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It is shown that any (relativistic, action-at-a-distance theory formulated in terms of a (relativistically
invariant) Fokker action, which is invariant under any change of the world-line parameter, also can be
given a Lagrangian formulation. The parametrization invariance makes it possible to introduce a
common parameter which also can be identified with time. The resulting Lagrangians are nonlocal in
time and therefore the applicability of the action principle requires a generalized variation method
which is developed here. The resulting generators are expected to generate the corresponding variations
in a Poisson-bracket sense, i.e., a Hamiltonian formulation of the theory is expected to exist. However,
in order to check this it is necessary to (formally) solve the equations of motion, as one needs Poisson
brackets for unequal time due to the nonlocality of the generators. But since the equations of motion
themselves are nonlocal in time, the Newtonian initial data will not yield a unique solution. Thus, in
order to retain the Newtonian degrees of freedom one needs a selection principle as a subsidiary
condition. Such a principle has been proposed which states that one has to choose the solution which
has a nonrelativistic limit. In the case of a general vector interaction the class of solutions which is
obtained by an iterative method (which starts from straight lines) is considered. These solutions are
uniquely determined by the Newtonian initial data, but they are applicable only to scattering processes.
By choosing the asymptotic straight lines as canonical variables it is explicitly shown that the Poincaré
generators fulfill the Lie algebra of the Poincaré group and that the physical positions transform as
Lorentz vectors. It is also shown that the physical positions cannot be chosen as canonical variables.

15 OCTOBER

1974

Quantization is discussed and a general argument is put forth which states that the above solutions
cannot be quantized by imposing the canonical commutation relations on the canonical variables.

1. INTRODUCTION

Newton’s theory of gravity (1686) is the proto-
type of an action-at-a-distance theory. In this
theory the physical masses are acting and reacting
with equal amount and at the same instant of time
even over large distances.! This is the basic
picture of nonrelativistic particle mechanics,
which also constitutes our most consistent phys-
ical theory up to date. However, with the introduc-
tion of relativity, simultaneity is no longer an in-
variant concept. It is therefore generally believed
that relativity requires a field theory, i.e., a
field-mediated interaction, and that no relativis-
tic mechanics of the action-at-a-distance type is
possible. However, this belief is badly founded
as one has already shown that action at a distance
is possible in relativistic theories.

Classical electrodynamics of point charges as
given by Maxwell and Lorentz is the prototype of
a theory with field-mediated interaction; the in-
teraction between the charges is there mediated
by the electromagnetic field. Many efforts to put
this theory on a Newtonian form failed in the begin-
ning. However, Gauss seems to have been think-
ing in the right direction at a very early stage ac-
cording to a letter to Weber in 1845.2 The keyword
is namely noninstantaneous action-at-a-distance
instead of the instantaneous one as in Newton’s
theory of gravity. By noninstantaneous action is
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meant that the action between the charges should
propagate with a finite velocity. However, it took
very long before action-at-a-distance electrody-
namics became a reality. But as soon as Liénard
and Wiechert® had given the expression for the
radiation from an accelerated charge, it became
possible to describe the interaction between two
charges with a direct interaction by the elimination
of the electromagnetic field.* Fokker® showed
that such an interaction could be derived from an
action principle if the advanced as well as the re-
tarded solutions of Maxwell’s equations were in-
cluded. The theory was then finally completed by
Wheeler and Feynman® with their absorber theory
of radiation.

In contrast to the electrodynamics of point
charges according to Maxwell and Lorentz, the
Wheeler-Feynman theory is quite consistent. The
former is plagued with the infinite self-energies,
while the latter is finite with no self-energies at
all. Dirac’s” consistent but ad oc procedure to
eliminate the infinite part of the self-fields in the
Maxwell -Lorentz theory becomes exact in the
Wheeler-Feynman theory.® In fact if one tries to
make the Maxwell-Lorentz theory consistent
(finite), one seems to be forced to introduce a
direct interaction between the charges in some
way or another.® The new features which the
Wheeler-Feynman theory brings in are mainly
philosophical in nature. But these new concepts
are indeed revolutionary:
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(i) There does not exist any electromagnetic
field as an independent entity with degrees of
freedom of its own.

(ii) A charge does not act upon itself (and con-
sequently has no infinite self-energy).

(iii) Radiation can only be discussed in presence
of an absorber; radiation occurs when the ab-
sorber is accelerated by the source, and the
radiation reaction occurs when in turn the source
is accelerated by the absorber due to the equality
of action and reaction.

(iv) The concept of causality of conventional
classical theories is violated as the motion of a
charge is determined by the past and future be-
havior of the other charges (by the timesymmetry
of the theory). However, this noncausality is
limited in its influence to a very short time in-
terval of the order of e?/mc®, and it manifests it-
self in, e.g., the preacceleration already noticed
by Dirac®” (and much earlier in the nonrelativistic
case of radiative reaction®). In fact this non-
causality is not experimentally detectable as its
appearance is exactly on the level where one has
to take quantum phenomena'® into account. This
feature might therefore be considered in favor of
the theory as the latter already on a prequantized
stage points to a breakdown of classical concepts
for short distances.

Though the Wheeler-Feynman theory seems quite
satisfactory from a logical point of view, it is not
particularly useful in practical examples. This is
because of their condition of complete absorption
which demands us to insert an absorber or to in-
clude all charges of the universe (besides that,
we have to assume that there is no radiation at the
boundary of the universe or, stated within the ac-
tion-at-a-distance language, we have to assume
that there is no interaction at infinity in the
Euclidean space). Hence for any few-body problem
for which the action-at-a-distance electrodynamics
could be useful, the Wheeler-Feynman absorption
condition is not fulfilled. The interpretation® in
terms of the Maxwell-Lorentz-Dirac theory for
such a system is that apart from the particles in
the system we also have an external free field
which does not affect the system as a whole but
changes the forces on the individual particles.
Since there seems to be some physics in the few-
body problems (see, e.g., the bound-state solutions
below) one could perhaps take the following phys-
ical standpoint: Elementary systems should be
described by action-at-a-distance electrodynamics
and the Dirac theory is only statistically (ap-
proximately ?) satisfied for macroscopic systems
(i.e., for many-body problems).

Now the appearance of the action-at-a-distance
electrodynamics made it possible to construct

other examples of relativistic particle theories.
In fact any field-mediated interaction can be cast
into an action-at-a-distance form!''!? irrespective
of the spin and mass of the field involved. Such
an action-at-a-distance theory is said to have an
analogous (but not equivalent) field theory. One
may go even further and construct theories!®:*4
with no field-theoretic analog at all. One may
even thereby introduce a finite self-interaction'®
(but there are problems with mass renormaliza-
tion’®)., Hence, there exists a great variety of
possible relativistic mechanical theories of inter-
acting point particles. They are all characterized
by the following properties: (a) They are derivable
from a Fokker action. (b) This Fokker action is
parametrization-invariant, i.e., the equations of
motion do not depend on which parameter one
chooses to describe the world line of a particle.

One of their attractive features is that they al-
low for the description of bound states. The two-
body problem is, however, not reducible toa one-
body problem as in the nonrelativistic case; there-
fore one has difficulties in solving the equations
of motion and consequently not much more than
circular solutions'”~2° have been found so far.
The same is true for the three-body problem.?
Anyway, the results obtained are in agreement
with similar results from, e.g., the Bethe-Salpeter
equation,'®

On the classical level the above models seem to
be quite satisfactory. Thus, if one also could
quantize them in a satisfactory way, they would
certainly play an important part in modern phys-
ics. They contain in fact several good properties
to be of interest even in the case of strong inter-
action.'’? However, this quantization problem has
not been solved so far,?* However, encouraging
examples exist where one has performed a Bohr
quantization of the circular solutions found in the
two-body problem.!”!#:#* The energy levels are
found to agree, e.g., with the corresponding ones
obtained from the conventional treatment of a
Dirac field in an external potential.?* This opens,
therefore, the possibility of treating, e.g., the
hydrogen atom as a true two-body problem. What
remains, however, is the development of a general
quantization scheme. A natural requirement of
such a scheme is that it must coincide with the
nonrelativistic quantization scheme in the non-
relativistic limit. The easiest way to satisfy this
requirement would be to construct a Lagrangian
and Hamiltonian formulation of the classical
theory and to perform a canonical-like quantiza-
tion of this theory. So far one has, however, not
been able to put the classical theory on a canonical
basis. The main object of the present paper is,
therefore, as a first step towards a satisfactory



quantization, to show that the classical theory in
fact can be put on a Lagrangian and Hamiltonian
basis. This will be done in an explicit manner.

The Lagrangian and, in particular, the Hamil-
tonian formulation of relativistic particle me-
chanics has been treated extensively in the past.
But one has always considered strict instantaneous
action-at-a-distance and not a noninstantaneous
one of the above type. In the limit of no interac-
tion they coincide, of course, and for free rela-
tivistic particles there are essentially two possible
formulations; the covariant and the noncovariant
one.'® However, one encounters severe difficulties
when one wants to introduce interaction in the in-
stantaneous case. In the beginning®® one was sat-
isfied with a canonical representation of the in-
homogeneous Lorentz group without making sure
that the positions transformed correctly under
this group. Relativistic invariance of the theory
was therefore not at all ensured as such a repre-
sentation can be constructed in an obviously non-
relativistic theory.?® In fact, a theory which al-
lows a canonical representation of the inhomoge-
neous Lorentz group and in which the physical
positions transform as the space part of a four-
vector cannot contain any interaction according to
the remarkable no-go theorem of Currie, Jordan,
and Sudarshan.?” However, one has realized that
one can avoid this theorem if one chooses a
canonical coordinate which is not the physical
position.?®-3° That this is possible has also been
shown before.® Hence, there is still some hope
within the instantaneous scheme. Covariance
conditions3? have also been given independently by
Currie® and Hill,* and various examples which
fulfill these conditions have been constructed.*®
However, no physically completely satisfactory
example has been given so far,® and in this paper
we shall not consider this possibility.

II. THE LAGRANGIAN AND HAMILTONIAN
FORMULATION OF FREE RELATIVISTIC
PARTICLE MECHANICS

In this section we shall consider the Lagrangian
and Hamiltonian formalism of N free relativistic
particles. Although no new results will be pre-
sented, we shall exhibit this case carefully here
because when we later introduce interaction be-
tween the particles, the Lagrangian formalism
will be developed along the same lines and the
Hamiltonian case will, in the present paper, even
turn out to be based upon the free Hamiltonian
formalism. What we in particular want to empha-
size is the importance of the parameter invariance
of the action integral: how it reduces the degrees
of freedom, and how it allows for transitions be-
tween multitime and single-time formulations,
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and between covariant and noncovariant formula-
tions.

For the description of N free relativistic par-
ticles one usually starts from the action

X
Woz_z1 maczdea , (2.1)

where 7, is the proper time of particle a. The
action is thus proportional to the sum of the
lengths of the world lines of the particles multi-
plied by their respective masses. Notice that

cdr, = (dxbdx,,V?

ug /2
- <de Loy ) dt,
df‘z dt, a

where {, is another parameter along the world
line. The action (2.1) may thus also be written as

N
Wo== D _mc f at[£5(t) %, (812 . (2.2)
a=l
The principle of least action states now that the

particles follow the shortest paths. We get in
fact the equations of motion

d 28(8) o
"€ <[xa(ta)x,,,,(t,,) 2> =¥ (7o)
a=1,...,N, 1=0,1,2,3. (2.3)

The action (2.2) is constructed in such a way that
(1) ,4(7,) = c® will be satisfied identically.

An important property of the action (2.2) is that
it is invariant under any change of the world line
parameters /, as long as there is a one-to-one
correspondence between /, and 7,. This allows us
in fact to introduce a common parameter ¢ which
is connected to the proper times by monotonic
(increasing) functions f,, i.e., t=£,(¢,) for
a=1,...,N. By use of this common parameter
we may define the following Lagrangian:

N
Lo(t)= = 3 moc[35 (03 (]2 (2.4)

The action (2.2) may now be written as
W,= fdtLo(t) . (2.5)

[The principle of least action yields (2.3) with the
particular choices #,=¢, a=1,...,N.]

Now the action (2.5) is furthermore independent
of the choice of parameter {, which also can be
said to be due to the fact that L, is homogeneous
in £ of first degree, i.e.,

9Ly(!) . _ B
Wx,‘;(t)-Lo(t), a=1,...,N. (2.6)
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Owing to this homogeneity property, only 3N of
the 4N equations of motion are independent. This
may be seen as follows:

(- 4ok _dLy 4 oLy v2) =0.

oxF T ar 5xk) " ar T ar \ax! te) T

In this paper we shall always choose the equations
of motion of the space coordinates to be the inde-
pendent ones.

In order to be able to derive conserved quanti-
ties, we introduce the finite action

_ f'z dt Ly(l) (2.7)
3%

and the action principle
oW, =F(4)-F(l,), (2.8)

where F({) is the generator of the infinitesimal
variation 6.
A functional variation §, of W,, yields

P
50W21=f dlan S <——'“x-p')—17'2-) 80X,

ty ak
e d 2260,
- dt — ek (2.9
Jt]_ at <; e (xaxa#)l 2> (.9)

The action principle (2.7) gives now the equations
of motion (2.3) and the infinitesimal generator

Z)H C .
)1 E)

If one also varies the parameter ¢ (1 —¢+61%),
then one gets an additional term in (2.8) due to the
end—point variation:

fdz

The action principle (2.7) yields thus the following
generator for general variations:

(2.10)

5 (dt)Ly(2) [6¢L(D)] . (2.11)

Y

Fb)-= f m’%—“—)—ﬁ (52693, + £ % 3 60) . (2.12)
a=l \*aq?ap

If W, is invariant under an infinitesimal trans-
formation (x! - x) +6,x¥, t=+061), then we have
that F(¢) is conserved, i.e., dF(t)/dt=0 (Noether’s
theorem?®”),

An infinitesimal parameter transformation
t—t+x(f) (A an infinitesimal function) induces a
functional variation §,x! = - %% of the space-time
coordinates of the particles. [Let x;* be the world
line with respect to the new parameter £+, i.e.,
x;#(t+1) = x*(t). This implies that x,*(t)= x*(£=2)
= x4 () =xx!(?) infinitesimally. Thus in order to
leave the world lines of the particles intact one
has to add to these the functional variation 6,x"
=-xx¥). Thus, /-{+x(f)yields the infinitesimal
generator

F(H=0. (2.13)

This is again a consequence of the (local) param-
eter invariance due to the homogeneity property
(2.6). The property (2.13) will later allow us to
identify / with time.

An infinitesimal space-time translation x! — x*
+€”, a=1,..., N, yields the generator F(¢)
=¢,P"(!) where P" is the energy-momentum vec-
tor, which by (2.12) is given by

N .
P“(t)=Z;F{'i.ﬂ‘—m FOR (2.14)
a = xa xa v )
which is conserved [cf. (2.3)].

An infinitesimal homogeneous Lorentz trans-
formation x! - x} +e" x,,, €"'==€"*, a=1,..., N,
yields the generator F(¢)=-%e,,J"", where J""(¢)
is the angular momentum tensor, which by (2.12)
is given by the expression

Jl} [)~—2

==-J°(1),

SV TR
)12 (Ya"\a _Xaxa)

(2.15)

which is conserved.

A covariant formulation with (2.14) and (2.15) is
in principle possible, but there is no natural in-
variant parameter f at our disposal. If the par-
ticles are parametrized by means of their proper
times, (2.14) and (2.15) are turned into multitime
quantities. However, a natural noncovariant for-
mulation is possible if we identify 7 with time (the
zero components of the particles’ space-time co-
ordinates divided by ¢), i.e.,

ct=xY () =x3(@t)=--=x D) . (2.16)

That this identification is possible can be seen as
follows: As we are free to parametrize a par-
ticle’s world line by any parameter which can be
expressed by a monotonic increasing function of
the particle’s proper time 7,, we are also allowed
to take the particular ch01ce ct =n,x4(7,), where
n" is a fixed timelike unit vector pointing in the
positive time direction. In terms of this param-
eter the particle’s position fulfill ct, =n,x% (1,),
and if the same choice of parameter is made for
all particles (which is a further restriction) we
have in particular ct=n,x"(¢), a=1,...; N. This
relation is just (2.16) for the particle choice n*
=(1, 0,0, 0), the only case we will consider in this
paper. Equation (2.13) tells us that the identifica-
tion (2.16) does not affect the form of the gen-
erators.

The Lagrangian (2.1) now becomes

(2.17)
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J\"i(t),fi(t)> -1/2

ya(t)s(l - —Lcr—“—— (2.18)

(repeated latin indices are summed over from 1
to 3). The Hamiltonian is given by

H(t)=cP°(¢)

N
= 2 m,cPy, (1), (2.19)
i
and the total linear momentum by
N
P‘(t)=2 my (Dxi(H), i=1,2,3. (2.20)
=
The total angular momentum is then given by
JH(t) = 2 mgy [xixi () = i) ()], (2.21)
&=
and the generators of Lorentz transformations are
i0
ki =220
c
N : :
= 2 myy (xi =1ty . (2.22)
e

Turning to the Hamiltonian formulation, one has
to introduce generalized momenta defined by

.9 i
D=3 =MY X, (2.23)

which may be solved for x/}:

. piC
Sl v we a2 vl .
Xa m, 2 +p pF)? (2.24)
H may now be written in terms of p }:
N
H= Z; cm 2 +pip 2 . (2.25)
e

Notice also that H=Y X, p i& } ~ L, which by
(2.23) tells us that we have the usual Legendre
transformation.

Now all dynamical functions can be expressed
in terms of the canonical variables x; and p}
(and possibly an explicit dependence on time).

We have, e.g.,

N
P‘(t)=2;p;, i=1,2,3 (2.26)
and
: N . s .
JH()= 2 (pdxi-pix))
= __Jii(t) R (2.27)

which also may be written as an axial vector
(e*#* =the antisymmetric three-tensor):

JH(t) =3 R

N
=D eraipk, i=1,2,3 (2.28)
a=1

and
N

Ki([): :L:_{ < % (mazcz +pakp:)1/2xai —pait\) )

i=1,2,3 . (2.29)

Introducing the Poisson bracket between any two
dynamical functions A and B,

X/ A 8B 0A oB
(4, B]=f/.; (ax;(z) ap () " ap (D) Bx;(f)> '

(2.30)
we get the following important relations:
[x}, Pi]=06% (2.31a)
[xf,d7]=€t*x} | (2.31b)
[x},H]=x}, (2.31c)
[}, Ki]== xfx]-6"t (2.314)
and
[Pt H]=0, (2.32a)
[P}, P']=0, (2.32b)
7%, H]=0, (2.32¢)
[k, H]=P", (2.324)
[P ai]=etitgr (2.32¢)
[Pi, g7 =€i*p* | (2.32f)
[7%, K']=€" K", (2.32g)
[k Ki]== lgeiijk , (2.32h)
c
(K%, P/]= % 6YH , (2.32i)

where (2.31) tells us that the physical positions
are transformed as Lorentz vectors under the in-
homogeneous Lorentz group, and where (2.32) is
just the Lie algebra of this group.

Thus, starting from the relativistically invari-
ant action (2.1) we have derived a Lagrangian and
Hamiltonian formalism in complete analogy with
classical nonrelativistic analytic dynamics. How
close the presented formulation is with the cor-
responding nonrelativistic formulation is seen by
taking the nonrelativistic limit. One finds

[Ki®), Ki(H]=0,
(2.33)
[Ki@), PI(D)]=6%) m, ,

a=1
[xf, KI]= =0t , (2.34)

where (2.33) together with (2.32a)-(2.32g) con-
stitutes the extended (by the neutral element
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>, m,) Galilean group, and where (2.34) to-
gether with (2.31a)-(2.31c¢) tells us that the posi-
tions of the particles now are transformed cor-
rectly under the Galilean group.

IIl. THE LAGRANGIAN FORMALISM OF INTERACTING
RELATIVISTIC PARTICLES

In this section we shall introduce interaction be-
tween the N relativistic particles which were con-
sidered to be free in Sec. II. We shall then only
consider interaction of the noninstantaneous ac-
tion-at-a-distance type. All field-mediated inter-
actions are excluded.

We shall in fact only consider the following class
of relativistically invariant action integrals® (for
the construction of more general relativistically
invariant action integrals, see Ref. 39):

W =W,+W; , (3.1)

where W, is the free action (2.5) and W/ is given by

N

Wr=-} Z 2.8s ffdt”dl’w,{,,(t”, ty,  (3.2)
a,b=1

where g, a=1,...,
constants) and

wey(t", t') = Gab[/"’g(t”)"‘bu(l')r
X [2 ()% (4|0 72
X [£5 ()% o (1] 72 3.3)
where in turn G,, is a function of
[5 (") = x ()] (2w (£7) = 3, (8]

and which is furthermore assumed to be sufficient-
ly nice to justify the following manipulations. »
is a number whose value characterizes the inter-
action: =0 yields scalar interaction (gravitational
theories), r=1 yields vector interaction (most
important; contains, e.g., the Wheeler-Feynman
theory), and = 2 yields tensor interactions of
different orders. (=2 contains a homogeneous
version of Whitehead’s theory of gravitation.**:*)

We note that w], is homogeneous in %! (¢”) and
x4 (#') of the first degree, i.e.,

N, are real constants (coupling

ow’ dw’,
‘ag )-Cll___ ‘43 J-Cu
axy T ax, T°

=w?, ab=1,...,N. (3.4)
This implies that the action (3.2) is parameter-
invariant, i.e., (3.2) is invariant under the re-
placement ¢’ —f(t'), t”—g(t”) for monotonic in-

M. a7 ((x i(t,),) 2) =8a igb fd§%

+

&I

|5

axal-l

creasing functions f and g. [For more general
homogeneous interactions interactions than (3.3),
see, e.g., Ref. 12.]

The condition (3.4) is usually imposed to ensure
%%, =c® (Ref. 12) when ¢ is equal to the proper
time of particle a. It is also a sufficient condition
for a satisfactory nonrelativistic limit.2° Here it
is imposed as a necessary condition for retaining
the noncovariant formulation of the theory.

The most general Lagrangian whose integral is
the action (3.2) is given by the following expres-
sion:

L0533~ 8.8y [ s (1= at, 148 - ),

31 bl
(3.5)

where we have introduced an overall parameter ¢
by t=at’+8t” and o + =1, where a and 3 are real
parameters. This parameter choice is motivated
by the requirement that '~ ¢ +a and t"-t"+a
shall imply ¢—-{+a, where a is a constant. Thus,
t=alt’ - t")+t”, which, by a change of variables
E=t'~t", becomes t=af+t” or t'=t+& — @ and
t'=t- af. «is an arbitrary real parameter. In
fact an integration of (3.5) yields the action (3.2)
for any value of o [which may even have different
values in every term of (3.5)]. However, we have
no reason to choose a particular value of «, i.e.,
we are not able to define a unique Lagrangian, al-
though the equivalent choices @=0 and o =1 may
in a way be said to be fundamental as L/ ,(¢)
= L} ,(2) is partly local in time. That the Lagran-
gians (3.5) contain integrals is just an expression
of the fact that the action (3.2) only contains non-
instantaneous action-at-a-distance theories.

The next step is to apply the action principle
(2.8) to the total Lagrangian

LI = L)+ L] o(1) (3.6)

where L, is given by (2.1). But since L] , is non-
local in ¢, this is not a straightforward matter as
the conventional variation method is no longer ap-
plicable. Therefore a new variation technique has
to be developed and this is done in Appendix A,
where general formulas also are derived.

The equations of motion may be derived by use
of the formulas (A16) and (A23) or, alternatively,
by putting the functional derivative of the action
W= [dt L] (/) equal to zero. One finds (with c=1
here and in what follows)

I:Gab(x xbu)r(\ 2)(1-7)/2(/\ 2)(1-”/2 (r _Tp_ +(1 _y)(- )>

()zzx,,,,)'(azaz)“"”%.é,,z)“"”2} ; (3.7
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where x! and x} have the arguments ¢ and ¢+£, respectively. Equation (3.7) is independent of the param-
eter a, as it should be. (The total action is unique.)

Equation (3.7) may be rewritten in a more explicit form as

f

N ;
-lmng“" =8 ;; &(r-1) j At Gy (%, *) 2 (g ey ) 2 [(wf g™ = vief ey + ug wy g uy) | (

VU,

i

N
=-2g, Z & fdt'G;,,(xaszz)l/z(x,,y = ) (Wf 1))t uy [ 78 + (1 = Vbl | —g" el uyp ), (3.8)
b=1

where u! = y'c;‘()'caz)‘l/z are the four-velocities and
x! and x{' have the arguments # and ¢, respective-
ly. G;, denotes the derivative of G, with respect
to (x, = x, )%

Equation (3.8) simplifies for »=0 and in par-
ticular for »=1. These two cases will therefore
be considered separately in the sequel. Equation
(3.8) yields

- , . d x
<ma *t8, Zgb fdt Gub(xb2)1/2> 27 (().C %)I?E)
b=1 \ a
=29 iu""u_ K . ’ e 22 2)1/2
-8, _# I4 Egb dtGab (xa X )
a b=1
X (xau—xby) (3—9)

for scalar interaction [»=0 in (3.8)] and

r

r

me (e
¢ qt ((icaz) 2>
N
-2t Y & [ RO ) - - )]
b=1 (3.10)
for vector interaction [»=1 in (3.8)].
The infinitesimal generator of a general varia-

tion of the action (3.1) may be found by means of
the formulas (A14), (A22’), and (A24):

a=1

FIO=3 e #4600

e 3t [ar o -1l 0s
a,b=1
(3.11)
where

Galt )= [arate-r, - %aﬁ)[fa’bu(t’ - bag, 1/ +& - at) +glull' - bak, 1/ +£ - Fag) 577 | 66wt - Fad)

d
« farate-v, i - %aé)[fa'bu(t’+%§ - ek, '~ 4 - hak) +ghu(t' + 3 - bk, /= 1 - Fat) 77|

X 8oxk (¢ + 36 = sat)

+&85ult, t+E)8ox% (1) +&apulty t=£)0oxs () + (@~ b) ,

where in turn

Ale,\)=0(t+2) = 0(¢ =)
and

(3.13)

. , ow 7, (¢, t)
Fanlt,t)=3g,8, Tx“ﬁ-(T)—
a

=8,8y Gap (Xop = %) (% %)

X (kEZ)(l-r)/z()-cbz)(l-r)/z (3.14)
and

v / dwg,(t, t')
ghult, t)=38,8, W

= 38,8, Gap(%,7) /2
X ()-Caz)-(ur)/z(i,av J-Cw)r—l

X 72y, %, 2+ (1= V)i, (&, )] . (3.15)

(3.12)

The arguments of particle ¢ and 4 are ¢ and ¢,
respectively.

Consider first an infinitesimal parameter trans-
formation ¢ —¢+x(#) [ (¢) is an infinitesimal func-
tion] which induces the functional variation §,x"
=-ax!. Equation (3.11) yields here after some
calculations

F[(t)=0 forall rand o . (3.16)
This is due to the (local) parameter invariance of
the total action, or equivalently the homogeneity
properties (2.4) and (3.4) [cf. (2.13)].

Consider next an infinitesimal space-time
translation x, — x* +e¥, a=1,..., N, where €* is
an infinitesimal constant four-vector. 6yx" =€
(@=1,...,N)and 6¢/=0 in (3.11) yields the gen-
erator Fi(f)=€e"P (), where
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N

P;(1)= ; (i,:n) ziau"'aib:l fdé [J'dt,A(t_tl’ %g)fa'bu(t"'"%é’ - §€)+garbﬂ(t’ t+€)+gl:a}4(tv t+§)J (317)

r

is the energy-momentum vector. Notice that formation x; - x¥ +€"'x,,, €"'==€"", a=1,..., N,
p /(?) is independent of the parameter a. yields in turn, by inserting 6x) =€¢“’x,,, 6¢=0, in
An infinitesimal homogeneous Lorentz trans- (3.11) the generator F}({)=-3€""J,(f), where
J
N

m . .
JJU(” = (.7.6 2)1 2 (xanaH - xaﬂxau)
a=1 a

N
+ Z fdg <f allA(t— l/v %g){Aarb(t/ - %g, t,+ %5)[Xap(tl - %g)xbu(t’ +%§) - xau(tl_ %5 )xbﬂ([, + .lzg )J

a,b=1
+VBI(1 = 38, 1+ 5E) & (8 = 3E) Xy (7 +38) = X (8 = 38)5% (8" + 26)] }

+ Bl t+ ) %y (DX g (E+8) = %, (£ 4+ E)x ()] + ¥ Bl (t+ &, D, (D% ot +8) = xp(DF u(1+8)]
. p .

=B t+E) S (;)ﬁ(tgt*g) [ 0 (D3,0(0) = & (D2, (D)]
. p .

S DBt 4E, z)iné—‘;%ﬂ-‘l [ (D 2 (0) - fc,,u(t)xw(m) , (3.18)

b
where ' respectively.
AL, )= g,8,Ga’ (X2 Y Equation (3.18) is the angular momentum tensor

and is like the energy-momentum vector (3.17)

X (iaz)“-') /2("%2)“-”/2 independent of @. Thus, the nonuniqueness of the

and Lagrangian (3.6), as represented by the param-
eter «, is neither reflected in the equations of
Bl(t, 1) = 58,8,G,p(%, %,) ™ motion (3.7) nor in the conserved quantities (3.17)
x (’%GZ)(l—r) /2(/{,02)(1#) /2 and (3.18).
In the particular case of scalar interaction
The arguments of particle a and b are tand tl, (’r:O) we have the conserved quantities
M - M (t) H X et i M (e 2 2 1/ (3 19)
P (1) = 5 . (1 J df ar'G,,’ 1) = x, (¢ - ¥ 2(¢)x, % (¢ - 2 .
(=3 e #00+ 20 g [ [ a0G L) - =05, (008, 0 - )12
HV _ N A/I (l) U U TR u € , eP e By, Uy Vg, )
J (1)_ ;; iaz(l)llh [xaxa (1)_xaxa (t”"' azﬁ::lgugb dg . dt Gab(xaxbp)['\a (t —g)’\b (t )_’\'a(t -g)xb (t )J ’
(3.20)
where
¥
M= m, g, 35 8 [ a8 Gl (e8] (3.21)
=]

(particle @ has the argument ¢) and in the case of vector interaction (»=1) we have

PH(t)= ZN:[————EP—m x5+ igg JdéG Xy (t+8)
iy _{,a2(t)12 a &4 adb ab”™ b

N £+ E .’
+ a,Z;l 8a8b f dgj; dt'Gab'[xf:(tl) -x (t' -‘E)J -x.au(t’)jbu(il _ §), (3.22)
] _ & m ] o v
I (t) = a}; R0 [%2xk() = 2Ex) (1)

+ i 8.8 (Jdé Gulxt @) (t+&) = xE@+&)x) ()]

a,b=1

. t+E
+ J dgf At { Gy 2P % o[ H (¢ = E)xL (") = x2(8" = £) 2 (1))
t

+3G[ %, = &) iy (¢ = 2F (¢ -g)xﬁ(z')J}) . (3.23)
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(The arguments of particle a and b in factors
where they are not written out are always the
same as in those factors which are multiplying
them and whose arguments are explicitly written
out.)

The difference between these results and earlier
results may be described as follows: Earlier,
one let the world lines of the different particles
depend on different parameters; e.g., the free
Lagrangian (2.4) would thereby be transformed
into a multitime Lagrangian, Ly(f, ..., ,). When
one then derived conserved quantities by a direct
integration of the equations of motion or by ap-
plication of the finite Fokker action principle,?°:*

one obtained multitime quantities like P*(¢, .. .,4)
and J ""(¢,,..., ty). After (or before) this deriva-
tion, one identified the parameters ¢,, a=1,...,N,

with the proper-times of the particles. But then
one can no longer escape a multitime formulation,
and a Lagrangian and Hamiltonian formulation is
no longer possible. If one instead would identify
the parameters f,, a=1,..., N, with one common
parameter ¢, i.e., {,={, a=1,..., N, then the
conserved quantities P* and J*¥ would reduce to
the ones obtained in this paper. But it should be
noted that such an identification is not reconcilable
with a description in terms of proper-times.
What we have achieved so far is thus a single
parameter description of action-at-a-distance
theories. However, we have not yet specified the
parameter / or identified it with some well -known
quantity. One could, e.g., identify it with the
proper-time of one of the particles, which how-
ever would be a very unnatural choice. Instead
we think that the possible choices given in Sec. II
are the only ones worth considering, and since we
here intend to construct a theory in complete

N

ot Z L8 fdé Gas

a,b=1

H(t)= P°()= Z

analogy with classical nonrelativistic mechanics,
the most natural identification is in fact the fol-
lowing one:

t=xO(t) = xQt) == x 20 (3.24)

which is the same as (2.16) and which is justified
exactly by the same reasons which were given in
Sec. II. [Because of (3.16) the generators are not
affected by (3.24).]

By means of (3.24) we get the following equations
of motion in the case of vector interaction [see
(8.10)]:

d i

m, m(yaxa
¥ el ; 9G,, \
=gabz=1gban dé( Bt E) (/) ;,(Hé)fd?i[—))

8 f‘ﬁ(zc""'&x (tr)- ﬁi(ﬁf")
1

a=1,..., N (3.25)

for p =i and

d
Ma 737

N
E¥S y Qk
Sa X
b=1

J dt (2cab'5x (t+§)— b ) .

a /

a=1,..., N (3.26)

for =0, where y, is defined by (2.18). [G,, has
the argument &2 - (X, - %,)2.]

Because of our choice of a homogeneous action,
(3.26) is not independent of (3.25). Given (3.25)
it is in fact not difficult to show that (3.26) is
automatically satisfied. Equation (3.26) is there-
fore a redundant equation which may be discarded.
The conserved quantities associated with (3.25) are

N ~£ )
DI j & [ dn G, el1 = 2iamii(cen -0 ®.27)

and
N

) + Z 2.8 J‘dg(;a,,x;(ng)

a,b=1

P = Z mgy,

- 1g A [dél( dnax ) [1-&5(t+m)x&(t+n =8)] . (3.28)

a,b=

These are derived by just putting (3.24) into (3.22). From (3.23) we have furthermore

N N

a =1 a,b=1

DDA fdé Gulx

HNxi(t+g) - .{';;(t+§)xi(.’)J

N E
DDA fdéf i Gop' (1= &2 X)) [xi(t+n = )xj(t+m) = xi(t+m = E)x it +n)]
J o

+ 3G X1+ = £V (t+n) = &0+ - )xi(t+n)]} (3.29)
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and

N N
TN =" my,(xl - &0+ > 8.8 fdg Gplxi(t) = xi(2+£)1]

a=1 a,b=1
N

a,b=1

+ Y 8.8 [d&foq d{Gyy' (1 = X5 xi(t+n = E)t+n) = (t47m = E)xy(t+7)]

+5Gulxpt+n) = &i(t+n =]} . (3.30)

Notice that H, P*, and J !/ have no explicit time
dependence as G,, has no such explicit dependence.

Expressions corresponding to (3.25)-(3.30) for
scalar and other interactions are derived in a
similar fashion, i.e., by inserting (3.24) into
(3.9), (3.19), and (3.20) or into (3.8), (3.17), and
(3.18).

Finally we would like to remark that we could,
of course, have made the identification (3.24) al-
ready in the Lagrangian (3.6) and then derived
the conserved quantities (3.27)-(3.30) by use of
the generalized action principle. For vector in-
teraction, such a Lagrangian looks like

¥
m
L, ()=~ ; m

N

-3 Z 8a8b f d§ Gy
aF=1

x[1-xi(t— ) ii(t+& - )] .
(3.31)

A similar Lagrangian, Taylor-expanded at the
instant {, has to some extent also beenconsidered
before, 22

IV. THE HAMILTONIAN FORMALISM OF
INTERACTING RELATIVISTIC PARTICLES

Since we have shown that one can apply the full
action principle to relativistic particle mechanics
we strongly suspect that the derived conserved
quantities also fulfill the right generator proper-
ties (2.31) and (2.32) in some Poisson-bracket
sense. Peierls,*® e.g., once proposed a method
of defining Poisson brackets directly from a
Lagrangian formulation and maybe his method is
applicable here. (It has been applied to field the-
ories with nonlocal interaction,** which are
structurally similar to relativistic particle the-
ories.) Anyhow, Pauli,® who also has considered
this problem, seems to have believed that there
always exist Poisson brackets fulfilling (2.31) and
(2.32). He investigated in particular the question
as to whether there also exist canonical variables
in terms of which these Poisson brackets could be
defined in the usual fashion. His answer was
positive if only the equations of motion fulfill the
Newtonian Cauchy problem, i.e., the particle’s

f

position and velocity at a particular time must
uniquely determine its whole world iine. This
requirement is due to the fact that for a system
with N particles the Poisson brackets are de-
fined in terms of 6 N-independent variables given
at a particular instant of time [see (2.30)].

Now the equations of motion for noninstantaneous
action-at-a-distance theories are in their general
forms functional-differential equations [notice
that (3.25) and (3.26) are nonlocal in time], and
even if one usually restricts the class of functions
in the interaction terms such that they reduce to
integrodifferential or difference-differential
equations as, e.g., in action-at-a-distance elec-
trodynamics, the above initial-value condition
will not be satisfied.'®** This is a problem which
we will come across in the following manner: As
our intention in this section is to check explicitly
the generator properties (2.31) and (2.32) we need
Poisson brackets for unequal times due to the
fact that the Lagrangian and therefore also the
generators are nonlocal in time. Consequently,
we have to solve the equations of motion, and
from the above it then follows that there will exist
many possible solutions for a given set of New-
tonian Cauchy data. The question is now whether
the relations (2.31) and (2.32) are fulfilled for all
these solutions and, if this is the case, is it then
in terms of a uniquely defined Poisson bracket?
Of course, this question is very hard to answer,
and it needs, in fact, not to be answered in this
general form since most of the solutions are to
be discarded on physical grounds. The situation
could be compared with that of Dirac’s equation
with radiative reaction.” This equation contains
time-derivatives of the third order which cause
the usual Cauchy data (position and velocity at a
particular time) to no longer determine a unique
solution. However, the equation cannot for this
reason be said to be unsatisfactory since it al-
ways seems to yield a unique physical solution.*®
However, it contains also unphysical solutions,
which have to be discarded by some general and
fundamental condition. Dirac imposed on his
equation the asymptotic condition lim, , .a"(7)=0,
where a" is the acceleration.

Since we intend to construct a theory in close
analogy to nonrelativistic mechanics it is here
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natural to require that for any given Newtonian
Cauchy data we must be able, in an unambiguous
manner, to select a unique solution out of all
possible solutions of the equation of motion of the
particle in question. We need therefore a general
selection rule. Dirac’s asymptotic condition is
only applicable to scattering processes and is
therefore not general enough here as the equations
of motion also contain bound-state solutions.
Staruszkiewicz*’ has investigated a simple ex-
ample for which he could formulate a principle of
selection in two equivalent forms, one of which
says that we should exclude all solutions which
are unbounded for 7 - or 7 - —, which there-
fore also can be considered as unphysical. How-
ever, Andersen and von Baeyer!® found when they
considered almost circular orbits that there also
exist, apart from the divergent solutions, ad-
ditional stable solutions. (Chern and Havas?
seem also to have found several stable solutions
for given initial data.) These extra stable solu-
tions can be ruled out, however, if one selects
those solutions which become solutions of the
nonrelativistic theory as ¢ - «.'%?! (This is in
fact the second form of Staruszkiewicz’s selection
principle*’). Thus it seems that the most general
selection rule one can formulate at present is a
kind of correspondence principle: The physical
solutions must have a nonrelativistic limit.’°® But
we would like to remark that the additional stable
solutions could have a physical significance and
should therefore not be ruled out. However,

their inclusion would mean that we allow more
degrees of freedom than the Newtonian ones by
which we would depart considerably from the non-
relativistic case. On the other hand, it could
also be that this selection rule is so strong that
all solutions would be ruled out for particular
initial data,'®:?

Regarding the question whether the framework
of the action principle in Sec. III can provide a
selection rule, we make the following remark:
Because of the fact that every infinitesimal gen-
erator F(f) is not just depending on the time in-
stant / but in general on a time interval around ¢,

Fi())= gg,, *(z)fdg( *(r+;>—+é;

The equations (3.25) themselves may be written as
pit)=g,Fit), a=1,...,N (4.5)

where

PO = myy (DXL, (4.6)

t+£)——r‘(‘%;> +bZ:gbfd§ (2Gab’£ £p(t+8) =

it seems as if one cannot require the action W,,
to be stationary when the variations 6%,(¢), «
=1,..., N, vanish at £, and ¢,, which is possible
in instantaneous action-at-a-distance theories.
One exception is when f, - ~« and ¢, -+« be-
cause in this limit the time intervals around ¢,
and ¢, are effectively separated from finite time.
Thus, the total action has to be stationary when
the variations of the positions are zero at the in-
finite past and future. Feynman has proposed the
use of this requirement as a selection principle.
However, it seems that only the additional diver-
gent solutions would be ruled out by this require-
ment,'®

When we now turn to an explicit investigation of
the Hamiltonian formalism we encounter, apart
from the problem of solving the equations of mo-
tion and identifying the solution to be considered,
the problem of finding the canonical variables.
The actual construction will therefore always in-
volve a great deal of guess work in this respect.

We shall here only consider the simplest type
of interaction, namely, the general vector inter-
action given by the equations of motion (3.25).
Moreover, we shall only consider a particular
class of solutions which reduce to straight-line
solutions in the limit g, -0, «=1,..., N.'*?® This
class of solutions is uniquely determined by the
Newtonian Cauchy data.!*:28:48:4% They are, how-
ever, only applicable to scattering processes.!*9:4°

By means of the matrix

1., x;(:uﬁ(n)
4(t) <6J_ e ’

we may transform the Egs. (3.25) into the follow-
ing forms:

m ¥ (=g, R}, a=1,...,N (4.1)
where

Ri(N)= (,) [Fi) - 25(08,(0] , (4.2)

S =2 OF X1, (4.3)
and

(t)> (4.4)

and the Egs. (3.26) may be written as
m, ¥, () =g,5,(8) . 4.7)

We shall always consider the Egs. (4.1) to be the
basic ones. But as the solutions also satisfy (4.5)
and (4.7) we shall make use of these as well
whenever convenient.
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Integrating (4.1) we find

PAOEE S (t)+£Lfdte RYE)  (4.8)

a,in m
a

and

xi(O=x} () + £
. m

a

f are(t-')e-t)RLt),
(4.9)

where x} , (¢) is a straight-line solution [%}, . (1)=0]
completely determined by the initial conditions.
We impose the condition

lim xi(8) = (2) (4.10)

£,~0

am

and require that (this implies conditions on the
functions G,,)

lim [xi(8) = x (4.11)

t—>=c0

Xqn(0]=0

By a change of variable, (4.8) and (4.9) may be
written in the following more suitable forms:

L]

xiO=x (0= B2 [ annRiesn),  (412)
i =%} ,n(t)+% fwan:(”")' (4.13)

We shall also find it convenient to use the inte-
grated forms of (4.5) and (4.7):

0
piD=pi (D +g, j dn Fi(t+n) (4.14)
0
vl =7, D)+ 22 J S, (t+n) (4.15)
2 Jee
where pa in=m Ya,m a in and Ya,in =(1- Xa, mx‘i'm)-l/z'

The solutions are obtained by successive ap-
proximations with respect to the coupling con-
stants in the following fashion (cf. Yang-Feldman
formalism in field theory®%°):

) ] 2\n
x;(t)=x;,,n(t)+§§n«:—g<§n-> X} (t;in),
a=1,...,N (4.18)

where g(g?)"/m" stands for all possible combina-
tions of 2» - 1 coupling constants and » masses,
and where x,‘;(") are given expressions in terms of
Xpi,and %3, b=1,..., N. We impose on the
functions G,, the condition that these iterative so-
lutions converge for at least distant collisions
[when the particles are not getting closer to each
other than ~g2/m (cf. Ref. 49)].

We make now use of the freedom to choose
canonical variables which need not be the physical
positions.?®*3! The reason for this is that we need
explicit expressions for the Poisson brackets of

the canonical variables at unequal times. The
obvious choice of possible canonical variables is
here x% , (Hand p} (), :51,2,3, a=1,2,..., N,
because for them we have

[pi,in(t),l)i'm(l+n)]:0 . (4.17)

(x5, 0 it +m)] =675, (4.18)

[xi""( ) %5, “‘(t +n)] -6‘“'&"' (6” - .a mX (lz m) .
(4.19)

We shall first show that the generators (3.27)-
(3.30) fulfill the Lie algebra (2.32) when the
Poisson brackets are defined in terms of the above
canonical variables. We shall do this by showing
the following equalities:

H(t)=H,(in) , (4.20)
P'(t)=Py(in) (4.21)
JY () =d5(in) (4.22)
JO(t) =K (t) =K (in) , (4.23)
where
H,(in)= Xv; Mo Yaun s (4.24)
P:;(imzi Povin » (4.25)
JHin) = 3 (B0 3hia) =Pt O] o 626
K§(in) = i Mo Yo ul®h n® =x% 0] . 4.27)

2
-

If the relations (4.20)-(4.23) hold true, then it
follows from Sec. II that the generators (3.27)-
(3.30) fulfill the Lie algebra relations (2.32) of the
inhomogeneous Lorentz group.

Proof of (4.20). By (4.11) and (4.7) we have [we
use here and in what follows the notations H(t),
etc., when we have replaced x , ;, by x,(f) in the
expression (4.24)-(4.27)]

a,in

Ho(in)=Ho(t)_f dnH ot +7)

=H,(t) - fo dnd_ g,S,(t+n),

which one also may obtain by a direct use of

(4.15). From
dG,, 4G
llb —_ 4
_Qdi an =2G,, E—% (t+n)8 ,,(f+ ) (4.28)
we get
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N
H,(in) =H () -

a,b=

)
g [ _dniten) [ at (26,6030 £ -

aGab
axR(t +n)

0
Ho0+ 3, 48, [45Gu+ Y g2 [ dn [ @£ E1 -G 0]
a,b=1 -

Sb= a,b=1

which after a change of variables in the last term (n—n - £) is easily shown to be exactly the expression

(3.27). Equation (4.20) is thereby proved.
Proof of (4.21).

. . N Q .
Pi(in) =P§() =Y gaf dn Fi(t +n)

N

By (4.5) and (4.11), or directly by (4.14), it follows that

i 0 aG, . .
:Po(t)-%aZ—:1 g,,g,,f_ao dnfdgw-:"n—)[l —XhE X+ +8)]

Vo=

where we have used (4.28). The last term may be

written as
N o -
d d .i
- a'bzlgagbf_m dnjd£<gg—ﬁ) [Gopk st +1+£)]

N

= gagb deGabiz(t"Lg)y

a,6=1

Y

which together with a change of variables (n—~17 - £)
in the second-to-last term in (4.29) shows that
(4.29) reduces exactly to the expression (3.28).
Equation (4.21) is thereby proved.

Proof of (4.22). Using (4.1), (4.5), and (4.11)
we get

JH (in) = §4 (¢)
N 0
+2 g,.f dn[Fy(t +n)x it +n)
a=1 -
- Fi(t+n)xi(t +m)] ,
(4.30)
which in this case is not so easily obtained by a

direct use of (4.12) and (4.14). By means of the
relation

@ +ma it +n +§)<ﬂz_b - dGab)

g dn

d d"
<d£ dﬂ) (GapX 3 x0) +G oy i x3

and a change of variables, one easily shows that
(4.30) is equal to (3.29).

Proof of (4.23). Using (4.5), (4.7), and (4.11)
one obtains

JE(in) =JE%¢) Z &a j

nm, S, (t+n)x (t+n)

~Fit+n)t+n)] ,

which after making use of the relations

) ien+8),

(4.29)

r

d d
(75 - a5 JLesmise n +)G,,
=2t 4R +n +£)G,, 'k — (L +m)ihi] Ca

> R
-X3Ggp

d d ; ; 9G
X +)G ) =2G,, Exi(t +m) = xiik —2
<d£ dn){ n ab] b a z

o4
-“‘aGab

and a change of variables reduces exactly to
(3.30).

Thus we have shown that the generators (3.27)-
(3.30) fulfill the Lie algebra relations (2.32).
Next we show that the physical positions trans-
form in the following way [cf. (2.31)]:

EHON:AGIEEHOR (4.31)
[xi(f), PI(t)] =06% | (4.32)
[xi(t), J® ()] =xi(t)0 % — £k (£)6% | (4.33)
[t @), K )] =% 3l (t) =679t . (4.34)

For this purpose we shall make use of the ex-
pression (4 12). First we note that x} , (/) trans-
forms as x!(t) in (4.31)-(4.34) due to (4.20)-(4.23)
and (2.31). Therefore we only need to check the
consistency of (4.12) with (4.31)-(4.34) because
then the right transformation properties of the
first- and higher-order terms in the expansion
(4.16) will follow automatically. In this consistency
check below we shall make repeated use of the
quantity [cf. (4.12)]

A dnnRi(t +n)
m a

l g J =

(¢
gbf d’?”fdﬁ;—b(t;n , (4.35)

where
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. r
Aly(t+m) =25E+m) $AE e +8) goro®o ~kEE4n+8)

Xt +7
__9G,
ax,(t+n

__,__L) =2G, EXR @+ + E)RR(E +m)R L +m) + %ﬁ)fﬁ(t R it +m) .

(i) Consistency of (4.12) and (4.31). This is
trivial since A;b, does not contain any explicit ¢
dependence.

(it) Consistency of (4.12) and (4.32). Equation
(4.32) implies [%{(¢), P'] =0, from which one real-
izes that [R!(t +n), P/] =0 since

aGab + vaGab
axi(t+m) dxi(t+n+¢&)

=0.

(iii) Consistlency of (4.12) and (4.33). As
[£kx%,J]=0, etc., it follows that [AL,, J7*]
=AL5" — Ak 57,

(iv) Consistency of (4.12) and (4.34). From

(i), K =2i@)xl@) +x 5 O iw) -0,

which follows from (4.34), we get

9G

(4.36)

(1 i _espn L 54/
7.0 ’K] 2O e ar <y)
and
d
dt
d i a
¢ Tt —xpal]

[Aciij]= (xiAib)'”Z;Aéb

by a straightforward calculation.
Combining these expressions one finds

[Ri(t +m), K7] =L%[x£(t +MRE ] +xIRE
+xgRY

which finally yields

-0 o 0 0 . 0 )
U dnnR:;<t+n),Kf]=—x;‘_m(t>f ARy am) +it L0 dnnR;‘<t+n)+f an.',(Hn)f An'n'Ri( +7)

where we have made use of (4.12) and (4.13) and the relations

xﬁ.m(t +7) =xﬁ'm(t) +nx i'in(t) s

fdnf(nn)f dn'g(t+n+n'>+f dng<t+n)f dn'f(t+n+n')=f dnf(t+n)f an'gt+n') .

Thereby we have explicitly shown that we have
a canonical representation in terms of the canon-
ical variables x| ,(t) and p; ,(t), i=1,2,3,
a=1,..., N.

We could also have integrated (4.1) in the fol-
lowing way:

xj(t):x“;'um(t)+r§9-f dnnRi(t+n), (4.37)

a0
where x“;,om(t) is a straight-line solution completely
(but indirectly) determined by the initial condi-
tions. If we impose the conditions

lim x% (1) =x} ., () (4.38)
£q 0

and
lim [x}(t) - ., @®)]=0, (4.39)

t—>+

then one can show in exactly the same way as
above that the generators (3.27)—(3.30) fulfill the
Lie algebra (2.32) [the relations (4.20)-(4.23) will
be replaced by H(out) =H (t), etc.] and that the
physical positions transform according to (4.31)-

(4.34), but now with x} ,,, and Do S Yasour® b,0ut
as canonical variables.

x,';'om(t) and x:'m(t) are different in the presence
of interaction. Comparing (4.12) and (4.37) one

finds

Khould) =X = 55 [ dnnRi@en) . (4.40)

Thus if x";,jn is known, then x";.“ul can be calculated
and vice versa. Infact x} () and x} () coincide
with the particle trajectory at the infinite past
[ef. (4.11)] and at the infinite future [cf. (4.39)],
respectively. Now it is clear from the above cal-
culations that !, p., and x} . ,pl , are
cancnically equivalent variables, which in terms
of the bilinear covariant also can be expressed by

2 : (éx;,inAp;,in - 5pz,inAx:l,in)
a
. : i i
=z :(Gx:l.ou(Apz:.oul - Gpa.oule;. out) b4
a

where 6 and A are two independent variations of
the orbit.

The physical positions however cannot be chosen
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as canonical variables. Calculating the Poisson
bracket between any two physical positions, using
the expansions (4.16), one finds

[x), x}@®)]#0 (4.41)

for a#b and/or i #j. Already in the first order
the right-hand side of (4.41) is a quite messy ex-
pression. However, it does only depend on x; in
and x; . which tells us that (4.41) holds true ir-
respective of the number of particles in our sys-
tem. Thus it is the type of interaction which
causes the nonzero value of (4.41). Infact (4.41)
is due to the fact that the interaction is nonlocal

in time. Taking the nonrelativistic limit

lim [ d&G(c?t? =[X,(t) =%, (t +£)]P)

c —»®

X f(x,(t), x, (¢ +£), §)
=G(=[X, () =%, O))f' (%, 8), %, @)

the interaction will be local in time, (4.41) is re-
placed by

(%), xj@)] =0,

and the physical positions can be chosen as canon-
ical variables.

V. DISCUSSION OF THE RESULTS

We have shown that a wide class of particle the-
ories formulated in terms of invariant Fokker
actions can be endowed with a Lagrangian formal-
ism. From our treatment it is obvious that one
may also transform any parametrization-invariant
Fokker action into a Lagrangian formulation in
exactly the same fashion as presented here. One
can even introduce N-body forces for arbitrary N.
Consider, e.g., the following interaction part of
an action:

W, = f f f dtdt,dt, f(x,(t,), %, (t,), %, ¢,)) -
5.1)

Define a common parameter ¢ by ¢ = at, +8¢, +vi,,
where a, B, and y are real parameters fulfilling
a+B +y=1. Introduce the new variables £ =¢, - ¢,
and n=f,-{,. The Lagrangian corresponding to

(5.1) is now

L;q,g(t)
=ffd£dnf(x,,(t +&=p), x,t+n-p),x .t -p)) ,

where p=af +B7n. The present extension of the
conventional action principle (2.8) is therefore
more general than the finite Fokker action prin-
ciple,®13:4! a5 the latter cannot be extended to ac-
tions of the type (5.1).

By the applicability of the Lagrangian formalism
we expected also to have a Hamiltonian formalism.
But when we turned to an explicit investigation of
this formalism we encountered several new prob-
lems all due to the nonlocality in time. Owing to
the fact that the generators are nonlocal in time,
we have to solve the equations of motion (at least
formally) in order to check the Poisson-bracket
relations. However, the equations of motion are
also nonlocal in time, which implies that the New-
tonian Cauchy problem is not fulfilled; i.e., the
specification of the position and velocity at a par-
ticular time does not yield a unique solution. We
therefore need a subsidiary condition which selects
only one solution out of all possible ones if the
Newtonian degrees of freedom are to be retained.
In the literature such a selection principle has
been given which seems to be quite general (but
perhaps too strong); it demands that one always
chooses the solution which has a nonrelativistic
limit.'®

We have investigated a particular set of solu-
tions, namely, the one which is obtained by the
iterative procedure (4.16) which sets out from
straight lines. These solutions are uniquely

determined by the Newtonian initial data, but the
procedure converges only for distant collisions.
However, for this class of solutions we found that
we indeed have a Hamiltonian formalism as ex-
pected. We also found two equivalent sets of
canonical variables. A negative result for the set
of solutions considered was that the physical posi-
tions cannot be chosen as canonical variables. It
seems therefore as if the no-interaction theorem,?’
which is supposed to hold only for instantaneous
action-at-a-distance theories, might be general-
izable to noninstantaneous ones. In fact our way to
construct the Hamiltonian formalism circumvents
the no-interaction theorem exactly in the way pro-
posed by Kerner and Hill?® 2° for the instantaneous
case. One may therefore ask whether there is a
relation between instantaneous and noninstanta-
neous action-at-a-distance theories, or more
precisely: Do there exist equivalent equations of
motion to the ones considered in the present paper
(together with the selection rule) which are just
differential equations of second order? We do not
know, but we would like to remark that if one re-
duces the equations of motion to differential equa-
tions of second order by means of the solutions
considered in Sec. IV,?®*8 then the solutions of
these new equations will not coincide with the
original ones (only the first-order terms do).
Presently we have, therefore, no general reason
to believe that the no-interaction theorem is ap-
plicable here. There might exist other sets of
solutions (e.g., the circular ones!”~?°) than those
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obtained from the iterative procedure (4.16), for
which the physical position can be chosen as a
canonical variable.

We note in this connection that although we might
have a selection principle which gives us a unique
solution for any Newtonian Cauchy data, we have
no uniquely defined Poisson bracket for all these
solutions. The reason is that the Poisson brackets
in Sec. IV are only applicable to scattering pro-
cesses, where we have asymptotic straight-line
solutions. Therefore we also have no hint how to
find the canonical variables for the other solutions,
which of course have to be investigated before one
can draw any definite conclusions about the Hamil -
tonian formalism in general. However, we notice
one general property of the Hamiltonian formal-
ism: It is not possible to define any variable p}
such that the Hamiltonian is given by

N
H(t)=3 pe®i ()~ L), (5.2)

which is a heavily used relation in ordinary Hamil-
tonian methods (together with the fact that p,'; and
x. are canonical variables there). As a conse-
quence, the present generalized canonical formal-
ism will always differ considerably from the cor-
responding nonrelativistic formalism.

VI. OUTLOOK: QUANTIZATION

Finally we would like to outline the various pos-
sible ways to quantize relativistic particle me-
chanics following the conventional prescriptions,
and thereby in particular point to the problems.

The Heisenberg picture. We have shown that the
classical theory allows for a Hamiltonian formu-
lation and therefore a canonical quantization is
also possible. Following Dirac’s prescription we
replace the Poisson-bracket relation (4.18) by the
following canonical commutation relation:

pi.inx:z.in —xz,inpi.m:iﬁéijéab . (6.1)
The quantum solution x;(t) is now obtained by
means of the expansion (4.16). (Cf. the Yang-Feld-
man quantization.®® In the particle case this quan-
tization was proposed in Ref. 51.) But because of
(4.41) we arrive here at a serious ordering prob-
lem in the various dynamical quantities. How-
ever, it is possible to retain the canonical struc-
ture for appropriately ordered generators.? But
when we impose, in a similar fashion, the canon-
ical commutation relations (6.1) on the canonical
variables x, ., and p! .., we arrive at a different
quantum solution xi(¢). This is due to the fact that
here we have to choose differently ordered gen-
erators in order to retain the canonical structure.
[For the Hamiltonian one gets, e.g., H,(in)=H(¢)

#H'({)=H,(out).] The origin of this nonuniqueness
of the generators (and thereby of the solutions) in
the quantum case is most easily seen by means of
the quantum action principle.?'%® If we let the
variables in the action be operators and perform a
variation, then we are here no longer allowed to
assume that this variation is a ¢ number. The
reason is that c-number variations can only be
used in theories where the physical positions are
canonical variables. Therefore, we have here to
make use of g-number variations instead. As a
consequence we will also obtain an additional
term in 6W,, which contains commutators of the
variations. This term can then be split in many
different ways such that 6W,, =F({,) - F(¢,) still

is applicable. Thus, F(¢) will be nonuniquely de-
fined. As this will occur irrespective of how one
symmetrizes the Lagrangian, we infer that x;m
and x; ,,, can never be unitarily equivalent. Hence,
we conclude that one cannot in a consistent fashion
perform a canonical quantization of the solutions
considered in Sec. IV and probably not for any
solution for which the physical position is not a
canonical variable. The nonuniqueness of the gen-
erators tells us that we do not fulfill the condition
of asymptotic covariance in the S-matrix theory
of Fong and Sucher,® which implies that there
does not exist any relativistically invariant S ma-
trix. The unitary inequivalence of .v;'m and x;,om
implies furthermore that there does not exist any
unitary S matrix. In the author’s opinion no mean-
ingful S matrix can be defined.*?

The Feynman picture. We have shown that the
classical theory allows for a Lagrangian formula-
tion, and thus it would also be possible to perform
a quantization by means of Feynman’s functional
method.” What this would mean in the present
context is an open question, in particular since
the relation (5.2) is not satisfied here [nor do we
have L(1)=3 Y p} . &% —H(#)]. In this connection
it should also be noted that Feynman’s method is
not applicable to the finite Fokker action as this
action does not have the necessary additivity prop-
erty W, =W,, + W,; (required by the superposition
principle),

The Schrodinger picture. Consider particles
which have the same type of interaction with an
overall function G(x, x,). If one also includes
self-interaction of the same type and with the
same function, then one may say that a field the-
ory with nonlocal interaction represents the
Schrodinger picture of the theory's:%® (cf. also
Ref. 57). This is perhaps not too close a corre-
spondence but, on the other hand, one may notice
that even the free Dirac or Klein-Gordon equation
is not the straightforward Schrdédinger picture of
a free relativistic particle. Field theory with non-
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local interaction has a structure very similar to
that of relativistic particle mechanics; it has,
e.g., a Lagrangian and Hamiltonian formalism of
the same generalized form as the one presented
in this paper. But then one also encounters the
same problem as above when performing any se-
cond quantization of the theory, which is therefore
not possible at least within the Heisenberg pic-
ture,5?
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APPENDIX A: THE GENERALIZED VARIATION METHOD

In this appendix the applicability of the action
principle is extended to nonlocal Lagrangians of
the type considered in Sec. III, i.e., Lagrangians
containing integrals over time. General formulas
are derived by making use of the variation method
for Lagrangians with higher-order time deriva-
tives formally generalized to infinite-order

Lagrangians.
Consider the Lagrangian
L'(t)= L(x%, Dxt, ..., D'x}), (A1)

where D=d/dt and n<=. Application of the action
principle

oW, =F(4,) - F(t5) (A2)
to the action
ta
Wy, = f at L(t) (A3)
L3
yields the equations of motion
o L"(¢) i B
BY;(t)—Dp“'I—O’ a—l,-..,N, (A4)

and the infinitesimal generator

N -l . .
F(t)==) Ep;,mcop’x;-lfm, (A5)
a=1 £{=0

where

. n-r " aLﬂ

L4 = —
bi,= ; (-D)* sy

r=1,...,n, a=1,..., N (A6)
are Ostrogradsky’s® generalized momenta. [A
Hamiltonian formalism may be constructed with
pt,and D'yl (r=1,...,n, a=1,..., N) as canon-
ical variables.%]

Now let n—. Formally one then gets the equa-
tions of motion

> . OL(1)
&P o =°

a=1,..., N, £=(0),1,2,3 (A7)
and the infinitesimal generator

. AL 9 L(1)
1'(1‘)——;;02(—[))‘2 3D D)

=0 k =0
X 6,D' xk(t)
- L()6¢ . (A8)

The interaction Lagrangians in Sec. III are func-
tions and/or functionals of x} and #”. Assume that
a given one has the following form:

L,(z):fdg BGE(E+E), ..., (A9)

where £ is a function of x!(¢+¢) for at least one
value of 4, and a function/functional of other xf;
and x). Then one finds that

xE(H+8)

9L, (1) &
a[D xN1)] f ax"(t+§) a[D’ a(t)]

[ @, reo... @10

where
oL

fau(l,i)fm)

and

H(t+8)= Z D

(formally). The part of the infinitesimal generator
which is associated with the particular x} explicitly
given in (A9) is therefore (6¢=0 here and in what
follows)

=T § x
Fa(l)——;gfdﬁm (-¢D)

xfap(ty 5)50[(§D)1x5(l‘” ] (All)
whose time derivative is
DF ()= f dE[ folt =&, £)85x (D)

—fault, )0oxi (t+8)] . (A12)

It is a straightforward matter to show that (A11)
may be written as.

F0-- [ et S‘“”wfauu i, £)

X 8oxh (1+38) (A13)

an expression which in turn may be transformed
into a convolution
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F0=- [ a [ arat-v, )
Xfau(t"‘%gyg)
X doxh (H +3E), (A14)
where
A, N)=0(1+X)—0(t=2) . (A15)

The part of the equations of motion associated
with the x. explicitly given in (A9) is, according
to (A7) and (A10),

fdﬁfap(t—ﬁ,é) (++++=0). (A16)

Consider now an interaction Lagrangian of the
form
L= [ a5 eiee), .. (A17)
where £’ is a function of %X (¢+£) for at least one

value of 4, and a function/functional of other x!
and x!. Instead of (A10) one now finds

axF(t+¢&)

aL() 0L .
“—‘a[m“f(t)i f L 5TT@+e) [0 0)]

—

Fy(t)= ;Z{) f dé m(-&D)"Dgap(t,&)60[(§D)’xg‘(t)]- f dt gqu(t, £)00x; (1+8) ,
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g gr—l
=§f dggau(t75)(1,—_1ﬂ , r=1,.
/ 0, 7»=0 (A18)
where
oL’
gay(fyﬁ)im
and
0 1
RE(+E)= Y 2 D)

(formally). The part of the infinitesimal generator
associated with the particular % explicitly given
in (A17) is therefore

Fa(’)=‘ii:

1
f dt (_k+—l)!(_£ DYg,.(t€)

which in turn, by means of (A13) and (A14), may be transformed into

Fyt)= f d f ' At = 1, SE)D'g,, (' = 5E, £)60x (1 + 3) = f dE g, (8, £)0ox (1+£) .

By partial integration one also gets the following alternative expression:

Fyt)= - j d f At At =1, SE)gy (¢ = 38, £)D"8ox (1 + 4¢) - f dE g, (t =&, )02 (1) .

The part of the equations of motion associated
with the %4 explicitly given in (A17) is, according
to (A7) and (A18), here given by

—Df B fou(t=£,8) (++++=0). (A23)

The Lagrangians (A9) and (A17) comprise all
nonlocal Lagrangians depending on the positions
and velocities of the particles. In applications
one has to write the given Lagrangian like (A9)
and (A17) for each position and velocity involved.
The above expressions are then valid for each such

1=0 k=0
X 8,[( D)5 (1)] (A19)
whose time derivative is
DFy(t)=~ [ dt[ Dgyu(t =8, )62 ()
+&,ull, £)DB X (E+8)] . (A20)
(A19) may be rewritten as

A21)

(A22)

(A227)

separation and the final formulas are arrived at
by simply adding these expressions together. The
infinitesimal generator (A8) gets, e.g., the follow-
ing final form:

FiO=3

sep.a

Fo()+3 Fi(t)- L8t , (A24)
sep. @

where the last term comes from the end-point vari-
ation.

A corresponding variation method has also been
developed for nonlocal field theories.%
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