2m)?* KPR F3(kk, ..., gr)-mg>G*(kk, . . .,g8)

(3.10)

In Eq. (3.10), we have introduced
K(P, k, q; “')mRy gR) =—‘li(75)chac,db (P, k, q, .. )(ys)ba
=% Tr(y K, %Kj), (3.11)

the second equality following from Eq. (2.7). Ap-
plication of Egs. (3.2) and (3.3) to both sides of
(3.10) yields the renormalization-group equation
for the kernel:

)
e +2'y(gR)+2% K(kp, kk, 0; ...) =0, (3.12)

——}K(P, k, 0; u, m(x), g(k)) . (3.13)

From Eqgs. (3.7)-(3.13), it follows that G(p, u, m(k), g(k)) satisfies the same integral equation that

G(p, 1, mg, gg) does:

£(k) dx
G(Kp, U, mg, gR)=exD l:’"f

&R

=exp [—f‘m% (v +7,,.)]

&R

Because we have used the ZMRP, we know that
one-particle irreducible Green’s functions
T'(p, u, mg, gr) are twice, though generally not
thrice, differentiable with respect to my at zero
mass, So long as we stay away from exceptional
momenta.?> The reason for the caveat is that, for
nonexceptional momenta, the momentum flowing
into a given closed loop almost never vanishes, so
that only one (fully dressed) internal fermion line
in each loop can have zero momentum at a time.
For nonexceptional momenta, therefore, the
strongest singularity of I" in my is given generally

by n
~ anL(Y_ -1
I"MR_’O (l"[-/;2~od k(k-mg) ]

nx=0

~ mgdInmg®.

d*k_ G(k, p, m(k), g(K)K(p, k, 0; 1, m(k), g(K))

2 v +) | G, b, ), g0

(3.14)

@m)* B2 FAk, ..., g(k) -m2(k)GXE, . . ., g(k))

According to this, we expect the m-even func-
tions F and G to behave as m(k)~ 0 as

F(p, pu, m(k), g(k)) =F (p, 1, 0, g(k))
w25

+
am?

o=

+ 0 (m*(k)Inm?(k)) (3.15a)

and
G(p, pk, m(k), g(k))=G(p, i, 0, g(k))
+O0(m?(k)Inm?(k)) . (3.15b)

The same sort of statement may be made for the
kernel when it is evaluated at nonexceptional mo-
menta p, k, gq; since K is an even function of m
[see Eq. (3.11)],
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K(p, k, q; 11, m(k), g()) =K(p, k, q; i1, 0, g(K))

92K
b0 5 |
m=0

+ O(m*(k)Inm?(x)) .

(3.16)

The crucial question is this: Is it true that, even
for ¢=0,

K(p, &, 0; i, m(k), g(k))=K(p, k, 0; i, 0, g(K))
+ O(m?(x)), (3.17)

or does the singularity in m get promoted to one
of the form lnm?(k) ~In[x(Ink)*¢/*] ? If Eq. (3.17)
is valid, then we can usefully approximate the
kernel in Eq. (3.14) by setting m=0 and expanding
in powers of g%(k)~ (Ink)~!. Moreover, we can
then hope to solve the Bethe-Salpeter equation
(3.14).

We now argue that the expansion (3.17) is cor-
rect. Formally, we see that this must be so if the
solution G(...m(x)) of Eq. (3.14) is to be expand-
able according to Eq. (3.15b). G cannot be less
singular in m than K is. A more direct argument
is based on the analytic structure of the kernel.

The dangerous situation that “more than one
internal fermion line in a loop has zero momentum
at a time” arises when the set of momenta enter-
ing and leaving that loop is exceptional, for all
possible values of any integration momenta that
may be entering or leaving that loop. This means
that we need consider only those loops for which
the total momentum entering from the right is g
(see Fig. 3, for example). In the kernel K, such
loops contain some portion of both fermion lines
ac and db. Then, in order that the momenta of
two or more fermion lines (in the same loop)
simultaneously vanish, these momenta must be-

come equal when g— 0. This cannot happen be-
cause the kernel is two-fermion irreducible in the
q channel. Thus, we can expand K according to
Eq. (3.17), safe in the knowledge that neglected
mass terms are down by a factor of order x* and
cannot invalidate an expansion in powers of g2(«).

1V. EXISTENCE OF GOLDSTONE SOLUTIONS
AND DISCUSSION

A. Solving the integral equation for G

The problem of solving the Bethe-Salpeter equa-
tion (3.1), for kp-, now has been reduced to
finding solutions of

_ [ 4%k _G(kp,0, gk)
6,1, 0,800 = [ G )

xK(p, k, 0; 1, 0, g(k)) , (4.1)

in terms of which G(kp) is given, asymptotically,
by Eq. (3.9) as

Gkp, ., mg, gr)=[£2(K)]°"*[G(p, 1, 0, &(k))
+ O(m?*(k)Inm?(k))] .
(4.2)

If a solution exists to Eq. (4.1), consistency with
(4.2) demands that it behave as

c/b
G(p, ..., k) ~, ( - ) : (4.3)
In fact, we shall obtain two solutions to (4.1), with
the asymptotically dominant one behaving in just
this way.

Taking advantage of asymptotic freedom, the
analysis of Sec. III permits us to approximate the
kernel by

- - pa— 2—
Koo.anbs b 0;#,O,E(K))=isgz(K)Cz((N))(Y)‘)“[(k halk=p)y /[(E=p) ~g», CRA O (4.4)

or, from Eq. (3.11),
KD, , 0; 11, 0, g(k)) =3 (KICAN) @%Ez-

+0(g*(k)) . (4.5)

These expressions, valid when « is large, are
calculated in the Landau gauge, for the case of
fermions assigned to » fundamental representa-
tions (N) of SU(N); the Casimir operator, C.(N))
=(N%-1)/2N, for (N) was already given in Eq.
(3.5b). We emphasize once again that this “im-
proved” ladder approximation faithfully represents
the complete (relevant) kernel, and not merely

(k=p)* +ie€

the asymptotic limit of the ladder graph.
Our final approximation will be to write

FXk, 1, 0, g(k)) =1 +0(g3(k)) (4.8)

for all values of momentum k. This is consistent
with the asymptotic behavior of F(kk, gg) deduced
from Egs. (3.8) and (3.5¢).
The integral equation (4.1) at last becomes (let-
ting p/u ~ p and k/u -~ k)
d*k_ G(k, g(k))

G(p,g(K))=-3ig2(")Cz((N))_/‘ @n? Bk-pP

(4.7)
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The solution to this equation, together with Eq.
(4.2), will be a good approximation to Eq. (3.14)
for G(kp, gg) so long as

mg/Kkp~m(K)/p< 1. (4.8)

Errors made by using asymptotic forms in (3.14)
even when the integration momentum is small,
ksm(k), will be of order m?(k)/p* when (4.8) is
true.

Equation (4.7) has been investigated by many
authors.®® One method is to rewrite it in Euclidean
form via a Wick rotation, after which it may be
converted into the differential equation

[p(d%> s 4p? Ez_?”* 3¢ (l'é)ff“m’}
xp~2G(p, g(k))=0. (4.9)

The solutions of this equation are subject to the
boundary conditions®®

2'1‘.1, (pz c% +1>G=0, (4.10a)

lim p*-% G=0. (4.10b)

$2oo P
Define

v=+[1-3g2(k)C,((N)) /4n?] /2

~1-¢/blnk, (4.11)

where, from Egs. (3.5), the ratio ¢/b is

c 9(N3-1

7 2N((W——2)_n) . (4.12)
Then, the solutions to (4.9) are

6o swh=apr = a (25)" @

and

Gp, gk =a_p™'"

11

a_ [(Inkp \/*
Ze F (—1';1';(- ) . (4.14)
The coefficients a, may be functions of g(k);
whether they are zero or not is partly determined
by the Bethe-Salpeter normalization condition
(discussed below). Both solutions satisfy the
boundary conditions (4.10) for large, but finite «.
This is to be contrasted with the more familiar
case,* in which the boundary conditions fix the
solution of (4.9) uniquely.

B. Discussion of solutions

Let us consider the solutions G, in turn. Com-
bining Eqs. (4.2) and (4.13) gives

GOLDSTONE REALIZATION OF...
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G+ (pr “‘,mﬂ)g}z)
~(g2(k))" [a, p~"" " + O(m2(K)Inm?(x)) |
= g, (Inkp)~°’* + O(k~2(1nk)®) (4.15)

Here, B is an undetermined constant. This is
the asymptotically dominant solution to Eq. (3.1),
and we see that its behavior as kp—- = is just what
we could have concluded immediately from the
renormalization-group analysis of Sec. III. The
reason for this, of course, is that the calculation
of the (+) solution from the improved ladder ap-
proximation, (4.4) to (4.7), exactly corresponds
to the calculation of the anomalous dimension v,,
in Eq. (3.5b).

Turning next to the (-) solution, we combine
Egs. (4.14) and (4.2) to get

G-(KP’ MK, mg, gR)
=(g2(k)° [a_p~t"? + Om3(k)Inm>(k))]
~ a__[ Inkp
~ p? L(lnk)?
where B is as in Eq. (4.15). Since this expression
can be a function of k and p only through their

product, a_ must have the asymptotic form (up to
a constant)

c/
] !+ Ok~ (1nK)?) , (4.16)

a_~(Ink)2/ g2,

(4.172)
This can be rewritten as a function of g(x, g):

a_(g(k, gx)) ~(g2(k)) "*®exp[-2/bg?(K)] .

(4.17b)
Since g(k, gg) satisfies®
[ o -8(ge) 5= |t £0)=0 4.18)
9k R agR » 5R ’ X

the solution (4.16), with a_ given by (4.17b), is
consistent with the renormalization-group equa-
tion (3.3) for G(kp, gr)-

Accordingly, G_ will be written as

G-(P, B, Mg, gR) ~ K—Z(an)c/b

K= p/mR—»no

+O(k2(Ink)B) . (4.19)

So far as we can tell from the Bethe-Salpeter equa-
tion alone, the error in G_ is of the same order
as the solution itself.

As remarked in the Introduction, G, are subject
to the Bethe-Salpeter normalization condition if
they are to be Goldstone solutions. In the limit
qg-0, Eq. (1.6) becomes3®

2 222t g =i* [a*pTr {s(p)c(p)YSS(p)[;:T ST p+q)S “(p)] S(p)G(p)YSSm}
‘R A

+fd“pd“kTr%S(k)G(k)}gS(k)[:7 K(p, k, q)}S(p)G(P)VS,S(P)'( .

(4.20)

f
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k | p
k=1 p—I
k+q I+q ptq

(a)
k k+p-I| p
k=1 p—1|
k+q I+q p+q

(b)

FIG. 3. Examples of fermion-antifermion scattering
loop graphs in which the total momentum entering the
loop is ¢. ! is an integration momentum. Graphs, such
as (a), whose singularity in m becomes stronger in the
limit ¢g— 0, do not contribute to K. (b) Does contribute
to K, and is not troublesome when g— 0.

For the (+) solution, these integrals converge
only if G2 falls off faster (Inp)~!, that is, only if
c 9(NZ2-1)

5= SNIIN-23) >3 [(+) solution] . (4.21)

We forego discussion of this restriction for rea-
sons that will soon be apparent. There is no such
restriction on the (-) solution, Eq. (4.19): The
normalization integrals will converge so long as
G_ is less singular than p~2 as p- 0.

Now we must decide which solution, (4.15) or
(4.19), is the correct one, i.e., which actually
represents chiral symmetry realized in the Gold-
stone mode. As noted, the asymptotic behavior
G, (p)~ (Inp)~’® exactly corresponds to what we
learn from a straightforward renormalization-
group analysis, and does not differ from the case
in which quarks have nonzero bare mass and G(p)
does not have purely dynamical origin. This con-
flicts with the intuition that functions such as G
ought to have softer asymptotic behavior when the
symmetry breaking is dynamical than when it is
not. On the basis of this intuition, we expect that
G_ is the correct solution, and we now show that
this is so.

What is missing from the simple analysis of G
in Sec. III is the assumption that G arises solely
from dynamics and is proportional, through the
Ward identity, to the bound-state vertex function
®(p,p+q) (at g=0). Writing

iS(P)®(p, p+@)%S(p+9)0y

= %j f e’ *(m, ()| T[tr (4(x)p(O1p)][0),

(4.22)

we may learn the asymptotic behavior of ®, hence
of G, by taking the limit |p*|—=, (p+q)*/p*~1.
The Wilson operator-product expansion®® is ap-
propriate in this limit, and one readily deduces

iS(P)C(p, p+@)rS(P+q)d, g

~U(p, 1, Mg, &) (T, (q) | (0 2 X9(0)[0) .
(4.23)

That the Goldstone boson 7, is a bound state is
accounted for by the fact that the dominant (re-
normalized) operator, ¥ \g¥, has canonical
dimension three, and not one. Nonleading terms
in (4.23) correspond to operators with canonical
dimension four or more, and are expected to be
down by approximately a factor of p relative to the
exhibited leading term.

Standard renormalization-group analysis (see,
e.g., Ref. 22) of the Wilson coefficient function U
gives

£(x) |
U(Kp) W, mg, gR)zK-4 exp%f Bii(%[ywys)‘gwbc) +Y(X)]s{
&R

X U(p, i, mk), g(k)) , (4.24a)

while, from Sec. III, we know that

& (k) d
STH(kp, 1, Mg, gr) = K €XP [‘ ng 5‘83’” ]

X ST p, u, m(k), g(k)) . (4.24b)
Finally, the facts [deduced from Eq. (2.17)] that
my(N)Z 4/Zp =mg(ZnZ 4/Zy) and Z ,4/Z, are cut-
off-independent imply that
9
7575"54‘5“—3711“ZD=7+7""' (4.25)

It follows that

G(i’) K, Mg, gR)mhm (P(P,P +q)

=0
~ _ £ (k) dxy,,,(x)
k=p/mig e K 2exp[j" —B(x) ]
R
~ K~2(lnk)/? | (4.26)

which is precisely the G_ solution. Moreover, we
now know that the error in this solution is
O(k~3(Ink)B).

To sum up: We have shown that asymptotically
free theories of quark-gluon interactions meet
certain conditions necessary for the realization of
chiral symmetry in the Nambu-Jona-Lasinio—
Goldstone mode. Namely, the Bethe-Salpeter
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equation for the symmetry-breaking part, G(p),

of the quark propagator has a nontrivial, normal-
izable solution in the limit p—-<«. The renormal-
ization group was particularly useful for this anal-
ysis, permitting us to establish the ladder approx-
imation for the Bethe-Salpeter kernel (in the large-
p limit), and to decide on the appropriate solution
to the integral equation through the joint use of

the Ward identity and the Wilson expansion for

the vertex function ®.

We emphasize again that our results are not
sufficient to demonstrate the existence of Gold-
stone solutions. This question can only be settled
by analysis of the low-momentum region of the
Bethe-Salpeter equation. The reason, of course,
is that bound-state formation and dynamical sym-
metry breaking are essentially low-momenta
phenomena.

Finally, we would like to draw attention to the
intriguing fact that, when written as

G(p, 1y m, 82) ,~  (g°(k)™/" exp[-2/bg*(W)]
R
(4.27)

G has an essential singularity in the effective cou-
pling. We have recently shown that any dynami-
cally generated mass also has such an essential
singularity.” In particular, if a mass m arises
dynamically in an asymptotically free theory,

mo exp(-1/bgg?). This nonanalytic behavior in the
coupling is just a statement of the impossibility of
perturbative calculation of purely dynamical quan-
tities. The energy gap in a superconductor has
similar nonanalytic behavior in the electron-elec-
tron coupling,® thereby strengthening the Nambu-—
Jona-Lasinio proposal that the near masslessness
of the pion and superconductivity are intimately
related phenomena.
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