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We study the O(N) generalization of the o model in the limit of large N, for four, three, two, and
one space-time dimensions. We compute the effective potential and some momentum-dependent Green's
functions. In one and two dimensions, spontaneous symmetry breakdown is impossible; any asymmetric
minimum inserted in the tree-approximation potential is immediately filled in by the effects of radiative
corrections. This is in agreement with general theorems. In four dimensions, the model is inconsistent;
it possesses a tachyon. In three dimensions, the model seems to be consistent, and offers an interesting
example of some nonlinear effects associated with spontaneous symmetry breakdown that are not

present in the usual (tree-approximation) models.

I. INTRODUCTION

The O(N) model is a theory of N real scalar
fields, ¢°, with O(N)-symmetric quartic self -
interactions. The Lagrangian density for the the-
ory is

a a a .a /\' a a
£=30, 99" — 205’9 ¢" — % (079, (1.1)

where 11,7 and X, are real parameters (the bare
squared mass and bare coupling constant), and the
sum over repeated indices is implied. It has been
known for some time' that it is possible to analyze
this model in two different perturbative ways: One
is ordinary perturbation theory in A, for fixed N;
the other is perturbation theory in 1/N for fixed
A, Computations in the second expansion are
slightly more difficult than in the first; neverthe-
less, at least to leading order in 1/N, it is possi-
ble to obtain formulas for many quantities of phys-
ical interest. (This situation is sometimes de-
scribed by saying that the model is exactly soluble
as N goes to infinity. This seems to us to be a
slightly deceptive way of putting things, rather
like describing the Born approximation by saying
that quantum electrodynamics is exactly soluble
as e goes to zero.) These formulas typically dis-
play richer structures than the corresponding
leading-order expressions in ordinary perturbation
theory. This is because the leading 1/N approxi-
mation preserves much more of the nonlinear
structure of the exact theory than does ordinary
lowest-order perturbation theory; for example,
two-particle unitarity for the four-point function
is exact.

Recently, several authors® have used the leading

10

1/N approximation to study spontaneous symmetry
breakdown in the O(N) model. This paper is to be
thought of as a comment upon this earlier work.
We improve on previous investigationsin three ways:
(1) Byintroducing a different method of computation,
we have been able to simplify considerably the de-
tailed calculations. We hope that this will make
this interesting and instructive model accessible
to a wider audience than before. (2) We have
carried out calculations for one, two, and three
space-time dimensions as well as four. This
would be a witless exercise were it not that strik-
ingly different physics emerges in the four differ-
ent cases. (3) Because of our improved computa-
tional method, we are able to calculate explicitly
the propagators in the presence of spontaneous
symmetry breakdown.

Before proceeding to detailed calculations, let
us try to get a rough idea of what we expect to find.

As a starting point, let us analyze (1.1) in the
semiclassical (tree) approximation. Here, there
is no renormalization, so we identify .’ and A,
with 4% and A, the renormalized parameters, and
look for the minima of the energy density, for
constant fields,

L.
U=2pete"+ g5 (0707). 1.2)

We find the following:

(1) If X is negative, U is unbounded below, and
the theory has no ground state; therefore we re-
strict ourselves to positive A.

(2) If p?is positive, the state of lowest energy
is ¢®=0, and the symmetry is manifest; if u?is
negative, the state of lowest energy is any state
for which
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@@= —2uEN/x=(@)?, {(@)>0. (1.3)

Which of these we choose as the ground state of
the theory is irrelevant to the physics of the prob-
lem; whichever one we choose, the symmetry is
spontaneously broken to O(N - 1). For convenience,
we choose

@*=06"%(p) . (1.4)

(3) To investigate the properties of the broken-
symmetry world, we define shifted fields,

=" (@)
o=9 @, (1.5)
1 =¢" (a<N).
In terms of these fields
U=-zt-~[‘rr“17"+c72+2cr((,0)]2 (1.6)

8N

plus an irrelevant constant. From this we see
that the N -1 7 fields are massless Goldstone
bosons, while the mass of the ¢ field is given by

mi=A{(@)?/N=-2u%. (1.7)

How much of this structure do we expect to be
preserved in the exact theory?

(1) In the full theory, the vacuum state is found
not by minimizing the classical potential energy
density, U, but by minimizing the effective poten-
tial, V. [The effective potential is a function of a
set of ¢-number variables called classical fields.
There is one classical field for each quantum
field in the theory. V has two equivalent defini-
tions: V is the generating function for one-parti-
cle-irreducible (1PI) Green’s functions, with all
external momenta set equal to zero; V is the ener-
gy per unit volume in a state in which the expecta-
tion values of the quantum fields are constrained
to be the values of the classical fields.®] Since the
definition of the renormalized parameters has a
large element of convention in it, we would not
expect the exact equations obtained above to be
preserved, except for a fortuitous definition of A
and u?. However, we would expect their qualita-
tive features to be preserved: For some range of
A, the theory should be nonsense (no ground state),
and for some range of X it should make sense. For
a sensible choice of A, for some range of u?, the
minimum of V should be at the origin (manifest
symmetry), and for some other range the mini-
mum should be away from the origin (symmetry
breakdown).

(2) When there is symmetry breakdown, there
should be N -1 massless pions, as a consequence
of the Goldstone theorem. Since Eq. (1.6) contains
a trilinear onm coupling, the ¢ particle should be
unstable; that is to say, the pole in the o propaga-
tor should be displaced to the second sheet. How-

ever, as A goes to zero, the pole should move onto
the real axis, and its location should be given by
Eq. (1.7).

(3) In the semiclassical approximation, Eq. (1.6),
if we give the 0 field a constant negative value,
the pions acquire a negative squared mass. Thus,
a situation of constant field lower than the mini-
mum is unstable; we expect that, as a result of
this, it should be impossible to define V in a phy-
sically sensible way to the left of the minimum.
Such a situation already arises if we consider the
one-loop corrections to V; here V develops an
imaginary part to the left of the minimum, clear
evidence of instability.*

(4) All of this is for three and four space-time
dimensions. In one dimension, the system is
simply a coupled set of N anharmonic oscillators.
For such a system, if there is a ground state, it
is unique; spontaneous symmetry breakdown is
impossible. In two dimensions, spontaneous sym-
metry breakdown can occur, but only for discrete
symmetries; the extreme infrared divergences
that would be caused by the appearance of Gold-
stone bosons makes spontaneous breakdown of
continuous symmetries impossible.® Thus, in
both one and two dimensions, the minimum of V
should always remain at the origin, no matter how
we adjust u?.

The detailed computations we will present verify
all of these expectations. In addition, there is one
surprise: In the four-dimensional case, the theo-
ry possesses a tachyon, a pole in the o propagator
at spacelike momentum. We believe that this is
merely a defect of the leading 1/N approximation,
not of the exact theory. However, it does make
suspect the use of the leading 1/N approximation
to study the statistical mechanics of symmetry
breakdown®; in this approximation, the system
can never reach thermal equilibrium, since the
energy spectrum contains (tachyon) states of arbi-
trarily large negative energy. Of course, since
the purely thermodynamic computations display no
internal inconsistencies, it remains possible that
the leading 1/N approximation is valid for thermo-
dynamic quantities but invalid for the detailed en-
ergy spectrum of the theory. Our computations do
not go far enough nor our insight deep enough for
us to do more than raise this possibility.

11. THE EFFECTIVE POTENTIAL

A. Introductory remarks and a combinatoric trick

Let us begin by recalling how certain Feynman
diagrams come to be more important than others
in the large-N limit. For simplicity, let us study
the scattering of a meson of type ¢ from one of
type b, in the theory with unbroken symmetry.
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FIG. 1. Some diagrams for meson-meson scattering.

Some diagrams that contribute to this process are
shown in Fig. 1. (The summation over internal
indices is implied.) The lowest-order diagram
[Fig. 1(a)] is proportional to 1/N, because of the
explicit 1/N in the interaction, Eq. (1.1). The one-
bubble and two-bubble diagrams [ Figs. 1(b), 1(c),
and 1(d)] are also proportional to 1/N; the addi-
tional factors of 1/N introduced by the additional
interactions are precisely canceled by the factors
of N introduced by summing over the N internal
mesons in each bubble. On the other hand, the
diagram shown in Fig. 1(e) is proportional to 1/N2,
since there is no internal summation.

Note that Figs. 1(b) and 1(e) have the same topo-
logical structure; thus we lose one of the great
advantages of graphical analysis, the transforma-
tion of algebra into topology. This difficulty can
be eliminated by changing the Lagrangian, adding
to it a term involving a new field, ¥,

1N 1 2
R A _ 2% paa_ 2
£ £+2 )\0<X N e u0> . (2.1)

The added term has no effects on the dynamics of
the theory. This is easy to see from the viewpoint
of functional integration: The functional integral
over x is a trivial Gaussian integral; its only ef-
fect is to multiply the generating functional of the
theory by an irrelevant constant. It is also easy

to see from the viewpoint of canonical quantization:
The Euler -Lagrange equation for x is

12 o4
X=3 § Q%+ 1ol (2.2)

This involves no time derivatives; it is not a true
equation of motion, but an equation of constraint,
just like the Euler-Lagrange equation for the fourth
component of a massive vector field. Therefore,
before we construct the Hamiltonian, x must be
eliminated from the Lagrangian, using Eq. (2.2).
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FIG. 2. The same diagrams as those of Fig. 1, ina
different formalism.

Such an elimination simply cancels the added term.
However, although the dynamics defined by the
new Lagrangian is the same as defined by the old,
the Feynman rules are very different. By elemen-

tary algebra,

Np?
X, (2.3)
0

£=%aw“8“w“+§-% - axetet -
plus an irrelevant constant. Thus, in the new
formalism, the only nontrivial interaction is a
trilinear ¢y coupling. All factors of 1/N come
from the x propagator (iA,/N), and every closed ¢
loop gives a factor of N. Also, in this formalism,
the mass of the ¢ is the combined result of the
trilinear interaction and the x tadpole, the last
term in Eq. (2.3). Figure 2 shows some graphs in
the new formalism that correspond to the graphs
of Fig. 1. (The dashed lines represent x propaga-
tors.) Notice that Figs. 2(b) and 2(e) are topologi-
cally distinct; the first contains an internal ¢ loop
while the second does not.

B. The effective potential

We now turn to the computation of the effective
potential, V. We remind the reader that this is a
function of so-called classical fields, the Legendre
conjugates of ¢ -number sources coupled linearly
to the quantum fields of the theory, in our case ¢
and x. For notational simplicity, we will denote
the classical fields by the same symbols as we
use for the corresponding quantum fields; which
we mean at any time will always be clear from the
context.

From Eq. (2.3),

1N Npg
V(w,x)=—§)\—x2+%x¢“w“+7“9-x
0 0

+radiative corrections. (2.4)
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o AT

FIG. 3. (a) The diagrams that make the leading con-
tribution to the effective potential in the large-N approx-
imation. (b) Some diagrams that are unimportant com-
pared to those in (a).

We are interested in V in the neighborhood of the
tree -approximation minimum. In this region, ¢
is of the order of N2, from Eq. (1.3), and x is of
the order of 1, from Eq. (2.2). Thus, all three
terms explicitly displayed in Eq. (2.4) are of the
same order of magnitude; they are all of order N.
It is easy to see that the only radiative corrections
of order N are those which arise from the graphs
of Fig. 3(a); all other graphs, such as those of
Fig. 3(b), are of order 1 or lower.

Graphs similar to those of Fig. 3(a) have been
summed many times in the literature by many
methods.” Rather than doing the computation in
detail once more, we merely state the answer:

Nﬂoz
Ao

LN, o,
Vemgx X rexe X

. e (k4 X), (2.5)

where 7 is the number of space-time dimensions,
% is ¢%¢®, and the integral is over Euclidean mo-
menta.

The ground state of the theory is determined by
the stationary point of V, that is to say, by the
equations

g-)‘-:- - (2.62)
SZ:FO' (2.6b)

We can also view these equations in a slightly dif-
ferent way: We can think of Eq. (2.6a) as an equa-
tion that eliminates x, and enables us to write V
as a function of ¢ alone. In this way we recreate
the effective potential we would have constructed
in our old formalism, before we introduced x. We
can then use Eq. (2.6b) to determine the ground
state. [This is, of course, completely equivalent
to applying Eqgs. (2.6a) and (2.6b) simultaneously.|
We shall adopt this procedure here because it en-
ables us to check the conjectures about the effec-
tive potential (as a function of ¢ alone) made in
Sec. I.

Inserting Eq. (2.5) in Eq. (2.6a), we obtain

2N 2Nu,? f 1
2_ _ 0 _
)\ X Xo N @) B2+ y 2.7)

Also, trivially, from Egs. (2.5) and (2.6a),
dV BV aV oy
y— =

do? d(p oy 0¢?

o~

=3X. (2.8)

It is these two equations we shall use below.

Note that Eq. (2.8) implies that if there is a bro-

ken-symmetry ground state, it occurs at x=0.
From this point onward, it is necessary to con-

sider the cases of four, three, two, and one di-

mensions separately.

C. Four dimensions

Equation (2.7) contains a divergent integral.
Since this is a renormalizable theory, the diver-
gences can be absorbed into mass and coupling-
constant renormalizations. In particular, if we
define

2
H'_: lf d‘k 1
XA @y ¥ (2.9)

and also define

_ 1 d'k 1 1

Y @n)Y 2 P+ M2 (2.10)
where M is an arbitrary parameter with dimen-
sions of mass, we obtain

2N 2Np? N
9* == X - T - g xin( /M), (2.11)

A

We emphasize that M is completely arbitrary. Any
nonzero choice of M is as good as any other; a
change in M merely redefines A.

Let us now discuss the qualitative behavior of
V as a function of ¢. We begin by assuming that
V possesses an asymmetric minimum, x=0. By
Eq. (2.11), at this minimum

oP= — 2N/ (2.12)

[ This is the same as the tree-approximation re-
sult, Eq. (1.3), but this is a fortuity of no physical
significance; it would not be true had we defined
our renormalized parameters otherwise.] In the
neighborhood of the minimum, as x becomes
positive, @? increases. Thus V is a monotonically
increasing function of ¢? to the right of the mini-
mum. This situation does not persist indefinitely;
as we continue increasing x, ¢? passes through a
maximum and begins to decrease. This maximum
occurs at

2
lnt(x/M2)=—1+32)7\r , (2.13a)
2Nu? N,
ot=- =+ =0t (2.13b)
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In order to obtain a greater value of ¢? than this,
we must make y complex. By Eq. (2.8), this means
that V has an imaginary part for ¢® larger than
@max 2. This is a complete surprise; we did not
anticipate such behavior in our introductory dis-
cussion. To the left of the minimum, a similar
phenomenon occurs. Real negative x implies imag-
inary ¢?; to keep ¢? real we must make y, and
therefore V, complex. This is a sign of the un-
physical nature of the regime to the left of the
minimum, anticipated in the introduction.

To summarize: The condition for an asymmetric
minimum and spontaneous symmetry breakdown
is that u?/X be negative. If this condition is ful-
filled, to the left of the minimum the effective
potential is complex, as expected. To the right
of the minimum, the effective potential is real,
monotonically increasing, and convex, but only for
a while; at a certain point it becomes complex
again. At this stage in our investigation, we have
no explanation of this second region of complexity.
(We will make some speculations later.) Nowhere
in any of this is there any constraint on the sign or
magnitude of A.8

D. Three dimensions

The computations for the three-dimensional case
are almost identical with those for the four-dimen-
sional one, although the consequences are some-
what different. Once again, we must absorb diver-

gences into unrenormalized parameters. There-
fore, we define
2 2 3
By 1 dR 1
X . *3 @y (2.14)

There is no need for further subtractions, so we
simply define the renormalized coupling constant
to be the same as the bare one,

A=A, (2.15)

In this way we obtain

» 2N 2Nu* N
TN e

In this case, since the bare coupling constant is
a well-defined quantity, we certainly want to
choose XA to be always positive, so the Hamiltonian
will be bounded below and the theory will possess
a ground state. Then the right-hand side of Eq.
(2.16) is a monotonically increasing function of x
for positive x, and has an imaginary part for neg-
ative y.

Thus, if u?is positive, x is positive at ¢?=0
and grows larger as ¢® increases. The minimum
of V is at the origin, and away from the origin V
is real, monotonically increasing, and convex. If
p? is negative, the minimum is away from the or-

(2.16)

igin and given by Eq. (2.12). To the right of the
minimum, Vis real, monotonically increasing,
and convex; in contrast to the four-dimensional
case, there is no unphysical region of imaginary
V on the far right. Something unexpected does
happen, though, to the left of the minimum. Al-
though this region is unphysical, as anticipated,
nevertheless V remains real.

The most direct way to see this is from the ex-~
plicit solution to Eq. (2.16),

_ A AZ A(pz 1/2
X=-4 <16n “*W> . 2.17)

(We have chosen the solution of the quadratic equa-
tion that gives a physically sensible answer to the
right of the minimum.) From this we see that as
we move to the left of the minimum, all that hap-
pens is that VY moves from positive to negative
values; x remains real and positive, and therefore
V remains real. We emphasize that this region is
as surely unphysical as one in which V has an
imaginary part: We are not free to choose a nega-
tive sign for the square root in Eq. (2.16); the
V¥ in this expression comes from the integral in
Eq. (2.7), and for real positive x the integral un-
ambiguously gives the positive square root.°

We have no simple physical picture of this curi-
ous persistence of reality in the unphysical region.
We suspect that an imaginary part may develop in
higher orders of 1/N, but we have not carried out
the computations necessary to verify this suspi-
cion.

E. Two dimensions

In two dimensions, we still require mass re-
normalization. Therefore, we define

Ml Lf

ey (2.18)

where M is an arbitrary parameter with the dimen-
sions of mass, as in the four-dimensional case.
As before, no coupling-constant renormalization
is needed, so we identify A with A, and only con-
sider the case of positive A.
We thus obtain
. 2N 2Np?

_ay N 2
D +4ﬂln(x/M)-

(2.19)

The qualitative behavior of this equation is com-
pletely different from that in the preceding two
cases; the right-hand side increases monotonically
from -« at y=0to +o at y=+o.

Thus, no matter how we adjust u?, there is no
way to make x vanish for positive ¢*, and there-
fore no way to produce an asymmetric minimum
in V. The minimum in V is always at the origin;
spontaneous symmetry breakdown is impossible.
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Of course, this is just what we anticipated in our
introductory discussion on the basis of general
principles. Nevertheless, it is always pleasant to
see general principles verified in an explicit ex-
ample.

F. One dimension

In one dimension, there are no divergences, so
we identify p® and A with p,2 and A,. As before,
we only consider the case of positive A.

We thus obtain

2N 2Nu? N
2—— —_— —
PT=5X N Y (2.20)

As expected, we find the same qualitative features
as in two dimensions; whatever the value of u?,

the right-hand side of this equation is a monotoni-
cally increasing function of yx, going from - to
+o as y traverses the positive real axis. Thus, as
before, spontaneous symmetry breakdown is irn-
possible.

III. SOME GREEN’S FUNCTIONS
A. General formulas

Let us recall the general prescription for com-
puting Green’s functions in a theory with sponta-
neous symmetry breakdown: (1) First, one com-
putes the effective action, the generating functional
for one-particle irreducible (1PI) Green’s func-
tions. This is a functional of the same classical
fields that appear in the effective potential; the
difference is that in the effective action the clas-
sical fields are not constants, but space-time-
dependent functions. When the classical fields are
constants, the effective action reduces to minus
the space-time integral of the effective potential.
(2) Then, one determines the ground state of the
theory by minimizing the effective potential, and
defines shifted classical fields which vanish at the
minimum, like the fields of Eq. (1.5). (3) Finally,
one expands the effective action in a functional
Taylor series in these shifted fields. The coeffi-
cients in this expansion are the 1PI Green’s func-

tions of the theory with spontaneous symmetry
—

breakdown.

We will now carry through these steps, to leading
order in 1/N, for those cases for which we have
found spontaneous symmetry breakdown (i.e., the
four - and three -dimensional models, with negative
w?/Xx). In order to avoid worrying about ie’s, we
will do all our computations in Euclidean space.
Thus, k? will always denote the (positive) Euclidean
squared length of a vector, and (0% will denote the
Euclidean n-dimensional Laplace operator (not the
Minkowskian wave operator). When necessary, we
will return to Minkowski space by analytic continu-
ation.

By the same reasoning as in the previous section,
the relevant terms are those that come from the
original Lagrangian, Eq. (2.3), and the radiative
corrections from the diagrams of Fig. 3(a). Of
course, since the classical x field is now no longer
a constant, the external lines on these diagrams
now carry nonzero momentum. However, at least
formally, they may still be summed into a closed
form. Thus we find for the effective action

2
F=fd"x<%¢“52<p°+%hﬂ 2—§X<P“<P°-N;l° x>
0 0

- sNtr{In(-0%+y)], (3.1)

where tr denotes the trace of the operator in square-
brackets, considered as an integral operator in
Euclidean n-space. Note that if the fields are con-
stants, this reduces to minus the integral of V, as
it should. This completes the first step of the
prescription.

Now for the second step. We introduce shifted
fields, precisely as in our introductory discussion:

o=¢" (@),
and

*=¢* (a<N), (8.2)
where

(@)2==2uN/x. (3.3)

Note that there is no need to shift x, because x
always vanishes at the asymmetric minimum.

Now for the third step. In terms of these shifted
fields,

. 1N Nupg? | —
I‘:fd"xl:%waszw“+§or_‘zo+Ex—xz-x(r((ﬂ)—éxoz—%x‘n“n“—(——‘;9-+%((p)z)x}—éf\’tr[ln(—uhx)]-
0

Of course, for consistency, the terms linear in x
must cancel the first-order term in the expansion
of the logarithm. It is easy to check that this in-
deed happens, i.e., that

Nu,®> Nu® N [ d% 1

T Tox T2 ey

T 3 (3.5)

(3.4)

This is simply the definition of u?/x, Egs. (2.9)
and (2.14).

Equation (3.4) is the complete formal solution to
our problem; from this expression, all of the 1PI
Green’s functions can be obtained by functional
differentiation. We shall now perform the differ-
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entiations to obtain explicit forms for the 1PI two-
point functions, the inverse propagators.

The simplest propagator to study is that of the =
fields. Only the first term in Eq. (3.4) is quadratic
in 7. Thus, the m propagator is that of a free
massless field,

Doy (9?) = 645 /b2 . (3.6)

(Remember, we are working in Euclidean space,
so the propagator of a free scalar field is real and
positive.) That the 7 particle is massless is, of
course, a consequence of Goldstone’s theorem;
that its propagator is free is, of course, only an
artifact of our approximation; standard unitarity
arguments applied to Eq. (1.6) show that the imag-
inary part of the 7 propagator is proportional to
1//N.

We now turn to the o-x system. The fourth
term in Eq. (3.4) introduces mixing between these
fields; thus, we will have to consider a matrix in-
verse propagator. We find

p? (@)
. N ’
(9) =3 - NB(p?)

0

D=Y(p?*) = (3.7

where the first entry is o, the second is x. B(p?)
is the contribution of the second functional deriva-
tive of the last term in Eq. (3.4); it is shown
graphically in Fig. 4, and its explicit form is

Ll [ dk 1 1

B(P )—2 (21‘{)" kz (k+p)2 * (3~8)

Of course, the propagators themselves are found
by inverting Eq. (3.7). The diagonal entries in
D(p?), the o and x propagators, are of special inter-
est. The o propagator is of interest because it is
independent of our computational formalism; the
opropagator is, asalways, simply the Fourier trans-
form of the vacuum expectation value of the time-or-
dered product of two o fields. We would have ob-
tained the same expression, albeit with consider -
ably more labor, even if we had never introduced
the x field. (The same cannot be said of the 1PI
o propagator; this does depend on the formalism.)
The x propagator is of interest because it is, in
principle, a directly measurable quantity. Figure
5 shows the only graphs that contribute to on-
mass-shell 77 scattering, in our approximation.
These are all proportional to the x propagator.

To go further, we must consider three and four
dimensions separately.

B. Three dimensions

In three dimensions, Eq. (3.7) is free of diver-
gences; A is A,, and B is a convergent integral,

FIG. 4. The function B(p?. Note that because of the
absence of y tadpoles, the internal lines are massless.
B=1/16p , 3.9)

where p is the positive square root of p2. Thus we
find

p+A/16

DO(vzp(p2+Ap//16_2u2) . (310)
Also,
2
Dy, = AD (3.11)

N(Q2u? -rp/16 —p?) °

Note that the o propagator blows up at p =0, but
this is not the result of a pole in p? (a massless o)
but of a pole in p, that is to say, a cut in p%. This
cut is obviously a result of the two-7 intermediate
states; by unitarity and elementary dimensional
analysis, these massless states contribute a term
proportional to 1/p to the o propagator.

Both propagators are meromorphic functions of
p, that is to say, double-valued functions of p2.
The first sheet in p? is the right half p plane, the
unitarity cut is the imaginary p axis, and the phys-
ical region for timelike p? is the negative imagi-
nary p axis. The propagators are free of poles on
the first sheet (the ¢ is unstable), but they have
two poles on the second sheet, with locations given
by

b=-gmaz[2u+GEN2)V2. (3.12)
(Remember, u?is negative.) As A goes to zero,
these poles approach the physical region. heading
for the point p?=2u2, the tree-approximation pre-
diction for the ¢ mass. It is easy to check that
both propagators have positive imaginary parts in
the physical region, as they should.

To summarize: In three dimensions, everything

e e

ol §
X

FIG. 5. The diagrams that contribute to 77 scattering,

in leading order. The shaded blob is the x propagator,
to leading order.
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behaves as it should. There are no pathologies,
and no surprises.

C. Four dimensions: the tachyon disaster

In four dimensions, both A, and B are divergent.
Of course, these divergences cancel:

L, p-l, 1 de L( L L )
o o2 @2u) R\ (p k)P K2+ M?
1

1 2,
= ;“P 3—2? [1 - ln(/)'/Mz)] . (313)

Thus we find

1/x+(1/3272)[1-1n(p*/M*)]

Doo= 5 e pt {10 +(1/3229) [1 - n(p5 A1) |}
(3.14)

Also

D, =- ‘ PPN -

XX T 2u/a +p?{1/3+(1/3272) [1- In(p 2 /M?) ] }
(3.15)

In many ways, these expressions are similar to
their three-dimensional analogs. The ¢ propagator
blows up at p? =0, but this is a consequence of the
Goldstone-boson cut, not of a vanishing ¢ mass. '
The cut is of logarithmic rather than square-root
type, but this is just the difference between four-
dimensional and three-dimensional kinematics.
For small coupling constant, the o pole is hiding
on the second sheet, approaching p>=2u% as A

goes to zero, etc.

However, these similarities are overshadowed
by a disastrous difference; these propagators
possess a tachyon, a pole at Euclidean p®>. This
is easy to see: The denominators of these expres-
sions are positive at p?> =0 (remember, u®/X is neg-
ative) and go continuously to -« at p® =. Thus,
they must have a zero somewhere in between. Note
that the tachyon appears whatever the sign of A.

It is easy to understand the origin of the tachyon
if we imagine cutting off the charge-renormaliza-
tion integral, Eq. (2.10), at some large momen-
tum, A,

11 ,
— In(A?/M?) . (3.16)

11,1
Ao, 32
This gives us the privilege of discussing energet-
ics in terms of unrenormalized quantities, rather
than in terms of renormalized ones as was done
previously. For any fixed finite X, as A goes to
infinity, A, goes to zero, through negative values.
Negative A, means that the energy is unbounded
below; thus the theory contains states of arbi-
trarily large negative energy, and such are the
tachyon states we have found.'

Until now, we have spoken only of that of which
we were certain, but now we must begin to spec-
ulate, for we wish to inquire whether the pathology
we have discovered is a genuine disease of the O(N)
model in four dimensions, for sufficiently large
N, or an artifact of the leading 1/N approximation.
Artifactual pathologies are not unknown in field
theory; for example, the lowest-order renormal-
ization-group approximation to the photon prop-
agator in quantum electrodynamics has just such
a tachyon pole'? as we have found here. However,
in this case, there is an easy out; the pole occurs
at a value of p® where the invariant charge is very
large, and where, therefore, the lowest-order
approximation is manifest nonsense. It is impor-
tant to realize that there is no such easy oul heve.
Our expansion parameter is 1/N, but the location
of the tachyon is independent of N. Therefore, in
complete contrast to the electrodynamic case,
there is no reason to believe that the terms we
have neglected should be large compared to the
terms we have retained at the tachyon pole.

However, all is not lost. For we are studying
not just a certain range of p*, but also a certain
range of ¢ (¢® on the order of N). Therefore, we
must consider the possibility that the minimum
of the effective potential we have found does not
represent the true vacuum state of the theory.
After all, if we had been so foolish as to take the
stationary point of the potential at ¢ =0 for the
ground state of the theory, we would also have
found tachyons (this time in the tree approximation)
and this would have been the sign of our error.
This example is somewhat artificial, since the
origin is a maximum of V, not a minimum. How-
ever, we can easily construct instances where
there are relative minima of V that are neverthe-
less false vacuums. (For example, consider the
theory of a single scalar field with both quartic
and cubic interactions. Here the potential may
possess two relative minima, only one of which is
an absolute minimum. In simple approximations,
it looks like either of these will do for the ground
state; nevertheless, it is easy to construct en-
ergetic arguments that show that only the absolute
minimum is a satisfactory vacuum.)

Therefore, we conjecture that there is a mini-
mum of the effective potential at very large (p2 that
is in fact lower than the minimum that we have
found, and which represents the true vacuum of
the theory. Such a minimum must be at very large
¢?, because it is only in this case that the diagrams
we have neglected can make a contribution to V
comparable to the diagrams we have retained.
(Remember that our counting of powers of N in

Sec. II depended not only on the powers of 1/N
coming from the diagrams themselves, but also
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on the factors of N coming from the classical
fields on the external lines.) With our current
methods, we cannot verify this conjecture. How-
ever, there is one small piece of evidence that it
is true. This is the imaginary part we found in V
for sufficiently large ¢®. We suspect that this is
the beginning of a long stretch of imaginary V that
will terminate at the true minimum, just as there
is a stretch of unphysical V extending from the
origin that terminates at the true minimum in the
nonpathological three-dimensional case.

IV. CONCLUSIONS

In four dimensions, the leading 1/N approxima-
tion to the O(N) model leads to inconsistencies.
We have given tentative arguments that these in-
consistencies represent a sickness of the approx-

imation rather than of the theory, but we have not
been able to definitely resolve the matter. In any
case, the theory in the leading 1/N approximation
is sick, and furthermore sick in a uniform way;
the situation is not the familiar one where an ap-
proximation is accurate in some kinematic region
but leads to pathologies in a different kinematic
region where it is invalid.

In three, two, and one dimensions, in contrast,
the leading 1/N approximation is free of inconsis-
tencies and is an interesting and instructive ex-
ample. In three dimensions, we can explicitly
work out many of the nonlinear effects of Goldstone
bosons, such as the instability of the ¢ meson. In
one and two dimensions, we can see how the effects
of radiative corrections prevent the occurrence of
spontaneous symmetry breakdown.
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