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The strong-coupling theory in static models is formulated in terms of functional integra-
tions. The method is demonstrated for the charged-scalar model. The expression of elastic
and inelastic meson-nucleon scattering amplitudes is obtained to leading order in the strong-
coupling expansion (1jg expansion), while the isobar energy levels are obtained up to the next
to the leading order.

I. INTRODUCTION

There are two distinct approaches to the strong-
coupling theory in static models: the canonical
field-theoretical method and the 8-matrix method.

In the field-theory approach, which has a long
history' since the first work of Wentzel, ' one ap-
plies successive canonical transformations in the
Hamiltonian formalism. On the other hand, in the
S-matrix approach, ' one starts with a set of Chem-
Lom equations for scattering amplitudes and
solves them in the strong-coupling limit, pre-
supposing various properties of the strong-cou-
pling results, knomn from the fieM-theoretical
method, such as tPe ahsence of production am-
plitudes in the strong-coupling limit. It is re-
markable, however, that the final results are ex-
pressed in terms of operators in the isobar space
which obey relatively simple algebraic equations.

We investigate the strong-coupling theory using
the method of functional integration, with the in-
tent of clarifying the perturbative nature of the
strong-coupling theory (I/g' expansion}. In this
method, a canonical transformation is described

by a corresponding change of variables of the
phase-space functional integration, and a subsid-
iary condition on the state vector in the conven-
tional formalism is described by a restriction of
the Feynman integration path, which can be real-
ized easily by inserting an appropriate 5 function-
al in the integrand. ' Thus, this method would be
suitable for the description of strong-coupling the-
ory.

In this paper we show the essence of the method
using the charged-scalar model as an example
and leave the general case to the following paper.

II. FUNCTIONAL-INTEGRAL REPRESENTATION

OF GENERATING FUNCTIONAL OF GREEN'S

FUNCTION IN STATIC MODEL

We define the generating functional by

Z(q} =(n, [S„)n,),

where ~n, ) and ~n~) are initial and final nucleon
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states, respectively, and 8„ is the 8 operator
with the meson external-source function q (x, t)
(o. = 1, 2}. The reaction amplitudes are obtained
by taking functional derivatives of Z(q) with re-

spect to q„ in the appropriate manner and by us-
ing the Lehmann-Symanzik-Zimmermann (I.SZ }
reduction formalism. For example, the elastic
scattering amplitude is given by

't' a(k', k;nq, u;) = e ' """d4&d~y(El„-p2)(Cl, —p2)
5q„(x)5@a(y) q

(2)

Z(q) can be expressed in terms of the Feynman
path integral as

where II-„, is the product symbol,

(path) 4 *exp i

where

L(t) =L&+L,„, + q„(x, t) y„(x, t) dx,

+ q,(x, t) yg x, t) d x,

and V(rp) is the effective potential energy of the
meson cloud (including the coupling to the nucle-
on):

q„(t) = p(x) y„(x, t) dx.

0
&

and 4'z are the initial and final nucleon wave
functions, respectively.

(6)

V((p) = p dx[(Vq„)'+ p'q 'J , gq(t)-.

This replacement is equivalent to the fo1lowing
condition on the Schrodinger state vector [q& of
the system in the conventional operator formal-
ism:

(12)

IV. EXPANSION OF POTENTIAL ENERGY AROUND

MINIMUM
III. FREEZING OF THE NUCLEON ISOSPIN IN

THE STRONG-COUPLING LIMIT

In Eq. (3) the Feynman integration path should
be taken both in the field variable q}„(x,t} and the
nucleon isospin variable. The latter path can be
specified in terms of two eigenvalues of L,.„, for
al1 t. However, only one path will contribute in
the strong-coupling limit, the path due to the posi-
tive eigenvalue of I-, , for all t. On this path, the
bare nucleon isospin is always parallel to the (iso-
topic) direction of the meson cloud. Since any
switch from one eigenvalue to another involves a
phase change of order g, one can show as in Ap-
pendix A that the contributions of other paths to
reaction amplitudes are at most of order g ',
while the contributions to energy levels are at
most of orderg '.

Thus, we replace L in (4) by.

Following Ref. 2, we first evaluate the value of
the field strength y„ for which the potential energy
of the system is minimum. y' is determined by

5V(y)
5y„(x, t) ~ ~o

and expressed as

y'(x, t) =guA„,

where u is the solution of

-(~ —0 )& =P,

and A„(o = 1, 2} are the components of a, unit vec-
tor. The corresponding q' is therefore given by

q„'(t) =gaA„(t),

where

gq(t) =g
I./P

Sad x

and integrate only on the paths in &p„(x, t) space:

Z(q)= II ldrp(x, t)Jq+ exp i
x, 4, a

The minimum of V has a symmetry, since A in

(14) is arbitrary We change the . integration vari-
ables y„ into the variables of the symmetry and
the variables orthogonal to them. For this pur-
pose, in what follows, we use a method similar
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to that of Popov and Faddeev. '
We insert the identity

J11(d q, (t)) 115 q, (t) —f 55(%, t) dit) = 5
t,e t,c

(18)

[the function v(x) being arbitrary] into E(I. (9) and
make the following change of variables:

A-%=A-W,
where 9)' is given by E(I. (14), with A given by

(20)

We then expand the interaction term around q =q'.
Since q' is of order g, it is an expansion in powers
of Ijg:

8q e'q t , , 1 &'q
=« "

gq. . .. q-' '
2 eq. eq. . . '-'8' 6 eq. ~q, ~q„ ... q:qaq~

=g'u+g& (f) q.'(t)+ —A.sq.'(I) qs(t) —
~

="
sy

q' qsq„'+ 0 —. (21)

where

,=A (t),eqa a =a'

gRq
Q g g n6 ag a

(22)

(23)

8 q
Qq~ Qqs eq 0

Thus we obtain

= A g &y + A~ A~+ A~ A.B .

(24}

L(f) = Bga'+ L~, +
s

5%5.%. ~ l g pd+'d .dxg.x d +g d. .t..' d„—t(.,(d) ptd-„jpp, d,.%
q7~ dx p+~dy pal~ dz,

dx,

Since the first term is a constant, we will omit it in the following discussion.

V. SUBSIDIARY CONDITIONS

Introducing a vector 8 such that 8 A =0, we write the |) functional of E(I. (18) as

11dq (t)5 q (t) —flitt (it, t)dit IIq(tl q(t) d(q(t) —5d,
t, u t

5„(%,515%)dd(t)5(B.(t) 555(, t)5%).
(2'I)

Since L(t) is independent of Q, we can integrate over Q. Inserting q„= q)q + q)' into (27} we obtain the fo11ow-

ing effective integration measure:

t

11 dd(t) gf dx+d (t) ptt'(%, t)d% 5(B(tl ptp,'(x, t)d, (28)

Notice that A~ is a function of 8; accordingly 8
is also.

VI. CHOICE OF v(x )

Next we choose v(x) so that 2 t ucp' dx in (28)
can be neglected in the strong-coupling limit, thus
decoupling the kinetic-energy terms of q' and
A. . The choice6 is

v(x) = u(x) .

Then, because of the 5 function in (28), i.e.,
a„fvq)„'dx=o, we can write

g&& d up& dx =«A„— A~ AB uy&dxo( dt of

o

=gA~ A-. A& use& d x (80)
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since A, A =0. Thus, this term is negligible in
the strong-coupling limit compared to 2 g'5 A A .
But, since we are interested in the next-order
term in 1jg, we keep (30). Combining with the
fourth term in (25) we obtain

2g'bA~A. ~ 1+ —A„u&P~ dx

We neglect the term gq„A u of (25), since it
cannot produce poles in the external lines of
Green's functions, so that it does not contribute
to the reaction amplitudes. '

Thus we obtain the following Z(q) in the strong-
coupling limit:

I

Z(q)= f II ~ d()(t) g( 4, y,'(x, t)d ll dy,'(, t)ll (B,
f ! (I„'(x, i) dx

&& exp i I.(f) dt 4~(A(~)) 4';(A(- ~)),
~ oo

(32)

where

L(i) = L~+ L~i + Irg+ 7J~(x, i) ('I(((x) I ) dx,
I

L„=2g'bA~A~ 1+ —A u(I~(x, t) dxR f}f +g CX

Lr = ~ay dxp x~9'a»t dyp y 9'6 y~t ~

J& = —,"
&&

dxp x) y„' x t dyp y cpz y t)6a2g

x dzp z)spy z, t .

This Lagrangian represents an interacting sys-
tem of a nucleon, described by the dynamical vari-

l

able A, with the meson field y~. In the strong-
coupling limit, the Lagrangian of the nucleon sys-
tem, L„, has the same form as a rod rotator in a
plane with moment of inertia g 25, so that there
exist many excited states (isobars). The initial
and final nucleon states are assumed to be these,
so 4'; an(i 4~ in (32) are functions of A alone.

VII, GENERATING FUNCTIONAL IN OPERATOR

FORMALISM

In order to go over to the operator formalism it
is necessary to make a transition to phase-space
functional integration. The momenta conjugates to
6} and y' are introduced by inserting the following
two identities into (32):

2

Ilgb(l+p„) = exp —, ), di II ah dpe(t),
t

(34)

b dn„' x t 6 B~ u x m' x t dx exp —— m' v' d4x =1.
x, t

Then we change variables as follows: &i =&n 0'a )

Pe-Pe —gg b(1+P~),
I ~ I I

~n ~a-0'c ~

(36) V2 +O. VQ I

where

„u(I'(x, i) dx.

From the 5 functional in (32) one sees that

B up dx=A, 6 (38)

At this stage, in addition to Pe(9, there still re-
main undesired terms containing 6 in both the ac-
tion integral and the subsidiary condition. These
are eliminated by performing the change of vari-
ables

In order to isolate the 6 dependence from the
meson wave functions, we write them in the body-
fixed coordinate system: Pe Pe- &"
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with

(&(r ~)) &)) ~))) d~x

The final result of all the manipulations described above is the following expression for the generating
functional (we drop the double primes):

&(q, e) = " Q d&(t)dpgt) Dd[t)px, t)dm (x, t) 5 u(p, dx 5 uv2dx
t

Cf

X, tX

xexp i dt pea+ dxm rj„-H+ m„e„+y~ q dx (42)

where

1 (Pe- r}'8= e
( )e

+H -L~ —L~,

and

V) -&a ne

p = — u(p, (x, t) dx, q2 =B~ 'rl

d x ~ n~ m + ~ +@~~ +~ + a p p~ Q„,

Qxp X (p2 X, E)

2

L dxp(x)(p (x t) dyp(y}9) (y t)
J20 g

We have introduced the source functions z for
the momenta n in order to be able to perform a
perturbative expansion.

We need also to rewrite (42) in a form more
suitable for a perturbative treatment:

2

z(q, E) f" if[=de(t)dpgt))e exp ( d't )eii-
t

e
2@my

where

x exp —g dt's~ Pe, —f-
5' ' z(q, e)+, , (45)

r'-2p, r 3
s(pe) ((e()() &u)

2 2b (1 — +
2 2b pe p —L/+6 —

()+p&- g g

Pe
~1 ~l 3yR

(4V}

Z(ii)= f ll [dg , (, t)d, (%, t)) lnl( ), d )5(,d )

&exp i dt -H~+L~+ (m ~ +q q )dx (48)

If we use the connection between Feynman path integrals and the standard operator formalism of quan-
tum mechanics, ' we obtain

Z(), E) = (lip ) SXp — (t)(' ( g, l -, Z(i), E) tl
~on

' (49)

Performing the integration over v„ in (48), we get
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z(ij, a) = ll [d((,(x, t)] ll () ( (,de)
tx, t,a

~ exp i dt I.~+ 1.~+ x[~(7/~ —e~) + s e~ s~]— 1ces dx
J

Since the action in (50} is (luadratic in (p„, the
(q„-s„) dependence can be factored out if one
knows the solution of the equations of motion de-
rived from this action with subsidiary conditions

(n.'= n. -~.):

exp —i dt H,' Z q, ~) .

The outline of the calculation is given in Appen-
dix C. The result agrees with relation (49) of
Nickle and Serber6:

(0 —p, ') (((),(x, t)+q,'(x, t) =0, (51b)

(52}

(Cl- p') 9),(x, t)+ —p(x) p(x') 9),(x', t) dx'

+A.(t)u+q,'(x, t) =0, (51a)

b (d/d~'}[H(&u) —H(0)]
H((u) —H(0) H((d) —H(0)

—2(s'[d'/(d(L)'}'][H(i (d ) —H(0) ]
H(i(s) -H(0)

(57)

c)c 001+,
b

d(dit((d}+ d(u S((u)g'sb

(56)

where A(t) is a Lagrange multiplier. Making the
change of variables 9(„=(t)„+(p„' in (50) we obtain 1 dk I E(k)l'

(2w)' (d'-(s '+is ' (59)

Z(q, s ) = const && exp
(t

2
x [()ln —&e) (pa+ &0( &a]

E(k) = dx e ' ' "p(x) .

E'2 dX

(53)
IX. ELASTIC SCATTERING AMPLITUDE

Using the Green's functions of the integro-differ-
ential e(luations (51) one can write

P,(x, t}= t) (», y)Fl, (y) -s (y}]d'y,

P, (x, t) = (», y)[n, (y) &.(y)l d'-y

The solution of (51}is discussed in Appendix B.

VIII. ENERGY LEVELS (ISOBARS)

a= P'
P 2 2gg

(55)

which is of order 1/g'. The next corrections are
obtained from

The effective Hamiltonian which determines the
isobar energy levels is obtained from the expo-
nent of (45}by setting the external source func-
tions q„and z equal to zero. The leading term
is of course

In the strong-coupling limit q™ =q and HI = 0,
so that Z(q, e =0) is the exponential of a bilinear
functional of q„. Thus, it is obvious that meson
multiproduction amplitudes vanish in the strong-
coupling limit. In the next section we obtain the
multiproduction amplitudes from the higher order
terms in 1/g expansion of (49).

Using E(ls. (2) and (44), we obtain the elastic
scattering amplitude

)',gk', k; ~, n;) fe'" ' "~d'*d (D, —p'))(()'„—g')

x &ng I G„s(x, y; A)ln( &,

G s(»»'A) =A As&(x, y)+8 HsG(x y

(61)

(62)

Using the expression of Green's function given
in Appendix A, we obtain

IF(k)I'T„s(k', k; nz, n, ) = 6((()-(()')
( }

(nz I A„s ln;),
(63)

with A s given by (23). Formula (63) agrees with
the known result. '
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X. PRODUCTION AMPLITUDES

The meson production processes are treated as
perturbation corrections in the strong-coupling
theory. In the computation of Z(y}) we kept the
terms correctly up to the order of 1/g. There-
fore we can compute the one-meson production
amplitude from Z(y}) given by (49). The leading
term is due to the presence of Iz in (49). For

the two-meson production amplitude one has to
keep the 1/g' term in the expansion (21). Since
this calculation is a straightforward extension of
the one-meson production process we do not de-
scribe it here.

Let P, be the four-momentum of the initial me-
son, and P~ and P, be that of the final meson. The
LSZ reduction formula for the production ampli-
tude is then

Tippy(P&iP2&P&& n„nf) '&~Pi 2*2 s*s'd'x d x d x (Cl —p, ')(Cl —p, ')(0 —p')
O'Z )

5yt (x, ) 6y)8(x, ) 6qy(x, ) j „,'

(64)

If we compute the functional derivative using (49}, (43), and (44), we obtain several terms. However, only
one term contributes to (64) because of the kinematics. We obtain

1 e" ~*~ 2*2 ~"3&d'x d'x d'x (2 —p. ')(0 —p')(CI —p, ')

x dt(ny [:-»K~„(x„t) K,8(x„ t ) If„y(x„ t)ln~), (65)

where

10=t
(66)

The rest of the calculation is straightforward:

a8y(pl& p2) p31 nit nf)

2@6 (4&, —w2 —u, ) +(- ) &(- } ( )
&nyl A„Asyln0 (nyIAqA„, In')

g ' ' [H(u), ) —H(0}J[H((u, ) -H(0)] [H((u, ) —H(0)][H(~, ) —H(0)]

(ny [Ay A„Jn, )
[H((u, ) —H(0)][H(a&, ) —H(0) ]

(67)

XI. DISCUSSION

We formulated the strong-coupling theory in
terms of the Feynman path integral for the
charged-scalar static model. We then separated
the meson field into two parts, the part of the meson
cloud attached to the nucleon which is described in
terms ofA andthe scatteringpartof ((t)'. Inthe
strong-coupling limit we showed that the cp' inte-
gration can be performed and the higher order cor-
rections in 1/g ~ can be treated by the perturbation
method.

The resulting expressions for reaction ampli-
tudes and the isobar energy levels are then writ-
ten in the form of operator expressions in which
only A. and the third component of isospin Pe
(or I,) appear. From the definition of operators
Pe(I, ) and A„ it is obvious that they satisfy the
following commutation relations:

[I„A,]=iA„[ „I]A=tA„. [A„A2J=0,

which are just the commutation relations of the
strong-coupling group. 4 One can then use the re-
sults based on the group representation to eval-
uate physical quantities such as scattering ampli-
tudes and isobar energy levels.

The extension of the present method to more
complicated static models, such as the charge-
symmetric pseudoscalar model can b'e done with
a relatively small additional effort. We shall dis-
cuss the general static model in the following
paper.
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APPENDIX A

We calculate here the leading-order contribu-
tion from other paths of nucleon isospin. This
contribution is due to the paths on which

~ q I4'(f)}=q(t)l4'(i)} for i&i, and i&f, ,
(Al)

~ q I q (i)}= - q(&)I q (i)} for i & t & t, .

The contribution from these paths to the total gen-
erating functional is given by

Z'()}}= nq
'2

df, II dq) (x, f)exp —2ig
~ oo L

X, t, ot

~ Oo

q(t) dt exp L(t) di n(
J

We perform the integration over t, by performing a change of variable:

i, -y(i„f,) = q(i) cu. (As)

We can now perform successive partial integrations in y to get

1 1Z ('(}) = &) —— +0 —, df, exp i L(t)dk n;
2g q(t ) g'

We get then for the total generating functional

Z(q) = Z(q)+Z'(q) = n~ exp i I(t) —— dt [ n,(o(a 2g q (i)
(A

where we have neglected a constant term of order 1/g'.
Expanding now around q), we obtain the expansion of L(t) described in the paper and in addition terms

arising from the expansion of 1/q(i):

~, , 4, ( p)rpx,'( tx)d —,, A,A~ (xply,'( txdx)Jp{ ))t{({j(,t) d)
2g 0

+, , (5 s-A„AS) pq)'(x, t) dx pq)8(y, f) dy.

The first term contributes just with a constant
shift of the energy levels. The other terms pro-
duce calculable corrections (by the perturbation
method) to production amplitudes of order 1/g'
and higher, and to energy levels of order 1/g'
and higher.

APPENDIX 8

Equation (5lb} is trivially solved. &(x, y) in (54)
ls given by 1 q,'((1, (u}E(-(1)

d
0

(85)

w( )= 2,).J( (iw){"( ild.4, - (as)

Multiplying (82) by [1/(2v)'] E(k)/(uP —~ '} and
integrating over k we obtain a simple linear equa-
tion for q)((()), the solution of which is given by

w( )=~{)) H
I{{( ) &(0))+n( ))

H(0) x((u)

(84)

(,y)=-( „}. . . ,, . (81)

Taking the Fourier transform of (51a) we get

1 E k)((u' —~') q), (k, (u) + —E(k) q)((o) + Z((u)

+ q,'(k, (()) = 0, (82)

and fi(~) is given by (59}.
We substitute (84) into (82) and obtain

X((u) E(k) q,'(k, &u)

)}((u)E(k)
((d'-~.')[If(~) -H(0)] ' (86)

where q), (k, &u) and q,'(k, (()) are the Fourier trans-
form of q), (x, t) and q,'(x, t), respectively, while
A(u&) is the Fourier transform of A(t) and q)(v} is
defined by

E(-k) q,'(k, u&)
&k

We then use the subsidiary condition (52) to obtain
x(co):

1 (8'1)"' }=1 (2)
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If we define the Fourier transform of Green's function G(», y} by

G(( i' (= Je'~* '~ ~ "'G(x ((

C is given by

0 0

dtdxdy, (88)

—(2v)' 6~'~(k —k')
G(k, k', (u)= ~ 2 +E(k)F(k )

(
2 2 2+

[ ( ) (0)]( 2 2)(~ 2)

APPENDIX C

The starting point of the calculation are for-
mulas (45), (46), (47), (53), and (54). One then
expands

exp -i dtH

takes the functional derivatives, and sets g
= 0 at the end. The term T*/2g'(b(1+ p)' in (46}
is found to contribute only an ignorable constant
term to order 1/g4, while the term Pe T(2p —3p')/
g25 is found not to contribute to this order. In
the expansion of

exp i dt peT g2b

the term i j dtpeT/g'b gives a zero contribution,
while the term

dtdt'pe2T t T t' 2g452

produces a correction to energy levels of order
I/g4, the derivation of which is described below.

The first step of this calculation produces the
expression

2-i 4Qqdt =1 g4y2 e'd'»d'y&(»-y) o uG(», y)~X

~. .. J(.(&(~-()~ G'(*, (((5"'(*-v)~'*&'(- e'dtu(x)u(y) 4(x —y, 0)dxdy.

(C1)

Using (81) and (89), we have, apart from terms that cancel among themselves, the following three terms
[which we denote by (a), (b), and (c)]:

k d(ul &(k)I'
H((u) H(0)((u' ——(ut. '+ i«)' b(u' (uf'

(C2)P g' "
I (d/d(u')[H((u) —H(0)]

2wg ~b' „™H((u) —H(0)

(The last step follows by deforming the contour of integration in (u and picking up the discontinuity across
the cut from p, to ~.)

(b) —' f6H(" dt =
j. g 4y2 (2v)' [(um —(u,'+ i «]' H((u) —H(0)

=i dt Pe, , "d„.(d'/[d~']'} [H(f (u) —H(o) J

H(i(u) —H(0)
(C3)

where the second step follows by deforming the
countour of integration to lie along the imaginary
axis and noting that the integrand is even in cu.

The reason for this peculiar choice of contour be-
comes obvious if one analyzes the point source
limit of (C3).

(c) —i 'I &Hz" dt

3=
2 453 Pe'dt dxdyu(x)u(y) &(x-y, 0).

(C4)
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(C4) cancels the contribution of the term 3pe' p' j
2g'5 in (46). It is rather straightforward to de-
termine the contribution of —I.z in (46). It is
found to be

(C5)

Adding (C2}, (C3}, and (C5), exponentiating by
means of the identity

l -i dt 4H =exp —i dt 4H (C6)

and combining with (55), we find (56). (56) agrees
with the final result (49) of Ref. 6. The way to
see that is to expand in powers of I/g the integral
form of their result (30), which produces (C5). If
one evaluates (C2) and (C3) in the point source
limit, which is a straightforward exercise, one
finds that their sum is the same as the sum of
(47} and (48) in Ref. 6.
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The functional approach to strong-coupling theory is extended to the general case. The nec-
essary mathematical techniques are discussed. Properties of the matrix ADE which appears
in scattering amplitudes are analyzed.

I. INTRODUCTION

In the preceding paper' we described the func-
tional-integral approach to the strong-coupling
theory of the static model, taking the charged-
scalar model as an example. In this paper we
extend this method to the study of the strong-
coupling limit in the general case, i.e. , the static
model of an arbitrary partial wave and internal
symmetry. This can be achieved with relatively
small effort by introducing appropriate mathemat-
ical techniques to deal with orbit invariants and
generalized angles for the representation of the
symmetry group of the theory.

%e use the same definition of the generating
functional Z(q) of the isobar matrix elements of
time-ordered products of pion fields, as in Ref. l.

The interaction Lagrangian in this case is written
as

I.
~ =& Z Ssqo

D=l

where SD's are tensor operators of the space and
internal group, and qD is given by

qD =
I p(x)p(x, t )]~d x .

The actual content of the index D is rich, and it
may contain both the internal-symmetry-group
index 6 and the space -group index d. For example,
the charge -symmetric pseudoscalar -pseudovector
model is described as

D=(6, d), S,~=7,o~ (5=1,2, 3; d=1, 2, 3),

q„= [V, p(x)](p, (x, t) dx.


