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Certain transforms recently and not so recently proposed to convert current algebras into Hamiltonian

symmetries are studied in the quark model with particular attention to their Fock-space properties.

Expectation values and probability amphtudes are calculated which unveil the structure of a "current"

quark in terms of a "constituent" quark, It is questioned whether these distributions admit a parton

interpretation.

I. INTRODUCTION

Canonical transformations of the Foldy-Vfout-
huysen (FW) type have recently been revived' ' in

the context of SU(6$, ' the free-quark model, and

a conjectured' relation between "current" quarks
and "constituent" quarks. Gell-Manne has suggest-
ed that the simple constituent-quark picture (in
which a hadron is composed of two or three quarks)
can be reconciled with the parton picture [in which
an infinite number of parts (current quarks) are
present] if a pair-creating transformation between
current and constituent quarks can be constructed.
Possible candidates for such a mechanism are
those of Melosh' and Gomberoff, Horwitz, and
Ne'eman, ~ who find transformations on the inte-
grated local current densities which take these
equal-time charge algebras into Hamiltonian sym-
metries. That a simple FN' transform performs
this task for SU(6$ was already pointed out by
Giirsey' in 1965; the newer transforms exploit the
fact that the requirement that the transformed
charge be conserved does not uniquely specify the
transform. Hence other requirements may be im-
posed, such as z-boost invariance, leading to
modified PiV transforms tailored to the kinemati-
cal configuration of the infinite-momentum limit
instead of the nonrelativistic limit as is the case
with the F%' transform.

A property of the conventional equal-time formu-
lation is that those SU(6)~,„„,„„charges(the local
integrated densities) which are not conserved
create pairs and do not have single-particle eigen-
states, whereas the SU(6}~„„„,charges, although
nonlocal, do not create pairs but do have single-
particle eigenstates. Thus the transformations
have the property of shifting a kind of nonlocality,
in particle number as well as space, from states
to operators, depending on the representation,
Although not stated in second-quantized and Fock-
space language, this state of affairs is implicit
already in the classic paper of F%,' who point out
that their transformation takes the naive and local

position operator x into the nonloeal "mean-posi-
tion" operator X of Newton and signer' (which
does have localized eigenstates).

In this paper, we inquire into the Fock-space
realization of these formal transformations, check
whether and when they can be unitarily implement-
ed, and in the process construct eigenstates of
SU(6)~,.„„,„,charges and the overlap between cur-
rent and constituent quark states in the free-quark
model. This overlap is zero unless the theory in-
volves a cutoff in momentum. Suitable remarks
are made concerning nonseparable infinite tensor-
product spaces and the lack of unitary implementa-
bility. Certain averages and moments, however,
are well defined. These are calculated and dis-
cussed in terms of a parton interpretation. Fin-
ally, nonvanishing overlap distributions are ob-
tained for a cutoff theory which sheds light on the
nature of the transformations and may be sugges-
tive of what can occur in an interacting theory if
the interactions supply the effective cutoff.

It should be stressed that we study those trans-
formations which lead to exact symmetries of the
quark model in the absence of interactions and in
the equal-time formalism. Corresponding trans-
forms in the lightlike formalism' are unitary, do
not create pairs, and produce at most a spin rota-
tion.

The paper is organized as follows: In Sec. II we
list some F%-type transformations and discuss
their uniqueness and consequences; in Sec. III, in
a simplified formalism, we show how these trans-
form" tions are implemented in the Hilbert space;
in Sec. IV we obtain the eigenstates of the
SU(6)~,„„,„„chargesand calculate distributions of
current quarks in a strong quark. Section V con-
tains the conclusions.

II. CANONICAL TRANSFORMS
IN THE FREE-QUARK MODEL

The Melosh' transformation V~ is one of a large
class of canonical formally unitary transforms V,
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=e'"1 (1', =1', ), which takes the free spin-2 theory
in the Dirac representation Y„=2 d'x q ~(x) ~- arctan ~ q(x),ls, PB

II= d Xq X —g~ ~ 8+PM q X

with

(2.1)
where

( S 2 6 2)1/2

(2.8)

[q (x, f), q(x', f))=62(x-x'),

into various forms

H) —V,. EEVER .

(2.2)

(2.3)

leading to

H~= dsxq~ X —ia 83+Pm —8~ '
q X,

(2.9)

The existence of the transformation is determined
by the same rules which govern unitary equiva-
lence of matrices. Therefore the task is relative-
ly simple if0, involves only one of the matrices P, y',
e', and y'y ', with 0 = I, 2, 3.

The classic example is that of Foldy and Vfout-
huysen, e who found a transformation leading to a
diagonal H, ,

which is diagonal in the FW sense for transverse
motion and does not affect particles moving in the
z direction. Yet another transformation, leading
to

9
Hpz= i d2xqt(x) ' (m2 —S2)'/2q(x) (2.10)

appropriate to the kinematical configuration
E -p, »M, is generated by

H = dsxq~ x P m'-8' '"q x

which is generated by

(2.4)
V f YF~ ~-i YUZ

QZ

where

(2.11)

y,„=2 d'xq (x) arctan q(x), (2.5)y ~ s est
m

Fgz= — Cf Xq X q X (2.12)

In this representation the "kinetic energy" u p
term is effectively rotated into a momentum-de-
pendent "mass term" proportional to P. The zero-
momentum component is not affected and the rep-
resentation yields the Pauli equations directly in
the nonrelativistic limit. Alternatively, as ob-
served by Cini and Touschek" and Bose, Gamba,
and Sudarshan, "one can rotate the mass term
m P into a mass-dependent kinetic energy term
and obtain

(1212 S2)1/2
HU= 4 xq x) —2&'8 q x 2.6

using a transformation generated by

ls Is I

Infinite-momentum terms are not affected and the
representation is appropriate to the ultrarelativis-
tic limit p/m -~.

Other transformations can be constructed rele-
vant to a nonrelativistic or ultrarelativistic limit
in a particular direction. The Melosh transforma-
tion is generated by

A common feature of all such transformations
V& is that they are arbitrary up to a unitary trans-
form V, which commutes with the Hamiltonian.
An example is the transformation

V el Yg g'f YCc
where

(2.13)

d'xqt x —'q x),
A.~ (2.15a)

E", =2 d'xqt(x) pv" 2' q(x),3 ianna (2.15b)

38

83 ]

(2.14)

constructed by Gomberoff, Horwitz, and Ne'eman, '
which leads to H~ even though Vcx V„„.

The transformations typically generate con-
served (or otherwise desirable) quantities from
nonconserved ones. If [H, E]e 0 but a transfor-
mation V& can be found such that [H1, E]=[V1tHV„F]
=0, then [H, V& FV, ]=0 and W1=V, EV, is con-
served. This property has been used both by
Melosh and by Gomberoff, Horwitz, and Ne'eman
to find a conserved SU(6)2 generated by W= V„EVt
and U(6)XU(6) generated by W=V~EV&~ and W
= VcEVc, respectively, starting with the "current
generators""
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d'xqt(x)a' 2' q(x), (2.15c) [&' ' »(u, Fw))=0 (2.1't }

I,= d'xqt(x) p —'q(x),

J'". = a d'xq~(x)(T) 2 —' q(x),

I"3 = k / d 'x q ~(x) po' —' q(x) .

The first set commutes with

d' xq'( }x( 'a, p)f(s)q(x)

and all of them commute with

(2.16a)

(2.16b)

(2.16c}

[P"' ff . ]=0.
V}A(

Again, t;he above transformations, leading to
conserved quantities, are unique only up to a uni-
tary transform V which commutes with H and a
unitary transform V which commutes with the I'
that is to be conserved. If one finds one transfor-
mation V, such that [V; H V„FJ=O, all other trans-
formations leading to a vanishing commutator are
given by

V,'=V V; V.

Integrated bilinear densities of the type

'xq~(x) pg(&)q(x), D= d'x qt(x) I'f(S)q(x):,

where f(s) and g(s) are arbitrary functions of
spatial derivatives, that is,

where I' is a Dirac matrix, have the following
forms in momentum space:

D = d'}( f (k) [a~"a(~) u ~'"' (k) I'u "(k) - st(') f) '") () t(")(k) I v" (k}
k

+at{a) Qt(s)u t(r)( k) I'&(s)(k) ea(zxo+Q(„)a{s)pt(r)( k) I'u(3 (k) e 2ssxoj
-k k k k

(2.20}

with the convention

(a(~) at(~)j (f)(~) ()&(~))

=
M ~...~'(P-P'} (2.21)

for the nonvanishing anticommutators. The den-
sities D are conserved (nonconserved) according
to whether they do not (do) create pairs. If the
operators create pairs, they may further be classi-
fied according to whether these pairs, when aris-
ing in connected z graphs, contribute (bad opera-
tors) or do not contribute (good operators} to cur-

rent-algebra sum rules saturated at infinite mo-
mentum (p, -~). Good (bad) operators commute
(do not commute) with (x'. If I' is one of ) "',
y' y', 0', or n', the operators are good; E", are
good, E", are bad. Accordingly, V„was chosen
in a way which preserves the goodness of the
SU(6)v,„„,„„generators, while Va, itself bad,
takes the entire U(6)x U(6) algebra of currents
[generated by (1+p) oh.,j into a symmetry gener-
ated by good operators.

A slightly more complicated operator of inter-
est is the position operator

d'x q t(x) x' q(x)

t'vS

+if(")a(') - —v'(")(0)) 'u(')(0)+ ~'(')(O)& ku')(O) e-" *
2E2(E+M)

za1'(&) I) tf&) ut(i)(()) (
&,(s)(0) u t(r)(0), k &{s)(0)~ e2ixx

-) 7 2E 2E'(E+ M) J
(2.22)
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which is a local function of the fields, creates
pairs in momentum space, and does not possess
single -particle eigenstates. Its Foldy transform
is the Newton-%'igner" position operator which
is a nonlocal function of the fields but possesses
truly localized single-particle states,

~-k ~k y

+k ~k ~-k y

with commutator

(3.2a}

(3.2b)

terms of pair creation and annihilation operators,

[A», A«. 1 =6««(1 —a, a» —b «b «), (3.3)

lx}= d'p —e'»xa~'"'[0) .M

P
(2.23) the operators of interest have, apart from count-

ing terms as ak~ a„etc., the form
The Foldy-%'outhuysen-type transformations,

when implemented in Fock space or larger spaces„
provide a technical tool for constructing eigen-
states of nonconserved, pair-producing operators.
If the eigenstates [qg (the quantum numbers are
suppressed in this notation} of a conserved charge
W„S';= V; EV~~, are denoted as constituent or
strong quarks, which are single-particle Fock-
space states in the Dirac representation, then the
eigenstates of E are defined by [&f,)=Vtlqg. Their
overlap, the distribution of current quarks in a
strong quark, if that colorful language may be
used, is given by

(2.24}

V, = exp[i(y»A«+y«A«)1 (3.5)

acts on the simple kth-momentum-mode space
built on the vacuum l 0,}, a tensor product of the
vacuum of ak and the vacuum of 5 k, with base
states [0»&, [1«&=a«'[0«&, [1«&=b'«[0«&, and[2»&
=a, b, [0,) and arbitrary normalized state l f,).
V acts on the nonseparable infinite-term product
space of elements

V=exp i +(y«A«+y«A«) =II V»,
k k

where yk is an arbitrary function of A, . The oper-
ator

leading to what: we shall call exclusive distribu-
tions. A similar object is the overlap of an eigen-
state of x with an eigenstate of X

(2.25)

which gives a measure of the kind of nonlocality
implicit in the V„-„.Additionally, we shall be in-
terested in certain "inclusive" probabilities, that
is, expectation values of current quark operators
in constituent quark states, such as

If)= II[f»&

with action

and inner product

(3 8)

(3.'t}

(3.8)

(2.26}

the average number of current quarks in a con-
stituent quark.

The next two sections are devoted to a discus-
sion of the nature of these probability amplitudes
and distributions.

lll. STRUCTURE OF THE TRANSFORMATIONS

IN A SIMPLIFIED FORMALISM

(a„a„,}=5«„,
fb-«& b «'1 =6» «' &

(3.1a)

(3.1b)

all other anticommutators vanishing. Then in

The Hilbert-space implementation of the Foldy-
Wouthuysen operator and its variants is best dis-
cussed in a formalism stripped of inessentials
such as spinor SU(3) indices. Let us consider a
(box normalized} discrete but infinite set of (spin-
less) fermion annihilation and creation operators
obeying the anticommutation relations

&'l&»=11 I Ilo, &

' '
ly, ll2, &) (3.9)

which usually vanishes. To a fixed vector II;l f ~)

corresponds an equivalence class composed of all
others which differ from it by at most a finite
number of factors. If the Fock vacuum II,[0„)
belongs to this class, the class spans the Fock
space. If a state of definite but infinite occupa-
tion number belongs to this class, the class spans
a space which does not contain the vacuum but
still carries a so-called discrete representation
of the algebra. If no state of definite occupation
number belongs to the class, the class spans a
space which carries a "continuous" representa-
tion of the algebra; each member of the space is
orthogonal to any state of definite occupation num-
ber '

From the commutation relation, Egs. (3.1) and
(3.3}, and by a method to be introduced in the next
section, it is easy to show that the V transformed
vacuum
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is a normed state whose overlap with the vacuum
ls

(Ol vio&=II cosly, l, (3.10}

which vanishes unless all but a finite number of
the y„aredifferent from zero. Since this is not
the case for the Foldy-%outhuysen transforms,
which affect an infinite number of modes, (0) and

V~0) lie in different spaces corresponding to dis-
tinct equivalence classes, and V is not unitarily
implement3ble; V takes Fock-space states into
a new space which carries a continuous represen-
tation of (3.1), each of whose vectors are orthog-
onal to any state of definite occupation number,
finite or not.

Thus all "exclusive" probability amplitudes,
that is, overlaps of a V-transformed Fock-space
state with any state of definite occupation number,
are zero, and this zero can be evaded in a free
theory only if the number of momentum modes is
made finite, corresponding to a cutoff in momen-
tum space. Certain "inclusive" probabilities, how-
ever, are well defined, such as the probability
P(n~) of finding n pairs of momentum P and any-
thing else, X, which is given by"

IV. DISTRIBUTIONS AND OVERLAPS

In this section we implement the Foldy-Routhuy-
sen and Melosh transforms on Fock or larger
spaces. To avoid cumbersome SU(3) indices,
which can be easily incorporated, we limit the
discussion to the W-spin subalgebra of the SU(6))),

charges, writing F"' for E„"'and lV' ' for
V;E0"' V~, where i stands for FW or M.

As mentioned in Sec. II, the 8'; commute with

the Dirac Hamiltonian and create no pairs; they
also commute with the momentum operator P and

with the quark number operator

N, = Q (I'P —' a"")a(")

and its charge conjugate, the antiquark number
operator. V-, . In addition, the 8",-. + and 8"„com-
mute with the z component of the angular momen-
tum 4, . If a~(;")(P) denotes a creation operator for
a single strong quark, which is a simultaneous
eigenstate of the classifying charges {W;)', 8";,
H, P, N„and%-, , and belongs to the W'; eigen-
value r =+ ~, i standing for F%' or M, then the
corresponding state is given by

P(n }=+~(n„X~V~O&~',

with

(3.11)
~ q» p, )', i ) = 3I; a, ;" ( p)[ 0)

provided

[IVl, o.',(;"(p)J =+ ' o.',( )(5), (4.2)

P(0),) = cos'( y,j,
P(1),) = sin'~y, l,

(3.12)

(0~ VtN, V[0)= sin'~y, ), (3.14)

as well as the number-operator expectation values
in the transformed states, e.g. ,

((~(,"(p) =)). (p) a~~'+ v (p) a~' ', (4,3)

where X; is a normalization factor. In general, r
would include the SU(3} indices. In view of the
above discussion the most general form of a, ( )(p)
is a linear combination of the usual fermion op-
erators a~~ "~,

P

(0(VtNV~O)=g (0~ V~N, V~O)=g sin'~y, l=(N),

(3.15)

(0~ V ~N'V~ 0)=(N)'+(N) —Q sin'( y, j =(N),

and similarly
')(~)

( p) g ~
( p) 5 t (+) + K

&

( p) 5 s(-)

p P
{4 4)

(N') -(N)' = —+sin'[2y, ~,

(3.16)

(3.17)

where g, v, A., and ~ are complex functions of the
momentum. Since a,~~, ~ and a~~;~ belong to distinct
H"; eigenvalues, we have

) l()), )*+~,'(~, )*=0

and

indicating that even N is a bounded operator in the
space built on V~O) if Q, sin'~yJ converges.

Thus, when in the next section we cal.culate ex-
clusive probabilities of "finding a current quark
in a constituent quark" it should come as no sur-
prise that these probabilities vanish unless the
high momenta are cut off, whereas inclusive prob-
abilities associated with these distributions, such
as averages and moments, are well defined.

X,'(X; )*+)(,'(g, )*=0.
Furthermore, if

le~'I'-+i ~&'l'=l&&'i'+I ~,'l'= &, {4.7)

the strong operators obey the usual equal-time
anticommutation relations. Equation (4.2) and a
similar relation for the strong antiquark operators
combined with Eq. (4.7) yield
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a'» ' (p) =a'»(r
S, &

p

y f(r)
~ p) y 't(r)

S ~ }.Q p

(E+ &o)(M+ u&)

2(»)(E + M )

(4.8)

(4 9)

and carries no momentum. Since the V; act as
homogeneous operator transforms the a~~" are
linear combinations of ordinary creation/annihila-
tion operators, with all the complexity and pos-
sible diseases of the transforms contained in the
transformed vacuum IO, i&, as exposed in Sec. III.

Before obtaining these linear combinations we
must introduce some notation. If we define

3
x a»'(') — P + at(-), (4.10)

(E+ ~)(bi+ ~)
&(Z)-=d'P

E S(P}&-, C4.15)

~(+)( )
(E+»»))(M+»»))

2»») (E + M )

with Ap a Fock-space operator on a p-mode sub-
space and g(p) a complex function of momentum,
then the generators 7, have the form

)& b ' + ' bt(, (4.11)
p (E +»d)(M+ &u) p

y» = —iC (a») —iD (l3»)

+ iC(o.;)+ iD(P»)+E(y»}, (4.16)

where ~ =(M'+P~')'~' and P, =P 'aiP' Th.us, the
eigenstates of the F%-transformed S'F~ = V ~I" Vt„
are simply the naive spin states created by the
usual fermion operators, whereas the eigenstates
of W3„differ from these by a momentum-dependent
spin rotation which does not affect particles mov-
ing in the z direction or in the transverse plane.
As Melosh has pointed out, this is just a signer
rotation arising when a state of a given transverse
momentum is boosted in the z direction; the
%'igner rotation is necessary if the S'&-spin classi-
fication is to be z-boost invariant.

%'e also introduce creation and annihilation op-
erators for current quarks and antiquarks related
to the strong operators by

where

( g( ) y $(+l a/(+) y f( )$ 2kExo

P -P p -p

Dt - (p a t( ) b t( ) + p at(+) b 1'(+)) e2»»o1

[P (a'»(-) a(+) b'»(-) b(+) )
lp I

+

p(a "+' a' ' —b'"' b' —' )l
p p -p -p

C~ and D~ are Hermitian conjugates of C and D
P p'

respectively, and the functions e, P, and y are

al(r)(P) Vt at(r)(P) V (4.12)

with an analogous relation for bP»)(p). The cor-
responding single-cux rent quark states created
by these operators,

iq„p,~, i&=0I»a".'. !'(p)l0, i&. = V»'le. , p, ~, I&,

(4.13)

are time-dependent eigenstates of (F)', E', V»HV»,

P, and of the current quark number operators

VtN, V, = g d'p —,", (p) ("I(p}
r

Vt N-, V] .

»).~(p) =
2 I I

arctan

p (p)- — ar t
1 Ip, l Ipl

y„„(p)=o

for the FW transform, and

O'Ip, l Ip, l

Q»»(p} =
2 E(E ~) arctan

1 M++~2 Ip l

2 E(E I)f)

(4.17)

(4.19)

(4.20)

The current vacuum

IO, i&, = V;~IO& (4.14)

y„(p)= 2
—arctan

1 P' lP, I (4.22)

is annihilated by a,')(p), b,"j(p), E' '3, and V»HV»,

for the Melosh transform. It is then straightfor-
ward to shou that
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y at'(r) pre f Y t(r) -f F ~e
p p

=cosI a~~+) — "' + tanI' a~~)+e "~"o —' b(') — ' + b&+~ tanI .PP
t ft Ip I

t ft 'p Ip I

t t, +'

+cosr a'„-'+ ~f - tanI'fa„'~' -e-"~'o —f b'„'+ f~- b'-„' tanr
p l"(Ip. l

'
p I Ip I

~ f r, - ~ (4.23)

where I'; =(o, '+)l +y ) ', and hence

st(+) ( )
+ st(+Ia.F~ p= P+ b(+) + ~ y(-) e- 2fExo

+I
p

K+I -p
(4.24)

and

z+~ 3 ~-M
a,'(g(p) =- (28+% —ur)a ('+ "a ' — P ft' +P' ft e " *'

2E 8+M p &+& p -p {d+~ -p
(4.25)

Note that at this point we have three generally dif-
ferent kinds of creation and annihilation operators:
the ordinary fermion operators as a~&r), strong
operators as at(&i(p), and current (luark operators
as sP, ('(p).

It is often helpful to write Vf as a product of ex-
ponential operators with all operators which anni-
hilate the vacuum appearing to the right of those
which do not annihilate the vacuum. This order-
ing procedure is described in the Appendix. The
result is

V( ——exp[C (a()+ D (P &)
—C(a&) -D(Pg)+ iE(y()J

h f = arctan —tanI'fYf

m = ——in[ 1 + (f ( ~) y (y('&)'J .

Then, finally we can write

V Io)= xp[C'(f"')+D'(f"')J Io&

{4.26f)

(4.26g)

(4.26h)

= exp[c'(y, '. ")+D'(y,'")J explc(g!" +D(g,(")J

x exp[i/(h;) J exp&ff(m, )],
x exp - 5'(0) d'p»[l+ (f '")'+ (f (,")'] ',

where

&(fg) = [c(f),c'(g)J,-

()(0) a &(+) g(+) s &(-) (((-I2E
P P P p p

b t(+) b(+) b l('-) b(-) j-p -p

(4.26a)

(4.26b)

a form which strikingly illustrates that V, IO) is
orthogonal to any state of definite particle number.
[Crudely speaking, any such state I4') cannot de-
velop an infinity from

{4'Iexp[C t(y('i) +D~(f ,
'.")J IO&

{4.26c)

f~ ) = I+ ' tan I", —+ '
2 tanl'f tanI'f,

f

(4.26d)

(4.26e)

to cancel the zero coming from the strongly di-
vergent negative exponent. ] Nonetheless, as dis-
cussed earlier, V, IO) is normed, but it does not
reside in Fock space. Consequently, the probabil-
ity of finding n strong quarks and m strong anti-
quarks in a current quark,

I(nq„mq, lq, )I',

vanishes even if n andfor m are infinite. This
state of affairs persists even if we quantize in a
finite volume (21) leading. to discrete momenta
k =n vL ', where n = (n„n„n,) are integers. With
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[nt(~) n(s)]. (t) t(r) 6(s)j
k' k k'

=5„,5
k, k'

a shorthand for

(4.28)

with

= —i Q [o((k) C t + P((k) Dt —~)(k) C
k k k

k

—P;(k)D + iyq(k) E j,
k k

(4.16')

= 6„,5„„5„5„,(4.29)

the generators Y& are given by

(4.30),

a bona fide infinite tensor product, each factor
V& g of which can be put in "ordered" form

V =exp[fi"(k)C~+fp)(k)Dt]exp[gi)"(k)C +ga, (k)D ]exp[ih, (k)E ]exp[m;(k)K ], (4.26')

where

and the functions f, g, k, and m are given by Eqs.
(4.26). Again,

v; IO& = II ( I+[f';"(k)]'+[f; '(k)j'] '

xexp[y', "(k)C" +f", )(k)D'] )0&

(4.27')

is orthogonal to all states of definite particle num-
ber unless a momentum cutoff ~k~ «A is intro-
duced, which makes the number of degrees of
freedom finite.

However, there are distributions which do not
vanish even if A-~, such as the average number
of current quarks in a strong state. Even though
th se can be calculated directly by evaluating the
appropriate matrix elements, it is more instruc-
tive to find these from the expansion of a strong-
quark state in terms of current-quark states

l&. , p, +, i& =~".
, i'(p)l o&

2( q - Il2
=( I+[f,"(p)]'+ [f~'(p)]')"' I+ ','P' tan'I', a, ')'(p) — '~

' tani'&a~, '(p) V, ~O, i)„
(4.21)

where, by Eq. (4.27'),

V„„io,FW', = P&

=II(1+[f'"(k)1'+[f '(k)]'l '

1+fF'„'(k)a", F'„(kb", ,'„-k-a", ~ k b", F'„(-k e" "o

(4.32)
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V„iO,M), = i0)

tan F~(k }[a e. ~ (k)b, u (-k) —a, '„'(k }b,I„'( —k')] e" "o

tan'F„(k)[k,a, '„'(k)6,„'(-k)+la,'~(k)5, '„'(-k}]8

——
2 tan'1 „(k)a,„(k)b,'„'(-k)a,'„(k)b,„'(-k)e""'

~
O, M (4.33)

P(O„k,O„i)=(1-:[f';"(k)]' [f';"(k)]'-$ ', (4.34)

The picture of a strong quark of momentum p as
composed of current quirks, which emerges from
Eq. (4.31), is that of a "leading particle"' carrying
the momentum p and a cloud of pairs, with mo-
menta k, -k, clustering about the origin in momen-
tum space (not about p}, with zero overlap on
states containing a definite number of current
quarks. This picture can be viewed from any
frame, including the infinite-momentum frame,
and is not conspicuously amenable to a parton in-
terpretation, if only because the "parts" do not
follaw the "whole. " The latter effect is due to the
fact that the transformation is bilinear in the
fields and commutes with the momentum; it could
be remedied by changing one of these two proper-
ties. It is interesting to note that the nonco-
variant cutoff procedure not only cures the zero
overlap problem but also forces the choice of a
natural frame in which to view the strong quark
(p = 0}where the current quark pairs cluster about
the leading particle.

The probability P(n„k,O„i)of finding in the
vacuum, ~0), n, current quarks in the kth mode
and anything else in other modes can be easily
found from Eqs. (4.32}and (4.33),

P(l„k,O„i)= 2([f,"(k}] +[f, (k)] jP(0, , k, O„i}.
(4.35)

P(2. , k.o„i)=&[fI"(k)]'+[fI"0)]'&'P(o„ik,o„i).
(4.36)

{Due to the exclusion principle, n, cannot be larger
than 2.} This enables us to determine the average
number of current quarks of momentum k in the
vacuum .'

(X(c,k, iO„i)) = 0 Q a,I" (k)a,'",' (k) 0

= Q n, P(n„k.0, . i)

=2][f"'(k)j'+[f '(k)]'j

~&1+ [f", (k)]'+ [y',"(k}]']-' .

By a similar procedure, we can write down the
probabilities P(n„k,l„p,i}of finding in a strong
quark ~q„p,+, i) n, current quarks in the kth
mode and anything else in other mades:

P(0„k,l„p,i) = (1 —6p p)P(O, , k, 0, , i),

P(l„k,l„p,i) =.Jl-[f,."(k)]'+[f~( (k)]')5p pP(O„k,O, , i) (1 —
&p ~)P(l„k,O„i),

P(2„k,l„p,) =-,'. I l+[f", (k)]'- [f", '(k)]') ~-, -, P(l„k,o„)(1 —~; -„}P(2„k,o„},
yielding the average number af current quarks of momentum k in a strong quark

iV(c, k, l„p,i) = P n, P (n„k,1„p,i)

= ]1+[f';"(k)]'-[fi '(k)]') ']&, , ~+ 2[f' (k)]'+ 2[f";'(k)]'j .
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The fluctuations D of the number distributions,
D =(N'& —(bl') ', are given by

and

D(ck, o,
„

i) I='(1 „ko,
„

f} (4.42)

D(c, k. 1„p,i) = (1 —26' k)I'(l, , k, o„i). (4.43)

The values of the quantities (4.34)-(4.31) and
(4.41}-(4.43) for FW, Melosh, and UZ transforma-
tions are given in Table I. As expected from the
form of the transformation, the average number
of current quarks in a strong quark is infinite.
%'hile the distribution of the current quarks for
the F%' case is spherically symmetric in momen-

turn space, the transverse direction is preferred
for the current pairs of Melosh, with none of them
moving in the z direction —another aspect making
the parton interpretation difficult. Also, the high-
momentum region is more populated by the pairs
than the low-momentum one, with the maximum
population reached at infinite momentum (infinite
transverse momentum for Melosh and UZ).

Distributions related to matrix elements of
Pock-space operators between a current and a
strong state are meaningful only if A is finite.
From Eq. (4.31), for example, we can read off the
probability of finding a current quark of momen-
tum k (and nothing else) in Iq„p,+, i),

Q i(q. , k, ~, f lq„p,+, f&l'=[1+[fI"(k)]'+[f (k)]'}&p,k I(ol &;Io&l', (4 44)

the probability of finding a current quark of momentum k and a current quark-antiquark pair of a given
momentum k (" -k("

(() (I (k) (s)
( k(x& }br) ( k(z )Iq

.
&

2

re, f

=$1+[f';"(k)]'+[f,'(k)]'}&-, , 1 2([f',"(k"')]'+If~'(k"')]'}(1-k& ~„)i(ol v, I o& I', (4.45}
k, k

or the probability that Iq„p,+, i& will contain a current quark of momentum k accompanied by two pairs
of momentum k{')

l, (0, i Ia,'I(k)a~';(k"')bi";( k"')-ai~';(k ")b,'"';(-k'")Iq„p,+, i&l'
r ~, t,nt, n

=I 1+[f(' (k)] +[f~ (k)]'}b- -[[f.')(ki' )]'+I f~'(k '~)]'}'{1 b )I(ol yg I()) I'. (4.46)
k, k

TABLE I. Pair distributions as a function of momentum.

Quant

P(0, k, 0

P(l, k, O, i)

j'(2, k, O~, i)

(N(c, k, O~, i))

D(c, k, 0~,i)

(X(c,k, l„p,i))

D(c, k, l, p, i)

(E I '

jk j'
2E2

2E(E +M)

j kj'
2E2

E+M j
kj'

2E " ]' (E+M)'

j kj'
(1 —2&k, p)

C0 ((d +M) k z
2E E

j k~j 2a a(w +M) k&

E (u+M) 2E E

I k, i"'cu

2E (w+M)

j kij2~
E (~+M)

x(x +M) ki
E2 (cu +M) 2E E

(~+M) kz j k ij (d

E "']' E ((d+M)

j k~j 2~ ~(~+M)
E ((u+M) 2E

E+jk, j

2E2

2u)"

2E(E+ j k, j)

2E2

E+Ik, j
2(u'

2E k ] (E+jk j)'

2E2 (1 —2~k, P)
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In general there is an additional multiplieative
factor of

2([f(1)(k)] 2 + [f (~2) (k )]
2 }

for each current quark pair in the kth mode and a
factor

for each double pair in the kth mode. The above
quoted probability amplitudes strictly vanish unless
a cutoff keeps the common factor

from vanishing; they can be interpreted as rela-
tive probabilities, al1. of which vanish as A- ~,
but with mell-defined ratios.

V. SUMMARY AND OISCUSSION

We have discussed a class of operators V; which
lead to an exact SU(6) symmetry in the free-quark
model. While not unitary on Fock space, they have
a simple structure when discussed in terms of a
larger nonseparable infinite tensor-product space,
where they map, in an isometric but unitarily in-
equivalent way, one separable Hilbert space onto
another separable Hilbert space, with image spa. ce
orthogonal to object space. Nonetheless, Fock-
space operators have well-defined matrix elements
between members of the same equivalence class,
or, expressed differently, V, -transformed Fock-
space operators remain well defined in Fock space.
As a result, me found a finite nonvanisMng mean
number of current quarks of a given momentum in
a strong state. We see no reason why such trans-
formations should be proscribed even though they
are technically nonunitary on a separable space;
they appear ideally suited for producing pair dis-
tributions, which we have discussed in detail and
whose possible relevance to parton-model pictures
we have speculated on. It is, however, imperative
to recognize that V, -transformed Pock-space
states are orthogonal to all Fock-space states
(i.e. , current quarks are orthogonal to strong
quarks) uniess a, momentum cutoff limits the de-
grees of freedom to a finite number. Such a cut-
off, which seems characteristic of most parton
models, "may arise naturally in an interacting
theory.

It is interesting that the distributions we have
found show such a rich structure and complexity.
It therefore seemed useful to us to seek a parton
interpretation despite the fact that the V„which
we studied in the equal-time formulation mere
found by requiring the transforms to induce sym-

metrics in the free-quark model and need not have
properties more general than the limited frame-
work from which they sprang.

In our formulation (we define ~q, ) = V (q, ),
which is equivalent to diagonalizing F' and V, H V,
simultaneously) the spin-averaged distributions
(see Table I) depend solely on the form of H,
=- V~HV, and are not sensitive to the arbitrariness
inherent in V, , which was discussed in Sec. II. As
a result, the distributions produced by the trans-
formation of Gomberoff, Horwitz, and Ne'eman
are the same as those of FW. No pairs are cre-
ated in momentum modes not affected by the trans-
formation; pairs are produced "in proportion" to
the difference between the forms of 0 and H; with-
in a given momentum mode. Thus, for example,
there are no zero-momentum pairs but many in-
finite momentum pairs in VFN 10), no pairs moving
in the z direction in V„~0) but many moving in the
transverse direction, and no P, -~ pairs in VU~~ 0).
As a further consequence, none of the distributions
have a transverse-momentum falloff. Even though
a falloff could be produced by a transformation
which leaves large transverse momenta unaffected,
such a transformation would not result in a trans-
formed Hamiltonian commuting with F, and would
therefore not lead to an exact symmetry.

The complete hadronie distribution would involve
not only the distribution of current quarks in a
constituent quark but also the distribution of con-
stituent quarks in a hadron, that is, the naive
quark model wave function. This kind of convolu-
tion has been carried out by Altarelli, Cabibbo,
Maiani, and Petronzio" in a different context. It
is clear, however, that this would not change our
conclusions since the number Uf current quarks in
a hadron would still be increasing mith transverse
momentum whatever the strong wave function or
longitudinal momentum frame.

For these and other reasons cited in the text,
the distributions we have calculated do not readily
lend themselves to a parton interpretation. This
is perhaps not surprising considering the lack of
dynamics in the free-quark model. The effect of
interactions, necessary for quark binding, on V,
and corresponding distributions can be answered
only if a more complete theory is at hand. We
entertained the possibility that the true distribution
might be realistically approximated by the free
quark model V„with interactions built only into
the strong wave function; as discussed above this
does not appear to be the ease. Whether other
means exist of imposing a dynamical input on these
transforms in the context of the formalism we
have developed, and whether the resulting distribu-
tions would prove phenomenologically useful re-
mains an open and interesting question.
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[C(f),D(g)] = [C'(f),D'(g)] =0,

[C(f), C'(g)] = [D(f),D'(g)] =K(fg),

(A2)

APPENDIX

As mentioned in Sec. IV, all the transformations
we analyze can be written in the form

exp[C (n)+D (P) —C(a) D(P-)+iE{y)] (Al)

with all symbols defined in Eqs. (4.15) and (4.16).
Iff„f„f„f„f„f, are arbitrary functions of mo-
menta, the algebra of the set of operators Ct(f, ),
D (f,), C(f,), D(f, ), F(f,) enlarged by K(f,),
K(fg)-=[c(f), C (g)], closes and the commutation
relations are as follows:

[K(f), C(g)] =2C(fg ),
[K(f),c'(g)1 = -2c'(fg),
[K(f),D(g)] =2D(fg),

[K(f),D'(g )] = —2D'(fg ),
[D(f),c'(g)1 =iE(fg),

[C(f), D'( g )] = —iE(fg ),
[F(f},C (g)] = —2iD (fg),
[F(f),C(g)] = —2iD(fg),

[E(f),D'(g )1 = »C'(fg),
[F(f},D(g)] =»C(fg),

[K(f), F(g)] = o.

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

{A10}

(A11)

(A12)

(A13)

(AN)

The operators C, D, and E annihilate the vacuum,
C and Dt do not. K contains a c-number part and
a part which annihilates the vacuum. We assert
that Eg. (Al) can be written in an ordered form

exp[C~(o) +D "(p) —C(o}-D(p) + iE(y)] = exp[C (f,) +D (f,)] exp[C(g, )+D(g, )] exp[iE(h)] exp[K(m)] .

(A15)

This is a generalization of the well-known identity e" =e"e e ~" ",which holds only if both A and 8
commute with [A, B]. In order to relate the functions f, g, h, and m to the given functions u, P, and y, we
introduce a real parameter A. and define

G(A. ) = exp [K(m)]

=exp[- iF(h)] exp[- C(g ) —D(gg)] exp[- C'(f ) -D'(f )]exp(~[C'(n)+D'(I3) —C(o') D(P)+i-E(y}]);

(A16)

f, g, h, and m are now functions of both the momentum and X. Then

G'(Z) = —G(Z)

=K(m')G(X)

=(-iF(h') —exp[ —iF(h)] [C(g', +D(g,')] exp[iF(h)]

—exp[ —iF(h)] exp[-C(g, }-D(g )] [Ct(f')+D (f')] exp[C(g )+D(g, )] exp[iE(h)]

+ exp[ —iE(h)] exp[-C(g, ) -D(g, )] exp[ —C"(g,) D~(g, )]-[Ct(a )+Dt(ft) —C(o) -D(t})+iF(y)]

& exp [Ct(f,}+ D t (f,)] exp [C(g,) +D(g, )] exp [iE(h)]) G(A)

= {CII G, -g l+g, (fl g, +f2 g.) g.(fl g. fl-g, )1 cos2h-
+ [G, gl+g(fl g, +fl g )-+g(fig -fl g)1»n2h)

+D([G. g,'+g.(fl g, +fl g —)+g, (f;g. fl g }]cos2h-
-[Gi g'i+ gi(f'i gi+fR g2-) -g2(fig2-f2gi)]»n2h)

+
C t [(F,—f') cos2h+ (E, —f') sin2h] + D [(E,—f') cos2h —{E,—f'}sin2h]

+ iF(H- h'+ f', g, -f2g, )+K(M+f', g, +f2g2)) G(X), (A17)

where the prime stands for the derivative with respect to the variable A. , and
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&, = ~+2f r+f, (f,~+f P)+f,(f,P f,-~),

+, = P+ 2f,r+f2(f, ~+f28) f,-(f,8 f2~-),

G, = —~ g,—[(g, ~+g P)+2(f,~+f P)1

F, f',-=0,

+2 f2-=o,

H —&'+f(g. -fl gi= o

(A20)

(A21)

(A22)

g,-[(2r+g,P -g, ~) 2(f-g f,~-)]

—(f,o+f,P) [g, (f,g, +f, g2) g2(f1g2 f2 gl)]
—(2r fP-+f2~)[ g (f,g2 f2g,-)+g.(f g +f.g2)],

G2= -8+gi[(2y+gg —g, o') —2(f 8 f, )o]-

g, [(-g, o+ g,P)+2(f,~+f P)1

—(f,~+f8)I g, (f,g, +f2 ')+g, (f g. f2g-)1

+(2r fp+f, -~)[g,(f,g, +f2 g2) g2(f-g. -f2g )1

H=r (f,P -f.&)+(-g 8 -g.o')

(f,~+f-P)(f, g. f.g.)-
+ (2r fP+f, ~-)(f,g, +f,g,),

and

m —m'+f', g, +f,' g, =O, (A23)

which have a unique solution if the six boundary
conditions at A. =O

f,(0) =f,(0) =g, (0) =g, (0) = h(0) = m(0) = 0 (A24)

are imposed. The solutions are

f, = (I'+ y' tan'AI') '(oi' —Py tanAI') tanXI', (A25)

f, = (I'+y' tan'AI') '(PI'+ ny tanks) tanAI', (A26)

g, = —I' '(1+ tan'XI') '(nI' —Py tan AI') tanAI', (A27)

g, = —I' '(I+tan'Xl') '(81'+ nytanAI') tanAI', (A28)

M= (f,~+f,P—) (g,—~+g,P)

(f,~+f.P—)(f,g, +f,g.)

+(2r f,P+f.~)-(f,g, f.g, ) . -
Because of the linear independence of the operators
C, D, C, D, I, and K, this leads to six linear
differential equations of the first order,

h = arctan —tanAI'y
r

and

m=-,'1n[I' '(I+tan'AI") "(I'+y'tan'AI')]

= —~ 1n(1+f,'+f, '),

(A29)

(A30)

G gl+g (fl g-, +f2 g.)-g.(flg. -fl g, )=o, (»6)
G2 gl+ g2(fl g, +f-2 g, )+g, (fl ga -fag, ) =0, (A»)

where I' = (n'+8'+y'). Equation (A16) now holds
for all values of A. , but we use it only at A. = 1 to
obtain Eq. (A15).

*Work supported in part by the U. S. Atomic Energy
Commi ssion.

H. J. Melosh, thesis, Caltech, 1973 (unpublished).
H. J. Melosh, Phys. Rev. D 9, 1095 (1974).

3S. P. de Alwis and J. Stern, Nucl. Phys. B77, 509 (1974);
E. Eichten, F. Feinberg, and J. F. Willemsen, Phys.
Rev. D 8, 1204 (1973); A. J. Hey and J. Weyers, Phys.
Lett. 44B, 263 (1973); A. J. G. Hey, J. L. Rosner, and
J. Weyers, Nucl. Phys. B61, 205 (1973).

4F. J. Gilman, M. Kugler, and S. Meshkov, Phys. Lett.
45B, 481 (1973); F. J. Gilman and M. Kugler, Phys.
Rev. Lett. 30, 518 (1973); F. J. Gilman, SLAC Report
No. SLAC-PUB-1256, 1973 (unpublished); F. J. Gilman
and I. Karliner, Phys. Lett. 46B, 426 (1973).

~H. J. Lipkin and S. Meshkov, Phys. Rev. Lett. 14 670
(1965).

SSee for example, M. Gell-Mann, in Proceedings of the
Eleventh Internationale Universitdtswochen fu'r Kern-
physik, Schladming, Austria, edited by P. Urban
(Springer, New York, 1972); p. 733; H. Fritzsch and
M. Gell-Mann, in Proceedings of the International
Conference on Duality and Symmetry in Hadron Phys-
ics, edited by E. Gotsman (Weizmann, Science Press,
Jerusalem, 1971), and talk presented at the XVI
International Conference on High Energy Physics,

Chicago-Batavia, Ill. , 1972 (unpublished).
~L. Gomberoff, L. P. Horwitz, and Y. Ne'eman, Phy .

Lett. 4@3, 131 (1973); Phys. Rev. D 9, 3545 (1974).
F. Gursey, Phys. Lett. 14, 330 (1965).

8L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29
(1950).
T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21,
400 (1949).

~~M. Cini and B. Touschek, Nuovo Cimento 7, 422 (1954).
S. K. Bose, A. Gamba, and E. C. G. Sudarshan, Phys.
Rev. 113, 1661 (1959).
R. Dashen and M. Gell-Mann, Phys. Lett. 17, 142
+965); 17, 145 (1965).

~4The literature on this subject is extensive; we have
especially benefited from reading A. S. Wightman and
S. S. Schweber, Phys. Rev. 98, 812 (1955); and T. W.
B. Kibble, J. Math. Phys. 9, 315 (1968).
It is clear that a denumerable basis can be found in the
separable space belonging to the V~ 0) equivalence
class.
See for example, R. P. Feynman, Photon-Hadron Inter-
actions (Benjamin, New York, 1972); J. Kogut and
L. Susskind, Phys. Rep. 8C, 75 (1973).

~ G. Altarelli, N. Cabibbo, L. Maiani, and R. Petronzio,
CERN Report No. TH. 1727, 1973 (unpublished).


