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The number and (energy as well as polarization) spectrum of photons scattered in the for-
ward direction in the reaction center-of-mass frame are calculated when two beams of syn-
chrotron radiation are scattered on each other. The synchrotron radiation is produced by
electrons or positrons passing through a locally intense magnetic field which causes a
“break” or “wave’” in their orbit. Its properties depend on the following parameters: energy
and local radius of orbit curvature of the emitting particles, intensity of the emitting current,
and angle of emission of the synchrotron radiation. The dependence of the calculated num-

bers on these parameters is exhibited.

I. BACKGROUND

Quantum electrodynamics predicts the (elastic
as well as inelastic) scattering of two photons on
each other. This was first noted by Halpern.'
Shortly thereafter, Heisenberg and Euler?'* per-
formed careful calculations to evaluate this effect,
concentrating their attention on low-energy scat-
tering. Akhiezer* studied photon-photon scattering
at high energies. Several years later, Karplus
and Neuman® gave a general discussion of all the
photon-photon scattering amplitudes in quantum
electrodynamics up to fourth order, and evaluated
them for certain selected values of the scattering
parameters. The subject was well reviewed and
simplified and the discussion was made more
complete by Jauch and Rohrlich.® Subsequently
Sannikov,” De Tollis,® and Violini® applied the tech-
niques of dispersion relations and succeeded in
considerably simplifying the treatment of this
nevertheless still complicated theoretical problem.

The calculated photon-photon cross sections are
very small, and are beyond the range of traditional
experimental techniques. For photons in the visible
spectrum, the elastic cross section is about 107%
cm?. Although the first calculations were per-
formed several decades ago, elastic scattering of
real photons on each other in vacuum was never
observed. During the last few years, experimental
technology started on a new “spiral” of develop-
ment which is still in progress. This progress
is tied to the availability of new accelerators,
storage rings, and the accompanying detection
devices. The question arises as to whether the
new technology can be used to study photon-photon
scattering either at low or at high energies. In
earlier works by one of the authors® various pos-
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sibilities were surveyed, the obtainable counting
numbers were estimated, and it was concluded
that several new approaches may become feasible
in the foreseeable future. It was found that one of
the most promising techniques would consist of
using storage rings with a locally intense mag-
netic field which would cause a sharp “break” or
“wave” in the circulating particle orbit to produce
two beams of synchrotron radiation, and then
scattering two such beams of radiation on each
other.

At the present time, several new electron stor-
age rings are being planned or are under construc-
tion. The time seems appropriate to make a more
detailed study of the possibility of observing pho-
ton-photon scattering in the collision of two beams
of synchrotron radiation.

II. PURPOSE OF THE PRESENT PAPER

Our purpose is to calculate the properties of
elastically scattered photons which are produced
in the collision of two beams of synchrotron radi-
ation.

The two beams of syn-hrotron radiation are pro-
duced by electron or positron beams circulating in
one or more rings (see Fig. 1). One can use two
beams in one ring, or two rings with one beam in
each. Either or both beams can be electron or
positron beams. In the following, unless explicitly
stated otherwise, “electron” means either an elec-
tron or a positron. The energy spectrum and
polarization of the radiation can be varied by
changing the energy of the circulating particles,
by varying the angle of emission of the radiation
used, and by adjusting the local radius of curvature
of the electron orbits at the points where the

251



2592 P. L. CSONKA AND K. S. KOLBIG 10

_ Interaction region

»’/" . .
e __- Synchrotron radiation

Sl << gink
Velocity of Velocity of
circulating circulating
particles particles

Beam No.1 Beam No.2

FIG. 1. Two circulating (electron or positron) beams
produce intense synchrotron radiation at the points where
the local radius of curvature of the beam is small. The
two beams may circulate in one ring, or (as drawn in the
figure) in two rings. Two beams of intense synchrotron
radiation are directed towards the interaction region,
where photon-photon scattering takes place.

synchrotron radiation is emitted. The influence
of these parameters on the properties of the scat-
tered photons is studied in this paper.

In order to produce photon-photon scattering
experiments one wants to produce two intense
photon beams to scatter on each other. The in-
tensity of the emitted synchrotron radiation can
be increased by decreasing the local radius of
curvature of the circulating electron beam at those
points where the radiation is emitted. One may
be tempted to conclude from this that it is not
possible to perform photon-photon scattering in
this way because one could argue as follows: To
obtain two intense synchrotron radiation beams,
one needs storage rings with a small radius. But
such rings are economically unfeasible, because
in them a circulating electron would lose an un-
acceptable amount of energy during each revolution
around the ring, simply by radiating it out. This
argument is wrong, however, because one does
not need rings with a small radius. What one does
need is only one section in each of the two circu-
lating electron beam orbits, where the local radius
of curvature is small. Along the rest of the orbit,
the radius of curvature may be as large as usual.
This can be achieved in practice by introducing a
short “break” or “wave” into the otherwise smoothly
circulating electron beam (see Fig. 1). This pro-
posed modification will make this short orbit sec-
tion an intense source of synchrotron radiation,
but will leave the rest of the ring unchanged. Such
a modification is technically feasible; it requires
the use of some compensating magnets. It permits
the ring to be used for a variety of experiments
with synchrotron radiation, including photon-photon
scattering, and at the same time all the usual ex-
periments with storage rings can also be per-
formed. (Nowadays, a typical storage ring has a
radius of the order of 100 m. Introducing a break
with a length of 1 cm would increase radiation
losses over only a fraction 107 of the total orbit.

In this short section, the local radius of curvature,
R, can be much less than the average radius of the
ring, and a particularly interesting case is when R
is in the region between 10 and 300 cm.)

In the type of experiment outlined in Fig. 1, the
average reaction center-of-mass frame is the lab-
oratory rest frame, and the calculated differential
cross section as a function of angle does not have
any sharp peaks in this frame. One can measure
the spectrum of photons leaving the interaction
region along any particular line. The elimination
of the background is easiest if one measures pho-
tons leaving with a momentum perpendicular to
the plane (x, y) in which both electron beams cir-
ulate. Detectors can be placed far away from this
plane, and the relatively high energy photons de-
tected without strong background interference. At
least from this point of view, the more interesting
quantities we could have calculated are the polar-
ization and energy spectrum and the total number
of photons leaving the interaction region with a
momentum perpendicular to the (x, y) plane. In-
stead, we chose to calculate at first the properties
of those photons which are scattered in the forward
direction in the reaction center-of-mass frame.
The calculation of these is somewhat simpler and
it seemed reasonable to perform this calculation
first. The results are exact for forward scattering.
They are approximately valid also near the forward
direction, because we know from the second of
Refs. 8 that the differential scattering cross sec-
tion for photon-photon scattering at the forward
direction (i.e., 6’=0) has zero derivative as a
function of the reaction center-of-mass scattering
angle ¢’. For the range of parameters to be dis-
cussed below, the elastic photon-photon differential
cross section for | ¢’| <10° should differ from the
corresponding value at 4’=0°by not more than
about 4%. In these experiments the reaction cen-
ter-of-mass energy and angle of each scattered
photon can be determined, and, in fact, the average
reaction center-of-mass frame is just the labora-
tory frame. Consequently, when designing a real-
istic experiment, the results reported in this paper
should be helpful. They are summarized in the
figures. At a later date we plan to study the spec-
trum and the number of photons scattered per-
pendicularly to the (x, y) plane.

In the Appendix we list what we believe are mis-
prints or arithmetic errors in the published lit-
erature concerning photon-photon scattering.

III. CALCULATIONS

At each point B where synchrotron radiation is
emitted, we define a local Cartesian coordinate
frame as explained in Fig. 2. The direction of



any vector Kk originating at B can be characterized
in this coordinate system by two angles ¢ and y.
With each photon of momentum &k, emitted at B,
we associate a Cartesian coordinate system whose
axes are €, €,, and k (see Fig. 2). The com-
ponent of the electric vector E parallel to €, is
E,, and E, is defined similarly. Circular polar-
ization states are defined by the components.

E*E‘}——z(ELJW'EH)- (1)

When the complete orbit of the circulating elec-
trons is a perfect circle and radiation emitted at
every point along the orbit is permitted to reach
a certain point A, then, due to the circular sym-
metry, the observed synchrotron radiation will
depend only on the distance (4, C) and on the z co-
ordinate of the position vector of A. It will not de-
pend on the azimuthal angle of A, which determines
the position of the projection of A onto the (x, y)
plane. When the orbit is not a perfect circle, or
if radiation from some orbit points is not per-
mitted to reach A, then the observed synchrotron
radiation will depend on the azimuthal angle. For
cases of practical interest, the synchrotron radi-
ation emitted at any point B is strongly peaked
along y, because the synchrotron radiation is
emitted within a cone of half angle Ay=~1/y around
the axis of the circulating electron beam. There-
fore, in cases of practical interest, the value of
the radiation at a point A depends only on a very
short section of the electron orbit. For example,

FIG. 2. The figure shows the axes £, §, and 2 of a
Cartesian coordinate frame located at the point 8 of
emission of the synchrotron radiation. The x axis is
parallel to the position vector of B measured from the
point C which is the center of the circle tangent to the
particle orbit at B. When the circulating particle is an
electron, then § is parallel to the velocity of the circulat-
ing particle at B. If the particle is a positron, § is anti-
parallel to its velocity at B; £=2x §. The unit vector &
is parallel to £, and &, =kx &,.
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FIG. 3. Synchrotron radiation emitted at any point is
concentrated within the angular interval Ay. Only points
between [R —AR_/2] and [R+AR, /2] contribute signifi-
cagtly to tlme radiation at A. If R>>AR,, AR_, then
|AR,|~|AR..|

if y=11742.1, then Ayp~107* rad, and if R=10?
cm, then the length of the beam orbit which con-
tributes to point A, is approximately 107* x10* cm
=1072 cm. Thus, as far as the intensity of the
synchrotron radiation at A is concerned, it suffices
if the break or wave in the electron orbit has a
length of only about 107 ¢m. In practice, we are
interested in the radiation intensity not only at
point A, but also within 7, a finite neighborhood
around A. Nevertheless, for most cases of prac-
tical interest, the radiation intensity in T will
still depend only on a short section of the electron
orbit, with a length of the order of 1 ¢cm or less.
As long as the break or kink has this length or
more, the distribution of synchrotron radiation
within 7 is as if the radiation had been emitted
from a completely circular electron orbit with
radius R. In particular, within T the radiation
will then be independent of the azimuthal angle ¢.

We will use the following conventions and nota-
tion:

“local”: value calculated at point B,

“electron”: either electron or positron, unless

explicitly stated otherwise,

e: electron charge,

c: velocity of light in vacuum,

m: rest mass of the electron,

v: velocity of circulating electrons,

&: local energy of the circulating electron,

y=8/mc?,

R: local radius of curvature of circulating electrons,

w: (2m/period) of emitted synchrotron radiation,

k: photon wave vector (i.e., momentum/%),

w; =3(c/R) 73,

£ =3 (w/w) (1+y 222,

P, P, : power radiated by one circulating electron
in the form of synchrotron radiation polar-
ized, respectively, along €, and €,

Piv(Tav, w), pry(Tay, w): density at point A of photons

of frequency w, emitted by
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beam No. v, polarized, re-
spectively, along €, and €;
the position vector T, of
point A is measured from
point C,

04 v(Fav, w), py(Tay, w): density at point A of photons
of frequency w, emitted by
beam No. v, with polarization
E, and E_, respectively,

n: number of electrons in beam per unit time,
passing through a surface perpendicular to the
beam,

subscript v: (¢v=1,2) means that the subscripted

quantity refers to beam No. v, or to
photons emitted by that beam,

prime: a prime indicates that the quantity is eval-

uated in the reaction center-of-mass frame
(see below).

2

The intensity of the synchrotron radiation emitted
at B has been calculated and evaluated for various
values of the parameters.“"12 The result is

9 9 3 2 2
(3a)
9 0 3 e 2,2
2900 7 E('—) YUY
2
X%K”gf(&) , (3b)
(1+y2zp2)1/2 K, 4(8) _ =0 . (4)

E,_ 14 1/3(5)

Both P, and P, are found to go to zero rapidly for
Y2 1/y.

If the total energy carried by all the photon is
given, then the number of photons emitted per
unit length of beam No. v is inversely proportional
to v,. In all cases of interest v, =v,~ c, and we
will assume this. The emitted photons also travel
with veloeity ¢, so that

1 1
pl)u(rAuy wu) 2 n, T h_w
9 e} -
xfdwu 3y -3_(4)_ p Hu(wm Zpu) Gu(%, Tay) ’
1 1
Prlfany W=7 My 5~ i,

) 9 -
delﬁ,, % 2w, P, (wy, ‘pu) G(%uy )
(5)

where f dy, is an integration over all those values
of ¢, which contribute (from various points in the
beam) photons with frequency w, to point A, and

G,(¥y, T,) is a geometrical factor. Incidentally, the
expression preceding G,(y,, ¥4) on the right-hand
side of Eq. (5), when multiplied by an interval
Aw,, gives the space density of emitted photons
with circular frequency in the interval (w, -3 Aw,,
w, +3 Aw,) immediately to the side of an electron
beam of unit height and zero width.

For example, let us make the assumption that
each electron beam is such that when B, is in the
interval (R, - s AR_,, R, +3 AR, ,) along the electron
orbit, then the height and the width of the beam
are small compared with |R,| as well as [F,,].
Furthermore, let us assume also that the point A
is located so that only those photons can reach it
which are emitted within a very narrow y, range,
dy,. If the integrand varies only negligibly over
dy,, then it can be taken outside the integral sign,
giving

pHu(FAU’ ‘*’u)

1 1 o
T g s Do ) A Gl )

pJ.u(FAm wu)

1 1 a 3 -
= c? ny fw, 3y, o P.Lu(‘-‘-’u, ¢u) dy, G,,(I/J,,, r, .
v Yy v

(6)

If it is also true that [AR_,| and |AR,,| are both
small compared with |¥,,—R,| and also | %y, |,
then all points B, which significantly contribute
photons to point A are, to a good approximation,
|F4 -R,| distance away from point A. In this case,
the geometrical factor G,,(zpu, t,) is easy to evaluate.
For example, if (T4, —Ru) forms an angle y, with
the plane of that circle (assumed to be horizontal)
which is tangent to the electron beam at B, and
which best approximates the beam orbit there,
then G,(y,, T,,) is simply the factor f(y,) dy,
giving the probability that a photon will be emitted
into the angular range (y, — 3 d¥,, ¥, +3 d,) multi-
plied by the factor taking into account the fact that
near A the photons emitted at B, are distributed
over a section of a circle whose radius is |F,,|
instead of lﬁul, and that they are spread within

a vertical distance above and below A which is not
the unit length (denoted by «), but ; dy, |¥,, |, so
that the total vertical spread is twice this, and we
obtain, to a good approximation,

Gu(¢u1 FAy) =f(¢y) "ﬁ_} | !fljull . (7)

If the geometry of the experiment is such that the
above-stated simplifying assumptions do not hold




to a good enough approximation, then, in general,
G,(¥y, T4,) Will not satisfy Eq. (7). However, for
any experimental arrangement G,(¢,, T4,) can be
obtained from straightforward geometrical con-
siderations.

We will describe elastic photon-photon scatter-
ing in the reaction center-of-mass frame. In this
frame, we denote the wave vectors of the two in-
coming photons by k’ and k2, and those of the out-
going photons by ka' and k’ We define the unit vec-
tor €} = k’x k{, and the unit vectors &j, =k LXEL.
The scattering angle 6’ is defined as the angle be-
tween E{ and E;, and takes E; into E(, through a
right-handed rotation around €.

We describe the polarization state of the photon,
whose wave vector is k,, in the right-handed
Cartesian frame whose three axes are defined by
e“,, €, and k’ For example, the electric field
E emitted by the first beam has two components,
EL1 parallel to €], and E, parallel to €},. These
describe photons polarized linearly along €] and
€', respectively. Circular polarization states
are defined by components

1 )
E}, EW(EL;J;LEIH“) . (8)
In the following we will represent all photon polar-

ization states as a linear superposition of circular

J
mn ot f+ /2
aricm® J_, ),

N)‘:;M'

where f dr, is taken over the whole interaction
volume, w’=(w, wz)‘ 2 and using Eqs. (4) and (8)
we define (ignoring an uninteresting over-all phase)
P, to be proportional to E ,2:

3 <] N

P, =— P,+P,
Y, dw,

3y, dw, 2(1+Q,%

(1+2, Q)

(Ay=%) . (11)

The last integral on the right-hand side of Eq.
(10) is a purely geometrical factor which can be
evaluated directly for any experimental arrange-
ment. In this paper we estimate it only for the
case when the conditions stated before Eq. (6), and
also before Eq. (7), hold, and if, furthermore, all

do’ f: dwlj;” dw, [ dy, [ ay,
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polarization states. We denote by A, the circular
polarization state of the photon whose wave vector
is E[i, where A=+ or - for u=1,2,3,4.

The differential (in 6’) elastic cross section of
photons with frequency w’ in the reaction center-
of-mass frame is®

d
T xargrg (s W)

4772 2

B #7:2—6_2 c:’ M, Ao "3*4(0 w’)
9)

The functions M have been calculated by Karplus
and Neuman in the special cases ’=0 and 6’ =7/2,
in terms of three transcendental functions, B, T,
and /, defined by them. De Tollis® succeeded in
expressing M as a function of B, 7, and 7 for all
values of 6’. The definitions of B, T, and [ in
terms of the kinematical variables of the scattering,
as well as the expression of M in terms of B, T,
and 7 are lengthy and will not be reproduced here.
They can be found in Refs. 5 and 8 (see Appendix
for certain misprints).

Suppose that two beams of synchrotron radiation
collide and scatter in an interaction region 7. The
number of events per unit time, in which two pho-
tons with polarizations A, and A, are produced, is

1
,zMxxxx(G w’)

)‘1‘ 2

P ) 1/2
X [5‘;: mPh(wu%)]

2 9 1/2
x [5(72 EN Py, (wy, 4’2):]

2

X [ ¥4 G,y F) Golds Fu) 5 (10)

r

dimensions of the interaction region are small

compared with |F,,|and |F,, -R,|. Then, toa
good approximation
G EdeA Gx(%, FAu) Ga((pzszu)
u’ R R,
= == ~ 2—V,
Sy £(4) Iy, —R, | [Fay—R, | U'All IT4, |
(12)

where V is the volume of the interaction region.
Since the G, (¥,, Ty,) are dimensionless, the G has
the dimension of a three-dimensional volume ele-
ment. If, in addition,
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=R, =R,

[Far-R,|=|Fo -R,|=|F4-R],
|y, |=dy,|=]dy|,
F@)=5(=4),

and if both beams are electron beams or both
beams are positron beams, then ¢, =-1,, but if
one of the beams contains electrons and the other
positrons, then y, =+¢,. Equation (12) now reduces

(13)

to
6=0t = (1) ) (—Frre | v
=6y, ‘(il)‘l’z)fz(‘/’l)g(i/);) ay, , (14)

where §(x) is the usual 6 function of x, and the +
sign hold if one beam is an electron beam and the
other is a positron beam, otherwise the - sign

holds. The g can be rewritten as
s (2 [5e-Rlsw),  (19)
1 IFA_‘R’l lfAl A 1/ s

where S is the cross section of the interaction

a4
Nagh,= ot 521;[_"/2(19[ dwlf dwzf

In this type of experiment, the laboratory mo-
menta, the reaction center-of-mass momenta,

and the approximate point of emission of the scat-
tered photons can be determined. However, if

the dimensions of the interaction region are suffi-
ciently small compared with | ¥, -R/|, then all pho-
tons which are emitted at one common point and
reach the interaction region can be considered as
having essentially parallel momenta (narrow-beam
approximation). The number of photon pairs' scat-

nna

i [ o [[aen [

a ~ - =
3—5'2—, g )\3)\4(9 —0)

region parallel to the common plane of the two
circulating beams at the value of §,. In most cases
of practical interest S(y,) will be independent of y,.
For example, consider the case when both beams
have a vertical and horizontal emittence of 107®
cmrad. At points B, and B,, focus the beam to a
height and width of 107" ¢cm. Then 10 cm away
from these points, the beam height will be (107!
+107™) cm. Let y=1.2x10% so that Ay=~1/y=~8
x107%, Choose |, -R|=10* cm, so that at the
interaction region the synchrotron radiation will
be appreciable within a distance [3107' +(8x107®
+107%) x10*] ¢m =0.95 cm from the common plane
of the two beams. Let the interaction region extend
1 cm above and below this plane, so that dy,~107*
rad, and let its projection onto this plane be a
circle with radius 2.4 x10? ¢m, independent of ,.
Choose R=10> cm. Then g~107% cm?®

In practice, one will want to increase the count-
ing rate by increasing the interaction region. It
may then happen that , and ¢, can no longer be
considered constant over the whole interaction
region. In this case, if the interaction is such
that all points A in this region satisfy Eq. (13) to
a good approximation, then from Eq. (14) we find

9 Py 1/2
] Z ,zMx ApAgh 8 )[a—%gz‘p'l'f’xl(wu%):l

2

g(). (16)

9 9 1/2
x[awz (29, Py (‘-Uzy Po = i‘}’l)]

r

tered in the forward direction per unit time for a
certain set of final polarizations is obtained from
Ny,», by dividing by 27, omitting [d6’, and eval-
uating M at 6’ =0:

3 , 3 _ ,
W N)\s)\“(e =0)E W [ )\3)\4(9 =0)g, (173.)

where the integrated (over w, and w,) differential
cross section is defined as

1 . T o
2 o7 Mx1x2x3x4(9 =0, w )[Bwl 59

1/2
xl(wn z1’1) :I

8 1/2
x [a“-’z a¢ P)\z(‘-’-’za% (€ 1)%) ] (17b)

The number of photons with a certain frequency and given polarization state scattered in a direction paral-
lel to the momenta in one of the incoming photon beams, say the first one,* is

LI
3w, 99" s

where

2]  _
(9’=0, w1)=z B—J 3_970)\3\4(9,=0) wl)g:
Ay 1

(18a)
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a 0 __nn a
3w a9’ 0)*3)‘4(0 =0, )= 41|2mzc5 f de, f,,/z ),

The scattering physics is contained in

9 _
57 Oanal97=0)
and in
8 :]
aw agl )\ X (9 0 wl)

These quantities have been computed for certain
values of the parameters, and are shown in Figs.
4, 5, and 6. They are normalized so that n;n,
=(6.24)?x10%, corresponding to two beams, each
with an intensity of 1 A.

Figures 4 and 5 are to be used as follows. It is
assumed that both circulating electron beams have
the same energy, i.e., they have one common y
value, and that the local radius of curvature near
B, in both beams is the same, i.e., |R,|=|R,|=R.

0%

1021 v = 17621

=0)
3
S

T

’

,
—
o
&
T

(20217, 5, (8
T

=

=i
>
T

1040..

1072

o Lol ol

R [(cm]

FIG. 4. (8/3%)Ty4),(6’ =0) in units of cm™ 3 sec™! sr-!
as a function of R, for ¥=5.8715x 10% and 1.17421 x 10%,
when both clrculati.ng beams are 1 A electron beams
li.e., ¥ =—7¢; in the argument of P,, in Eq. (16)]. (a) Ag
=+, }\ =+, or Ag=—, Ay=—; (b) )\3—+ Ay=—, Or Ag=—,
7\4= +,

1 , 1/2
Z; o7 M\ xgagr,(67=0, w )[aw a4, — P, (wy, ) ]
172

x[ai s Prlen = D) }1/2‘2. (18b)

Only if these (usually valid) assumptions are valid
can the figures be used directly to design a photon-
photon scattering experiment. To calculate the
number of photon pairs scattered near the forward
direction per second and per steradian, if the
helicities of the two scattered photons are A, and
A4, then, as a first step, one has to look up in the
figures the value of (8/8(2')@\8)\4(0’ =0) for the
appropriate values of y, R, A;, and A,. For ex-
ample, if y=11742.1, R=10cm, rg=r,=+1,

and when one of the circulating beams is an elec-
tron beam, the other a positron beam, then
(8/89')7, ,(6'=0)=1.8x10"2cm-3sec~' sr~'. The
second step is [using Eq. (16) and making the gen-
erally valid assumption that g(y,) is independent
of ,| to multiply this number by g. For example,
if the experimental setup is such [as it is to a
good approximation in the case described after

107
100 -

1072+
v = 17421

1))

(8

32,

~<
()

,

(0/0Q)

108

10+

1072

Ll Lol il

10 100 1000
R [cm]

FIG. 5. (8/8Q)T4),(6' =0) in units of cm~ 3 sec™! sr-!
as a function of R, for ¥=5.8715x 10° and 1.17421 x 10¢,
when one of the two circulating beams is a 1 A electron
beam, and the other is a 1 A positron beam [i.e., ¥, =+
in the argument of P,, in Eq. (16)]. (a) A3=+, Ay=+, or
Ag==, Ag==; (b) Ag=+, Ag=—, or Ag=—, A,=+.
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FIG. 6. (8/8w;)(8/82')T),, (6’ =0, wy) in units of cm™3sec™'sr™! (™! x electron rest energy)™ as a function of w,, for
R =10 cm and 10? cm, and for ¥=5.8715 x 10° and 1.17421 x 10¢, when one of the two circulating beams is a 1 A electron
beam, and the other is a 1 A positron beam [i.e., ¥, =+, in the argument of sz in Eq. (16)]. (Note the different scales.)
(@) Ag=+, Ay=+, or Ag=—, Ay=—; (b) Ag=+, Ay=—, Or Ag=—, Ay=+.

Eq. (16)] that g=10-% ¢m®, then we obtain 1.8

X 10-% sec~! sr-!, which is the number of forward-
scattered photon pairs within the whole interaction
region, if both photons have helicity +1, and if
the intensity of both circulating beams is 1 A.

The third step consists of multiplying this by the
product of the intensities of both circulating beams
in amperes. For example, if both beams have 20
A circulating, then we have to multiply by 400,
and the final result is 7.2x10-3 sec~'sr-'=2.6
x10 h='sr-!, When both photons have helicity -1,
then we find similarly from Fig. 5 that the result

is the same as above, while if one photon has helic-

ity +1 and the other -1, then the result is 1.7
x10 h='sr-!. The total number of forward-scat-
tered photon pairs produced in the whole interac-
tion region in such an experiment is the sum over
all helicity combinations, i.e., 8.6x10 h~!sr-.
(The results given in this paper do not enable us
to calculate the number of photon pairs scattered
in other than the forward direction. Nevertheless,
we can roughly estimate this number using the
fact that the photon-photon elastic cross section
is not a strongly varying function of 6, and ne-
glecting this variation. Then the total number of
elastically scattered photons produced in the
whole interaction region in this experiment is
roughly 47 times more, i.e., 10% per hour.) The
number of the scattered photon beams can be in-
creased in general by increasing the circulating
beam intensity, or y, the size of the interaction

region, or by decreasing |R|,'® or by a combina-
tion of these.

The energy distribution of the forward-scattered
photons can be obtained from Fig. 6; it gives the
laboratory energy of the two outgoing scattered
photons. The normalization of (8/8w,)(d /an’)&xm
(6’=0, w,) is fixed by the fact that its integral
over the whole range of w, gives (3/89’)6>\3>\4
(6’=0).

IV. COMPUTATION

The integrals in Eqgs. (17a) and (18a) have been
evaluated by numerical integration on a CDC 7600
computer at CERN. Because of the fact that for
6'=0

M++++ =M___-;

M,,_..=M__,,,
M, ,.=M_,_,,

and all other M are zero, the sum over X, and X,
simplifies considerably. In fact, it reduces to
two terms in the cases M=+, A =+; A==, N, ==,
and to one term for A=+, A == ==, A =+,

Further, it is found that for both the electron-
electron and electron-positron cases

9 _ ’_ _ i_— ’r_
8{2' o++(9 —O)"‘ 69' 0-_(9 "‘0)
and
9 _ ’_ - i_— r
5—570+'(6 =0)= aﬂ,o_+(9 =0).
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These equalities are also true for the quantity
defined in Eq. (18a). After some experimentation
in order to determine the behavior of the inte-
grand, the following computing procedure was
found adequate. First, the integration was per-
formed over w,. Instead of the upper limit =,

the straight line w, =w* - w, was taken, where

w*=2w, g¥(1+ y2y?)-3/2

is defined in such a way that the argument £=¢*

in the modified Bessel function is large enough

to make the contribution of the remaining inte-
grand to the integral negligible. It was found that
£*=15 is a safe value, which could be made small-
er in most cases. Since |M,,,,|? and [M,,__|?

are not differentiable at w’=(w, w)’2=1, care

was taken to integrate separately on both sides of
the hyperbola w,=1/w,. For A=+, A, =-, this
separation is not necessary.

The next step, the integration over y, was per-
formed with a trapezoidal rule, using unequally
spaced points in the range |§|< 5% 10 -4, instead
of [gl<n/2. This reduced range was found to be
sufficient. The results obtained correspond to
Eq. (18a).

In order to obtain the values of Eq. (17a), an-
other trapezoidal rule integration was applied,
taking in most cases 0.01 <w, <30, except for
R =100 and v =5870.5, where a range 0.001 sw,<3
is adequate. These results have been tested in
some cases by integrating over both w, and w,
with an adaptive Gaussian quadrature rule.

For the computation of K, ,5(x), K,/,(x), the
Chebyshev approximations given by Luke!® were
used.
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APPENDIX

The calculation of photon-photon scattering to
lowest order is quite cumbersome, and it is in-
evitable that some misprints should occur in these
calculations. (It would be a miracle if our own
calculations should be an exception.) Several of
these have been corrected by the authors them-

selves in subsequent publications; others were
either found by us, or have already been corrected
in the literature. Since tracing the source of a
discrepancy is often quite time-consuming, it
seemed worthwhile to list here those instances
which at this time we believe to be misprints or
in error. B. De Tollis, R. Karplus, and F. Rohr-
lich have been most cooperative and helpful in
discussing these.

Reference numbers refer to the numbering em-
ployed in the present paper.

(i) R. Karplus and M. Neuman, Phys. Rev. 83,
776 (1951):
Five lines before Eq. (3): For hckw read 7ickw
[compare Phys. Rev. 80, 380 (1950), Eq. (4)].
Two lines before Eq. (9): For hckw read Fckw.
Eq. (20''): For [v(a +b®))?] read |v[a+b(u)P,

for [u(a +b(v))?] read |ula +b(v)F|.

Eq. (23): ForM,,,.(6, w) read M, , __(6, w),
for M, , __(6,w) read M, ., ., (6, w),
add M, ,, _(6, w) =32:w® sin%6.
Eq. (26): For M, .. .(1/2, w) read M, , __(1/2, w),
forM,,__(1/2, w) read M, ,, . (1/2, w).
Eq. (30): First line: For —-mi(logdw? - 2) read —ni;

third line: for —mi read —mi (logdw? - 2).
Eq. (31) should read

a? 1 12
°’="W[‘<“B§><1‘F

+ <2+ —25 - %)cosh“w} .
W w
(Pointed out by B. De Tollis. See also Ref. 6,
p. 301, footnote.)
Table II: second row, last column: For -1 +2/w?
read -1 +2/w?,
forM,,,, read M,,__, for M,, __ read

M+ +++
Table III: second row, second column: For -2/w?
read -1/w?,

Fig. 2: This figure should be replaced by Fig. 7 of
the present paper.

Table IV: There are several inaccurate numerical
values in this table.

(i) B. De Tollis, Nuovo Cimento, 32, 757
(1964) (the following misprints are pointed out
by B. De Tollis in the second of Refs. 8, footnote
1):
p. 759, line 10: For “...interchanges 2 — 3 and
3+—4...” read “...interchanges 2 —4 and
3—4...7.
Eq. (II.4): Lower limit of integration is 1 instead of
0. Further, Eq. (IL.3):
For {s(a +b(r))?} read |s[a+b(»)F|,
for {r(a+b(s))?} read |r[a +b(s)P|.

(iii) B. De Tollis, Nuovo Cimento, 35, 1182
(1965) (pointed out by B. De Tollis and G. Violini
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FIG. 7. The figure shows V=[Re(M)/w]?, R =[Im(M)/w)?, and T =|M|*/w? evaluated at 6’ =7/2. (Note the different
scales.) (a) For A=+, Ay=+, Ag=+, A,=+, (b) for Ay =+, Ag=+, Ag=—, Ay=—, (c) for Ay =+, Ay=—, Ag=+, Xy=—,
(d) for \;=+, \y=+, Ag=+, A,=—. For the other A values, the V, R, and T can be obtained from the above ones with
the help of the symmetry relations M,,,,=M____,M,,__=M__,,, M,_,_.=M_,_,=M,__,=M_,,_, and all the re-
maining M ’s are equal to each other and to M,,,_. The w is measured in units of mc?.

in the third of Refs. 8, footnote 1):
Eq. (10), in the last term of the fourth equation:
For M{1).(s, t) read M{1),(t,s).

(iv) J. M. Jauch and F. Rohrlich, The Theory of
Photons and Electrons (Addison-Wesley, Reading,
Mass., 1955) (pointed out by B. De Tollis in the

second of Refs. 8, p. 1185, footnote):
p. 294: The footnote is in error, and the weight
factors in Ref. 5 are correct.

(v) J. Schwinger, Phys. Rev. 75, 1912 (1949):
Eq. (I1.37): For 72/4 read n%/8.

*Alfred P. Sloan Fellow.

'0. Halpern, Phys. Rev. 44, 855 (1934).

’W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).

H. Euler, Ann. Phys. (Germany) 26, 398 (1936).

%A. 1. Akhiezer, Phys. Z. Sowjetunion 11, 263 (1937).

SR. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950);
83, 776 (1951).

3. M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley, Reading, Mass., 1955),
Chap. 13.

'S. S. Sannikov, Zh. Eksp. Teor. Fiz. 41, 467 (1961)
[Sov. Phys.—JETP, 14, 336 (1962)].

®B. De Tollis, Nuovo Cimento 32, 757 (1964); 35, 1182

(1965) ; B. De Tollis and G. Violini, ibid. 41, 12 (1966).
Using the formulas given in these papers, the angular
distributions for several values of the energy and total
cross sections for various polarization states have been
calculated by D. Di Gregorio [thesis, Rome University,
1966 (unpublished)].

%p. L. Csonka, Phys. Lett. 24B, 625 (1967); CERN Report
No. 67-15, 1967 (unpublished).

105, Schwinger, Phys. Rev. 75, 1912 (1949).

K. C. Westfold, Astrophys. J. 130, 241 (1959).

zg, Haensel, DESY Report No. A 2.101, 2. verbesserte
Auflage, 1965 (unpublished).

13The number of photons scattered in the forward direc--
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tion is twice the number of such scattered pairs.

14The number of photons with the same frequency scat-
tered in a direction parallel to the second incoming
beam is the same.

15We remind the reader that |R| is the local radius of
curvature of the circulating beam at the point where the

photons are emitted, and not the average radius of the
circulating bgam. The latter will, in general, be much
larger than |R| to reduce unnecessary radiation losses.
18y, L. Luke, The Special Functions and Theiv Approxi-
mations (Academic, New York, 1969), Vol. 2, p. 361.
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A simple generalization of the multiperipheral model (MPM) and the Mueller-Regge model
(MRM) is given which has improved phenomenological capabilities by explicitly incorporating
resonance phenomena, and still is simple enough to be an important theoretical laboratory.
The model is discussed both with and without charge. In addition, the one-channel, two-
channel, three-channel, and N-channel cases are explicitly treated. Particular attention is
paid to the constraints of charge conservation and positivity in the MRM. The recently proven
equivalence between the MRM and MPM is extended to this model, and is used extensively.

I. INTRODUCTION

For many years the Chew-Pignotti multiperiph-
eral model* (CPM) has been an important testing
ground for various theoretical ideas. This is in
spite of the fact that it is fundamentally at odds
with the data.? Recently, it has been proved that
the N-channel multiperipheral model is totally
equivalent to the N-channel Mueller-Regge model,
and that one can derive either model from the
other quite simply.?

We want to point out a simple generalization of
the CPM and the equivalent Mueller-Regge model
which (1) provides a generalization of CPM which
has improved phenomenological capabilities, (2)
still is simple enough to be an important theoreti-
cal laboratory, and (3) adds additional phenomena
that are expected on physical grounds.

This model has been known in gas dynamics for
years as the §-function interaction, but in high-
energy physics might justifiably be called a reso-
nance model.* In the Veneziano model® resonances
are dual to an infinite set of Regge trajectories.
In this model the 6-function interaction, while not

identical to either real resonance or Regge ex-
changes, gives effects similar to low-mass reso-
nances or to low-lying Regge trajectories.

From the CPM point of view what this means is
that one selects a subset of the infinite set of tra-
jectories and daughters to be treated in the normal
way and approximates the remaining trajectories
by resonances (which we take here to be & func-
tions).

In Sec. II we discuss the simple scalar model.
Section II contains most of the physics implications,
without the complications of the more detailed mod-
els which are discussed in Secs. III and IV. In
Sec. III we generalize the problem to N channels
with £ channels containing normal Regge poles and
N -k channels containing 6 functions. In Sec. IV, a
specific three-channel example with charge is
worked out in great detail. Whereas in Sec. II we
start the discussion from the multiperipheral mod-
el, deriving the equivalent Mueller model in the
end, in Sec. IV we start by contrast with the
Mueller model, and in the end find the equivalent
multiperipheral model. This is instructive to the
demonstration of the complete equivalence of the
Mueller and multiperipheral models.



