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(at s =2500 GeV ), One model which attempts to
explain (and in fact predicted) this behavior is the
eikonal model of Gheng and%u. This model is a
perturbative calculation in massive QED, where
the tower graphs are taken as a Born term in an
eikonal expansion for the scattering amplitude.
The result they find for total cross sections is
o„,~ (lns)', saturating the Froissart bound. This
saturation depends critically on the fact that the
tower graphs themselves (the Born term) violate
the Froissart bound by a power. A model of this
type will have difficulty coexisting with the condi-

tions leading to the bounds here discussed. It may
be that the CERN results coupled with the Gheng-
'Nu model offer experimental evidence that the
virtual Compton amplitude violates the Froissart
bound at energies of s =2500 GeV' for spacelike
photons.
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It is examined whether the massless Yang-Mills field theories can describe massive vector particles

which have a common mass. The nonzero mass is supposed to be accompanied by poles in vertex

functions. It is demonstrated that such poles can be consistent with the %ard identities. Homogeneous

linear integral equations describing approximately the residues of these poles are shown to have

asymptotic nontrivial solutions.

I. INTRODUCTION

It was conjectured' some time ago that theories
with a local gauge group may describe massive
vector particles, where the mass is of pure1, y dy-
namical origin. One way to achieve this is by
means of the so-called "Higgs mechanism" lead-
ing to the classes of spontaneously broken gauge
theories' which have received much interest in
recent times. Because these models can be treat-
ed by perturbation theory, they are practical, at
least for the description of weak interactions. Yet,
because of the often large number of scalar fields
that have to be introduced, there can be many
free parameters resulting from the multitude of
possible couplings of the scalar fields among
themselves. It is therefore useful to investigate

the possibility that vector particles may acquire
a mass without the introduction of scalar mesons.
This has been done, ' ' essentially by exploiting
the analogy with the Meissner effect in the theory
of superconductivity, with the qualitative conclu-
sion that this spontaneous mass generation is in-
deed possible.

The present investigation deals with the pos-
sibility that the pure Yang-Mills field, without
other couplings, may generate massive vector
particles, specifically, without breaking the global
symmetry so that the particles have equal mass.

It is known" that the vector particles can only
be massive if their proper self-energy function
has a pole at p'=0. In Sec. II a simple mech-
anism that may lead to the formation of such a
pole is proposed, and it is reviewed how this pole
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decouples from the physical S matrix. In this
section is also reported the result of a one-loop
calculation in self-consistent perturbation theory
(a very crude form of the Hartree-Fock approx-
imation). In Sec. III the renormalized Schwinger-
Dyson equations are approximated with an eye
on the mechanism proposed in Sec. II. The re-
sulting equations for the cubic vertex functions
are of the Bethe-Salpeter form in the ladder-
chain approximation. Section IV deals with the
consistency with the Ward identities. In Sec. V
homogeneous integral equations describing the
residues of the poles in the vertex functions are
written down explicitly, and it is argued that there
are nontrivial solutions to these equations (for any
nonzero value of the coupling constant). This is
tentatively interpreted in Sec. VI as evidence that
the vertex functions have indeed poles which
"cause" the pole in the self-energy function as-
sumed already. An equation for the mass emerges
that is, under a certain assumption, in form con-
sistent with the one-loop calculation of Sec. II.
The mass is proportional to the cutoff and depends
on the coupling constant in the nonanalytic way
that is familiar from the theory of superconduc-
tivity. For small coupling constants the cutoff
can be very large. In Sec. VII comments on the
significance of these results are given. Section
VIII contains some conclusions. There are two

appendixes: Appendix A contains formulas in re-
lation to the integral kernels, and in Appendix 8
a mathematical example is exposed that serves
to illustrate some comments made in Sec. VII.

II. PRELIMINARIES

It is expected that gauge particles remain mass-
less to any finite order in perturbation theory, '
for it follows from gauge invariance that the self-
energy function is transverse:

E„.(P) = (~„,P'-P„P, )~(P') . (2.1)

Accordingly, the propagator has the form (g
specifies the gauge)

G2u( y g 2v O'P 1
+

1 f p"
mn (P& mn g p2 p2+p2E(p2) ~ (p2)2

which shows that the position of the mass is given
by the solution of the equation

m'+ m'Z(-m') = 0. (2.3)

)(2)
mn (P 8 p2 2 +p2 g (P2)2 mn 2

(2.4)

corresponding to the approximation

[Equation (2.4) is the covariant version to be used
later; it does not correspond to the axial-vector
gauge. ] The expression (2.4) can be used as a
starting point for self-consistent perturbation
theory as follows. The propagator is the solution
of the equation

Hence m' = 0, unless Z(P') has a pole at P' =0.
From Eq. (2.1) it follows then that the P„P„part
of Z„„also has a pole. Such a pole can presum-
ably not occur in any finite order of perturbation
theory. It may be interpreted as the formation of
a zero-mass bound state.

A simple mechanism that could generate such a
bound state out of two vector particles is depicted
in Fig. 1. In Fig. 1(a) the two (virtual) particles
are bound through an arbitrary number of ele-
mentary scattering processes. The elementary
scattering process is exhibited in Fig. 1(b}. The
set of graphs of Fig. 1(a) leads to a contribution
to the propagator as shown in Fig. 2. Of course,
in most gauges there will also be essential con-
tributions from the ghost particles (Feynman-
DeWitt-Faddeev-Popov2'). These contributions
will be taken into account later. For the moment
we may think for convenience of a special gauge
in which the ghost particles decouple (the so-called
axial gauge'). Figures 1(a) and 2 suggest that a
partial summation of the perturbation series is
being made. It would, however, be a poor approx-
imation to start with the bare massless propa-
gator. Rather, the lines are assumed to cor-
respond to a simple massive propagator, con-
sistent with gauge invariance,

{oj or

1'
2

FEG. '1. Basic mechanism that may lead to the forma-
tion of a zero-mass bound state.

FIG. 2. How the basic mechanism contributes to the
propagator.
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p At A1 ~ ~p;-'- ( "p')+If„p.p. +Z."(P)+C."'~(p) G,'."(p)=+g„"(... (2."I)

where

(2.8)

ticles, as illustrated in Fig. 4. The residue of
the pole in Z is called a2. Figure 4(a) stands for

iZ-„„(p)t„„=(-xp„)—,(Kp„)
is a nonlocal counterterm. The lowest-order ap-
proximation is obtained by setting Z +C = 0, which
corresponds to (2.5) and leads to the solution
(2.4). The perturbative solution for G then takes
the form

G=GO+ Go(Z+C)GO+ Go(Z +C)GO(Z+C)GO+ ~ ~ ~,

and Fig. 2 must be supplemented by the contribu-
tion of the counterterms C. The word "counter-
terms" should not lead to the impression that C
is infinite: In Eq. (2.8) m is the actual, physical
mass of the vector meson.

The series in Fig. 2 can be rewritten by focus-
ing attention on the proper part Z. The contribu-
tion to the proper self-energy function Z implied
by the series is denoted by Z'. This leads to Fig.
3. There Z' is written in terms of the vertex
function I", which satisfies the integral equation
of Fig. 3(c). If the iterative solution of this equa-
tion is inserted in Fig. 3(b), and this result in
turn in Fig. 3(a), then one obtains Fig. 2 again.

It is assumed that the vertex function I" con-
tains the zero-mass bound-state pole, and that
this pole is carried over to 2" via the equation in

Fig. 3(b). The vertex function I" defined by Fig.
3(c) does not satisfy the requirements of Bose
symmetry: All three external legs are not equiva-
lent. The complete vertex function I should be
symmetric under interchange of any two external
legs. The idea is that there exists a consistent
approximation I", „, to the exact vertex function I .
If the momentum squared of one of the external
legs of I'pp approaches zero, then I', , becomes
equal to a I"'. Thus the I' functions contain only
the singular part of I'

pp
Similar words apply to

The pole is assumed to correspond to a scalar
particle that couples to one and two vector par-

k= -2(-P„P, ) —2 (2.10)

-igt"
p2 p2 ( Pu} p2 ~P2Z(P2) ( PIJ)P2

1- —,+ O(P') . (2.11)

(again, this is only correct in a covariant gauge).
In Fig. 4(b), I" is the regular part of I' with re-
spect to the external leg under consideration [I"
has still the poles of the other two legs; compare
Eq. (4.9)]. Comparison of the pole parts in Figs.
3(b) and 4(b) leads to an equation for x (cf. Fig.
12).

The bound-state particle is not physical; its
pole decouples from the S matrix. This phenom-
enon is the same as mentioned in Refs. 3, 4, and
5. For completeness the arguments are repeated
here, for a covariant gauge. Consider elastic
scattering of two particles. The (connected) S
matrix is given by Fig. 1(b), if one interprets the
internal lines and vertices to stand for the exact
propagators and irreducible vertices. Since the
external lines are on the mass shell and con-
tracted with physical polarization vectors, the

P„P„parts of the propagators do not contribute.
This expresses current conservation. For a pole
in the s channel the first two diagrams of Fig. 1(b)
are relevant. The pole parts are shown in Fig. 5,
where (1) represents the pole in the quartic ver-
tex, and (2), (3}, and (4} come from the two cubic
vertices. The vertex I" is the nonpole part of I'
as it is defined in Fig. 4(b). From the expressions
in Figs. 4(b), 4(c), and current conservation, it
follows that each of the diagrams (3) and (4) is
equal to minus diagram (2). This leads to the

equality b. The pole parts in b cancel: As P'-0,

5 5
(Q) ~ t o~ + ~~ +

(,
~
PGI6.' ' ~ p2

5 5 5
(b) 2

5 5
((-}

e—P ~- p
=~~„h „,

~ll (l g (T) P

FIG. 3. 4'a} Rearrangement of the series in Fig. 2,
(b} Z' in terms of I'~; (c) integral equation for I'.

FIG. 4. The pole parts of the self-energy and the
cubic vertex functions.
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~„.( p) =g„.F,(P')-p„P.~(P') .
Equation (2.3) can be written

m'=Z, (-m') .

(2.i2)

(2.12)

A correct approximation should respect the re-
lation Z, =P'Z, but since Z, does not need the pole
at p' =0, it is tempting to compute the one-loop
approximation to Z, (-m'). Of course in this ap-
proximation Z, P'Z, if m' 4 0. The relevant dia-
grams are shown in Fig. 6(a), provided that the
full vertices are replaced by the elementary ones.
The rules for the diagrams are given in Fig. 7
and Eqs. (5.1)-(5.3). A covariant gauge is chosen,
characterized by the parameter f, in (2.4). The
ghost particle is taken to be massless. A justifi-
cation for this is given in Sec. IV [for convenience
a Hermitian ghost field is used, which is related
to the complex field by Eq. (3.1)] . The diagrams
are conveniently evaluated with the n-dimensional

The generalization to many particle processes is
straightforward. To substantiate these arguments
by a proof, one must show that the zero-mass
pole reall. y behaves as a particle. In the argument
above it was assumed that the residue of the pole
in the quartic vertex factorizes in a product of
two residues of the pole connected with the cubic
vertex. This may be shown to hold within the
approximation of the "basic mechanism. " In
general, the pole of the vertex functions must be
also shown to reside in the correct invariant func-
tions. For example, for the cubic vertex, the
Lorentz tensors that multiply the invariant func-
tions that have the pole must all contain the factor
p„, as implied by Figs. 4(b) and 4(c).

Actually, the assumption that the pole corre-
sponds to a two-particle bound state means that
the coupling to multiparticl. e vertex functions has
to be negligible. This is an assumption of sim-
plicity. It may be justifiable for a small coupling
constant, g- 0, if that does not obliterate the
bound state.

The following sections are dedicated to the pos-
sibility of the existence of the pole in the vertex
functions and in Z. The remainder of this section
explores possible hints that self-consistent per-
turbation theory may give.

Let us write

(a) -~ 2,

gZ,+

L

FIG. 6. (a) Equation for the vector function; and
(b) equation for the ghost self-energy function.

regularization method. ' Suppose n, the dimension
of space time, is real and positive. For n&2
the individual diagrams are convergent, provided
that in the longitudinal part of the vector-meson
propagator 1/P' is replaced by 1/(P'+ g'), in
order to suppress an infrared divergence. The
individual diagrams have a pole at n =2, but the
poles cancel in the sum. So n may be pushed to
n&2. Then the limit p. -0 can be taken. The next
poles appear as n approaches 4; then

(2.14)

cg'-
32+ ' (2.i5)

L [- I, g f v" „(p,qr)";

I. I Lg&~ bW (P,q)~PI

Y, C

QQ f$(o)"( C(bCCI

= (Ig&«b V &(PCI)f

and where the constant c depends on the group
according to Eq. (5.4). The dots indicate terms
that remian finite as n- 4; they contain the terms
proportional to f,

' Equati. on (2.14) can be trans-
lated unambiguously into the cutoff language. The
only reason for using the n-dimensional regular-
ization scheme is that it simplifies the calcula-
tions considerably. For one-loop calculations
there exist schemes"'" that employ large masses

FIG. 5. Decoupling of the zero-mass pole from the
8 matrix. FIG. 7. Vertices and propagators used.
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A, which would give the result

(2.16}

In A language, the cancellation of the poles at
n = 2 means that the quadratic dependence on A

cancels. This is to be expected, since the quad-
ratic divergences are mass-independent and they
cancel in the massless Yang-Mills theory. One
expects this to happen to any order in perturbation
theory, since the massless Yang-Mills theory
has no counterterm available to absorb a p'-inde-
pendent but cutoff-dependent term in Z, . So in
general Z, (-m') is expected to be proportional to
m', and to have the form of a power series in
lnA'. The number in front of Xln(A'/m') is pos-
itive, since E is assumed to take on only positive
values [an argument for $ & 0 comes from the path-
integral derivation of the Feynman rules; see,
for instance, the derivation in Ref. 12]. Of course
the mass should not depend on E. The ( depen-
dence in Eq. (2.16) should cancel against higher
order contributions. Summing the perturbation
series would presumably give an equation for the
mass of the form

m'=m'F(z, A, g '),
(2.17)

where z = Kin(A'!m') and where X is supposed to be
the renormalized coupling constant. In the form
{2.17) for ~ the reasonable assumption has been
made that to order A.

" the maximum power of
ln(A //m ) is also g. If ~ t0, then ~2 is determined
by the equation

(2.18)

Suppose solutions exist for arbitrarily smal. l A. .
Then in the limit X-O, A- ~, z fixed, Eq. (2.18)
becomes

1=E(z, 0, $ ') . (2.19)

At some point z =zp the miraculous cancellation in
the E dependence should occur:

1=E(z„0,( ') =E(z„0, ( '+ q}=E(z„0,0);

(2.20)

then (2.18}becomes the formula for the mass in
terms of the cutoff and A:

(2.21)

The approximation (2.16) gives for zp the value ~7'.

For A. g 0 the cancellation of the $ dependence in
(2.18) would be an even greater miracle. It would
define a set of points in the z-A, plane, a line, or

maybe a single point.
The dependence in (2.21) on the coupling constant

is familiar from the theory of superconductivity
and from the Nambu model. " In these models the
Goldstone phenomenon plays a role. It is not clear
that this phenomenon has something to do with the
model discussed here, where all vector mesons
are assumed to have the same mass.

If Eq. (2.21) is indeed correct, then, for small
coupling constants, the cutoff is innocent. For
instance, with 4v/(g'h)=137, z, =—„' and for the
group SU(2) [c =2 in Eq. (2.15)J, zo/X=172, and
Eq. (2.21) gives A'/m'=exp(172) =10", which for
practical purposes seems to be close enough to
inf inity.

Of course, the reasoning above is pure specula-
tion, and it might well be that the only E-inde-
pendent solution of Eq. (2.17) is m' =0.

III. THE St:HWINGER —OYSON EQUATIONS

For practical calculations a covariant gauge is
almost indispensable. This means that the contri-
bution of the ghost particles must be taken into ac-
count. This will be done by looking at the hierar-
chy of renormalized Schwinger-Dyson equations.
Then these equations will be approximated so as
to obtain back the simple mechanism of Sec. II,
amended by the inclusion of the ghost particle as
well as by renormalization effects. Hermitian as
well as non-Hermitian ghost fields will be used.
The two are related by

Here a is a group index and lt,"(x), A. =1, 2, is the
Hermitian ghost field. By the Schwinger-Dyson
equations is meant an infinite set of coupled inte-
gral equations among the one-particle irreducible
vertices. The equation for the vector particle
self-energy is given in Fig. 8(a). The wavy line
represents the exact vector-meson propagator,
the line with the arrow the exact ghost propagator.
The dots represent the exact irreducible vertices.
All quantities in the diagrams are renormalized.
The constant g in the elementary vertices is the
renormalized coupling constant. The notation of
Ref. 2 is used for the renormalization constants
Z. The object Z,Z is in general not a renormalized
quantity, except at p =0. By Eqs. t,2.1), (2.6), and
(2.10),

Here Z,G
' is the renormalized inverse propaga-

tor, and (3.2) shows that Z,Z is a useful quantity
if one is interested in the residue of the pole at
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p' =0. In particular Z,g' is a renormalized quan-
tity which deserves a special notation:

Kg = Z~K ~ (3 3)

Note, however, that in Eq. (3.3) for the mass Z is
an unrenormalized object. The propagator of the
ghost field is related to the ghost self-energy by
an equation similar to (3.6) (T is the second Pauli
matrix):

[5., r„,P' +Z,",'(P')] G,", =5„5„,. (3.4)

The integral equation relating Z„~ to the other ver-
tices is illustrated in Fig. 6(b}. Note that Z,Z« is
not a renormalized quantity. For the derivation of
these equations, external-source techniques have
been used a.s described in Befs. 2, 14, a,nd 15, for
instance. The propagators and exact vertices in
Fig. 6 may be considered to be a functional of a
field P"(x), which is the vacuum expectation value
of the vector field in the presence of an external
source. A similar ghost-type field has been set
equal to zero. Functional differentiation of the
equations in Fig. 6 with respect to P (x) yields the
equations for the cubic vertices, quartic vertices,
and so on. The equations for the cubic vertices
are represented by Fig. 8. The h dependence is
explicit, provided one does not count the factors
h hidden ing, m, etc., mhich are absent in classi-
cal field theory. Kith each loop in the equations
goes an explicit factor K. The O(h ') terms in Fig.
8 are equal to the once-differentiated version of
the O(h') terms in Fig. 6.

The infinite set of integral equations must now

be approximated into a manageable closed set that
is a.s simple as possible. The purpose is not to
obtain a consistent quantitative approximation in

some sense. Rather, the spirit is to obtain linear
integral equations of the type introduced in the
previous section (Fig. 3). First of all, the O(h')
terms in the integral equations a.re neglected. This
might be justifiable if Xln(A'/m. ') is small com-
pared to one. Suppose now that me are looking for
the bound-state pole in the leg labeled "m" in Fig.
8. Kith the assumption that the bound state cou-
ples negligibly to three particles, comparison of
the pole terms leads to the homogeneous set of
equations of Fig. 9. In these diagrams also a non-
linearity has been removed by replacing the full
cubic vertices attached to the legs "l" and "I." by
the elementary ones. This replacement would be
disa, strous if the poles that are supposed to be
present in the full vertex functions mould play an
essential role in the loop integral. There is, how-
ever, one gauge, the Landau gauge ($-~), in
which this pole does not contribute [compare Fig.
4(c)]. The homogeneous equations of Fig. 9 are of
a Bethe-Salpeter (BS) type in the lowest-order ap-
proximation. The Z factors have been left out,
since they differ from one only by terms of order
h. A Bethe-Salpeter-type approach would not pro-
duce them in the homogeneous equa. tions since the
BS kernels can be expressed in a form where the
explicit dependence on the elementary vertices
has disappeared.

To have a pole-generating mechanism, an inho-
mogeneous term must be added to the hornoge-
neous equations. The diagrams in Fig. 8 that do
not contain the pole in the leg "m" act as inhomo-
geneous terms to the homogeneous equations of
Fig. 9. The simplest terms are the elementary
vertices, but their form may not be general enough
to absorb renormalization effects. The inhomoge-
neous terms proposed are

Z, f' ™'(p, e}"'= Z, (-fgf~.i)[ &'."„(f,r, e)+~(~.g„- ~sr„.)+~'[(P —q). g„g+(p —q), g„.l),
Z, F», „(p, q) =Z, (fgf, , )(W„(P,q}r~ +z "[(P+q)„5ri (P q)arri]) ~

(3.5a)

(3.5b)

+ 02)
2'
Z3

+ WZ)

Here V'o' and W"' are the elementary vertices
[Eqs. (5.1)-(5.3)]. Figure 10 is the improved ver-
sion of Fig. 3(c). The z, z', z" terms introduced
above represent effects from the loop diagrams

—52, + Q(fF)

K
2 + 52,

l

+ fl p
', mon-ient. a

FIG. 8. The Schwinger-Dyson equations for the cubic
vertices.

FIG. 9. The homogeneous integral equations for the
residues.
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left out; they are of order h. In contra. st to the
elementary vertex I'„"~„",the function I",„'),'" is
no longer completely symmetric in all three ex-
ternal legs; it is only symmetric under (p, g, 0)—(q, X, l). The 1" vertices are of a rather general
form: linea, r and homogeneous in the momenta,
consistent with the symmetries of homogeneous
equations of Fig. 9. The constants Z„Z„z,z', z"
must be chosen such that the solution of the inho-
mogeneous equations is cutoff-independent.

The inhomogeneous equations proposed in Fig. 10
are only mentioned for later discussion. These
equations are very difficult to handle and they will
not be considered in a,ny more detail, Only the ho-
mogeneous equations will be studied further. First,
however, it is necessa, ry to check that the pres-
ence of a pole in the cubic vertices does not violate
gauge invariance, as this is expressed by the Ward
identities.

IV. CONSISTENCY WITH THE WARD IDENTITIES

Recently" Ward identities for the generating
functional of irreducible vertices have been de-
rived and used" to simplify the renormalization
procedure of spontaneously broken gauge theories.
In this section it is shown that the presence of a
pole in the cubic vertices can be consistent with
these identities. All quantities are unrenormalized
in this section.

The Ward identity for the vector self-energy
function simply states that it is transverse [Eq.
(2.1)], which has been taken into account through-
out. At this point it is perhaps useful to stress
that the longitudinal part of the vector-meson
propagator is unchanged by the interaction. This
follows from the form (2.1) for Z„„ together with

Eg. (2.6).
The Ward identity for the cubic vector vertex

can be written (p + q +r = 0)

—O'Lk. (P')1'."k (P, q, r) =Lk..„(q, P, r)(g. ~q' —q.qi)[4i+Eki(q')1+(&, ~, q)-(u, ~, )r (4.1)

The function L„(p') is closely related to the in-
verse complex ghost propagator:

G.,(P)-' =P'L.,(P') =p'[ f., + M-. ,(P')), (4.2)

where M„ is of order h. The function I.,', „can
be written as

,",m„(q, P, r) =-g"„gfkk~™k,~„(q, P, r),
(4.3)

where M,', „ is defined in Fig. 11. If theM terms
were zero in (4.2) and (4.3), then Eq. (4.1) would
have a form familiar from quantum electrodynam-
ics in the Landau gauge: The divergence of the
vertex function is the difference between two in-
verse propagators that are multiplied by the
charge matrix.

Now let p-0 in Eg. (4.1). The function L„(p')
presumably approaches a constant. For instance,
a pole in the L (p'k) at p' =0 would, by (4.2), im-
ply that the ghost particle is massive. But the
ghost particle is there to compensate for unphysi-
cal features of the longitudinal part of the vector-

Lk..„(q, o, -q) =-g'„gfk..-gtk..g",&(q')

+ q"q„ term. (4.4)

The q"q„ term does not contribute in (4.1). From
the requirement that the global symmetry shall
not be broken follows that t„ is an invariant ten-
sor in group space. If

tkam = fkam i (4 5)

then Eq. (4.1) becomes as P-0, in matrix notation
for the group indices,

meson propagator. Since the latter has a singular-
ity only at p' =0 [Eq. (2.2)], the ghost should re-
main massless (in spontaneously broken gauge the-
ories involving scalar mesons the ghost may be-
come massive, while simultaneously the longitu-
dinal part of the vector-meson propagator is sin-
gular at the ghost mass). So, by Eg. (4.2), L„(0)

Z3
'5„, where Z, is the wave -function renor mal-

ization constant of the ghost. Consider next
Lk, „(q, p, r) as p- 0. From E|l. (4.3) and Lorentz
invariance,

Z
I

+ 1

2

K, l(
g I(Otal jp

p, foal

FIG. 10. The inhomogeneous integral equations re-
placing Fig. 3(c).

FIG. 11. The function Mf ~& occurring in the %Yard

identity (4.1) (here the ghost propagator corresponds to
the complex ghost field).
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0

(4.6)

where (F,)b, = if„,, and where the symmetry of Z

in the group indices has been used. But the ma-
trix Z is just a multiple of the identity because of
the global symmetry, and

lim P'I"'„'~„(P,q, r) = 0.
P ~ 0

(4.7)

lim p" I'„"~„(p,q, r)w0,
)(b ~P

(4.8)

showing that the vertex must have a pole at p' =0,
which is a hint at the Goldstone phenomenon. The
pole in the vertex then causes, through the Schwin-
ger-Dyson equations, a pole in the vector self-en-
ergy, and it seems quite natural that in case of
broken symmetry the massless Yang-Mills theory
leads to massive vector particles. " The situation
is very similar to that of Refs. 3-5.

However, the present paper deals with the possi-
bility of unbroken global symmetry. Then it seems
at first sight that the behavior (4.7) is not possible,
since the vertex is supposed to have a pole at p'
=0. To see that no contradiction needs to arise,
consider the following form for the vertex function:

+two permutations

+I'"„"',„(p, q, r), (4.9)

where I'" does not contain the poles. One may
write

V„b(P, 4) =g, b R,'+Q, QbR,'+(P„QZ+Q, Pb)Rb

+P„P),R4 +(P„Qb, —Q„Pb)Rb, {4.10)

Equation (4.5) is true for the group SU(2), since
there is no other invariant tensor with three in-
dices than e„,. Low orders of perturbation theory
indicate that (4.5) is probably true for general
SU(n). In the Landau gauge, however, the i„
term is even zero to all orders of perturbation
theory (this observation was pointed out to the
author by F. Feinberg); also, the possibly nonper-
turbative pole parts of the vertex functions do not
contribute in this gauge, since they are purely
longitudinal. We shall assume Eq. (4.7) to be valid
as a consequence of global symmetry.

Conversely, if one is looking for a solution that
violates the global symmetry, then the commutator
in (4.6) is nonzero [there may also be additional
terms, since now Eq. (4.5) may be violated].
Hence in case of broken global symmetry

where

P =2(p+q), Q = 2(p —e). (4.11)

The Jt,"s are functions of the invariants Q' and
P Q only, since V„&,(P, q) is a factor of the resi-
due of the pole in r'=4, P'=0. Bose symmetry
requires

V.,(p, q) =-V,.(q, p),
or

R((Q'b P Q) =-Rb(Q'b -P 'Q) b

(4.13)
R,(Q, P Q) =R,(Q', -P Q) .

V. )(Pb e)-g'. ~P QR&(Q')+Q. QxP QR2(Q')

+ (P.Qb. + Q.P~)Rb(Q') (4 15)

Now observe that the requirement (4.7) is satisfied
by the ansatz (4.10)-(4.15). The vertex function
has poles in p', q', and ~ -, but not in p, q, and r.
It is the very global symmetry that saves the situ-
ation, since that allows for the possibility that the
pole parts of the vertex function are proportional
to the totally antisymmetric tensor f»„. Note fur-
thermore that the consequence of (4.1),

pq0 I „(plr)=0, (4.16)

implies only a relation between the pole parts of I"

and the regular part I'".
Consider next the ghost-ghost-vector vertex.

The Ward identity for this vertex is more compli-
cated than that for the cubic vector vertex. It is
unlikely that in general

1im r"I',", „(P, q, r ) = 0,
r 0

if this vertex has a pole at r' =0. Let us examine
{4.17) for an ansatz for the pole part of I". The
lowest-order form is

(4.17)

I,"b „(p, q, r) =iaaf b(P„+Q„7 )~~ (4.18)

(the Hermitian ghost is now under consideration;
r is the second Pauli matrix). The ansatz for the
exact vertex is

It follows that the A"' must vanish as P Q-O, and
it is convenient to write

R,'(Q'b P ~ Q) =P ~ QR;(Q', P ~ Q), i =I) 2, 4, 5.
(4.14)

All functions R, are now indifferent under a sign
change of P ~ Q, and they will become nontrivial
functions of Q ', if P ~ Q = 0. Then, as P- 0,
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I',",„„(P,q, r) =igf, „,W(P, q)„—,mr„r'
+ I"."~'.„(P,q, r),

the propagators and vertices used are given in
Fig. 7, where

V".~s,(P, q, r}=(q -P),g.s+(r-q). g»
IV(» q) =Rc(Q'c P @+«c(Q', P Q) (4 19b)

Again l"' is the regular part. The antisymmetry
in the fermion indices implies that

+ (P —r}sg.,
a bed( 0) 2 I z
as' s g U cccfccc(gay gss gsyga 5}

+fcc2ccc(ga sgys —gas gS y)

(5.1)

VV(P, q)ss =&(q, P)s~, (4.20}

R,(x, y) =R,(x, -y), R,'(x, y) = -R,(x, -y},
(4.21)

so that 9,' must vanish at P @=0. Therefore
write

W(P, q) =R,(q', P q)+~P qR, (q', P q),
(4.22)

where R, need not be zero at P Q = 0. Then, as
P-O,

w(P, q) -R,(q') + TP q R,(q'), (4.23)

which shows that, since Rc(Q') need not be zero,
the global symmetry does not necessarily imply
the behavior (4.17). It is found in the next section
that, in studying the homogeneous equations of
Fig. 9 in the Landau gauge, the function Rc(Q') de-
couples from the other invariant functions. The
question is open whether A, has to be zero or non-
zero.

The approximate equations of Figs. 9 and 10 are
not consistent with gauge invariance. Too many
diagrams have been left out. The inhomogeneous
equations are probably useless for practical cal-
culations. The assumption is that these equations
can give a correct answer to the question if the
zero-mass bound state exists or not. The situation
may be compared with that in quantum electrody-
namics. It is known" that the Bethe-Salpeter
equation in the ladder approximation gives correct
gauge-invariant results only in the nonrelativistic
limit. Higher order corrections have to be added
to the Bethe-Salpeter kernel to improve the gauge
invariance as well as the numerical results in the
relativistic domain. The qualitative question re-
garding the existence or nonexistence of bound
states is, however, correctly answered by the
Bethe-Salpeter equation in the ladder approxima-
tion.

+f~gccc( gas gys -ga)'gss)l ~ (5.2)

}V'„"(P,q), = (P+q}„5,+ '(P -—q)~, , (5.2)

and where G (P } is given in Eq. (2.4). This
propagator is supposed to be an approximation to
the renormalized exact one (the parameter ( is
then actually (~=Z, '(). The ghost propagator is
taken to be the elementary massless one. In gen-
eral, Lorentz inva, riance, invariance under the
global Lie group, and Fermi-Dirac symmetry
require the ghost propagator to be of the form
5„T„s&& (invariant function of P'). This invariant
function is approximated by I/P', since, as argued
in the previous section, the ghost remains mass-
less, The symmetry properties of the functions
V„~(P, q) and ~(P, q) have been given in the pre-
vious section, Eqs. (4.12) and (4.20). These
forms for V, ), and S'are consistent with charge
conjugation invariance.

The contribution of the diagram involving the
elementary quartic vertex turns out to be zero.
With the help of the relations

fPmq fqn P C~mn ~

I'"„'i s fc, = cg fc, ( g, yE„c g„„gq„-), (5.5)

its contribution to V„q(P, q) can be written in the
form

ccg Ri — c ([G(l+P) V(l+P, —1+P)G(-1+P)j,z

[x-).J j,
in obvious matrix notation; P and Q are defined in
Eq. (4.11). The integrand here is independent of

Since there is no antisymmetric tensor that
can be formed with only one vector P available,
the expression (5.6) equals zero. The fact that
this diagram vanishes eliminates a possible con-
stant term (as a function of Q} from the integral
equations, and this makes it possible later to ob-
tain simple power-type asymptotic solutions for

V. THE HOMOGENEOUS WTEGRAL EQUATIONS

In this section the homogeneous integral equa-
tions of Fig. 9 will be written down and a pre-
liminary discussion of them is given. For clarity,

The integral equations are coupled equations in-
volving seven functions R,(Q, P 'Q) of two vari-
ables. Choosing the Landau gauge (( =~) simpli-
fies things greatly. The functions A, —R, become
irrelevant since they describe the longitudinal
part of V„q(P, q}. The function R, satisfies its
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Lk.R2P~ $
R f4 rnn—

2P
— O-Z,

Q, (T) ll

2
2P

I'IG. 12. The approximate equation for fthm.

+ K„(Q', I ')R,(I ')
'" dl' l'

(5.Va)

+ K„(Q', I'; m' )R „(I'), (5.'Ib}

own integral equation and R, and R, satisfy two

coupled equations. It is sufficient, for the im-
mediate point of interest [namely, the equation
for the residue of the pole in Z (Fig. 12)J to study

these equations in the limit P -0. This eliminates
the variable P' Q in the functions R;. After a Wick
rotation, which is presumably valid for P'& 0,
the metric is Euclidean, and the angular integra-
tions can be performed in the limit P-0. The
result is the following set of integral equations:

"dl' l'
R, (Q')=X .. . , K„(Q', I';m')R, (l')

p FP2 +

Then the explicit Q dependence in the kernels is
only through m'/Q', and Q -~ mea. ns setting
p'H = 0 in the kernels. The m = 0 version of R„, K77,
and K« is shown in (AB), (A10), and (A12). Con-
sider first the equation for R,. For Q'»yn',
(5.8) becomes, in the t language,

'dt 3 "dt3 1
X 'R (Q'}- ——tR (tQ ) + ———R (tQ') .6 g 4 6 6

(5.9)

Only the neighborhood of (=0 includes nonasymp-
totic values of R,. Away from 1=0 R, may be
replaced by its asymptotic form R,". Suppose
R,{Q')=R (Q'} for Q &M', where M' is some
constant »m'. In t language, the region 0 ~ Q'
~ M' corresponds to 0 & f ~ M'/Q'. If the function

R, is bounded in this region, then the contribution
of this region to the integral vanishes Itke 1/Q',
as Q'-~. Assuming that this is the case and that
R does not vanish as fast as 1/Q'. (5.9) is re-
placed by

g 'R;*(Q') = ——tR;*(fQ'}+ ———R (tQ') .
' dt 3 , ~ dt 3 1

0 1

R (Q'}=X ~ K~(Q, I;m )R~(I ),
0

(5.8}
(5.10)

where X is defined in Eq. (2.15}. Some details are
given in Appendix A. The kernels K» and E,y

[Eqs. (A5) and (A6)] are relatively simple, since
they correspond to the exchange of a massless
particle. The kernels K„, K», and K«[Eqs. (A'I},

(A9), and (All)J are messy; they correspond to
the exchange of a massive particle.

The integral equations (5.7) and (5.8) cannot be
solved exactly. The existence of solutions is
determined by the domain of eigenvalue A. '. If

this domain does not include the positive real
axis, then no nontrivial solution exists. Let us
look at the equations for large Q'. This involves
the behavior of the functions K,, i„defined in

(A1) and {A3), that appear linearly in the kernels
K„, K». An expansion in 1/Q' makes no sense
under the integral, since l' may always be much

larger than Q . Therefore it is useful first to
make a transformation of variables I'-f =I'/Q'

The solutions of this equation are simple powers.
The ansatz R6 (Q') = m(Q /m')" reproduces itself
upon integration, provided that

3 1 -1&Bey &1 .

The inequalities in (5.11}are convergence condi-
tions for the integrals in (5.10). Since y may be
chosen real, or purely imaginary, the domain of
eigenvalues of (5.10) includes the entire positive
real axis in the A. plane. For y =0 there are still
two solutions: a constant and lnQ'. Note that if X

turned out to be negative, then the only solution
of (5.10) would be R =0.

Consider next what happens as Q'-0. Since

K« is symmetric„ its behavior as Q -0 is ob-
tained from (A14}by interchanging l and Q. Thus,
for Q'-0

l2 2+$2 6 (5.12)

In order that the integral in Eq. (5.8}converges
at the lower limit, the function R, must vanish
at Q' =0 [cf. (A14)J. The existence of a nontrivial
solution then would imply that the first integral in

(5.12) converges but vanishes, while the second
integral in (5.12) also converges, so that

R,(Q'}—const x Q', Q'-0 .

However, the fact that the behavior at the origin,
necessary for convergence, is not an automatic
consequence of the integral equation might in-
dicate that no nontrivial solution exists. Sum-
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marizing: Equation (5.8) might have solutions for
any X &0 whose behavior at the origin is given by

(5.13) and whose asymptotic behavior is given by

y2 p—R,(q')-b, —, +6
PPl m'

y = (1 —g~)' ' (5.14)

One expects that in a more complete asymptotic
expansion, each power in (5.14} is accompanied
by a descending series in Q', possibly involving
logarithms.

The coupled equations for A, and A, are more
interesting. The asymptotic behavior of possible
solutions is obtained from (5.7) and Eqs. (A8) and
(A10) in the same way as for R,:

1 dt( 25t2 t3 t2 t3'R" (q'} =. —
I I+ ——R" (fq')+ ——+ —R"(tq')

t L 12 4 ' 6 12

25 1 „ t 2 1 1
+ 1+, R;s(fq')+ ——+ R", (tq')

6 12t (5.15a)

dt t t~-'R; (q') = — ——+-t, 4 8
R" (tq') + —R "(tq')1 2 7

"dt 1 1 1
+ — —+ z- (tq')+ —a "(tq'}

t „4t Bt2 ' 2t (5.15b)

The ansatz R (q') =m '&;(q'/m') 'l'", i =1, I,
leads to the equation

a = (&- a')-'+~(~- a')-' —~(~ —e2)-'

The eigenvectors corresponding to the asymp-
totically fastest decreasing solution [-(q') "

J

makes full use of the benefits of the ghost: Both
and &, are comparable in magnitude . In con-

trast, for the slower decreasing solution [-(q') J

the component r, is negligible compared to r„as
x -0.

The behavior for small Q' follows from (A13)
and (5. '7), since K» and K» are of the form q '
x(symmetric function of l' and q'}. By inspection
one finds that

(5.16} R, (q') -A, R,(q') -Rq', q' -0, (5.20}
The condition for convergence of the integrals in
(5.15) is given by

1 1—;&Re5&-,. (5.1'l }

The eigenvalue A.
' is related to the exponent 5 by

the equation

P(5') = „-,5'+, 5',

isa a~ 5 + iz 5

Of special interest are small values of A. . For
small X there are in the range (5.1'l) two possibili-
ties for 5: 5=+( —e}, e small and positive. Only
the plus sign in (5.18) turns out to be consistent
with a small A. , and expressing ~ as a function of
A. gives e =X+ 0(A.'). The two eigenvectors are
given by

@2 -1+ X

m R, (q') - a r + a„
m m'

-y+ k

mR, (q') —--,'a —, + 0(z) .

{5.21a)

{5.21b)

In conclusion, it can be safely assumed that the
homogeneous integral equations of Fig. 9 have
nontrivial solutions for any positive X.

VI. THE EQUATION FOR THE MASS

where A and B are constants. In contrast to the
situation with A„here the low-Q' behavior sug-
gested by the integral equations is consistent with
the convergence conditions at L'--0 that follow
from (A13). Summarizing: It is very likely that
Eq. (5.7) has solutions for any A. &0, whose low
momentum behavior is given by (5.20) and whose
asymptotic behavior is, for A. -O, given by

(5.19)

Appealing to the renormalizability of the Green's
functions of the theory (not merely of the S ma-
trix), one may suppose a relation between &~' de-
fined in Eq. (3.3} and m' of the form
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2 ~ Rf(g 2) (6.1) (m' «M' «&A'), leads to

where f is some function of the renormalized cou-
pling constant g, independent of the cutoff. It will
be assumed that f(g') approaches some real num-
ber as g-0, provided of course that massive so-
lutions exist in that limit. With some unconven-
tional way of fixing the renormalization constants
one could presumably arrange for f=1.

Assuming that the coupling of the bound state
to more than two particles can be neglected, or
alternatively, ignoring 0(k') terms, comparison
of the pole terms in Fig. 6(a} leads to the equation
for &~ given in Fig. 12. The renormalization con-
stants may again be replaced by one, for small
g'k. Evaluation of the diagrams in Fig. 12 in the
Landau gauge and for P -0 leads to the relation

d)2 )2 2

m =f'~9. —'I'R (I')+ —,'I'R (I'))2 2 )2 4 1 4 7

—R,(l') (6.2)

where the integra. ls have again been converted to
the Euclidean form and where Eq. (6.1) has been
used. Since the functions R, (f ) have to be real by
time-reversal. invariance, &„ is real and hence f
is positive. In Eq. (6.2) it is assumed that xs is
positive. If ~ is negative, then f '~' should be re-
placed by f' '. -

From the expressions for the asymptotic be-
havior of the solutions found in the preceding sec-
tion, (5.14) and (5.21), it follows that the integral
in (6.2) needs a regularization at high momenta.
The integral will be cut off in a simpleminded way
at l'=A', where A' is very much larger than m'.
Since the asymptotic region dominates, the func-
tions R,.(I ) may be approximated by their asymp-
totic form. If the asymptotic forms (5.14) and
(5.21) are inserted into Eq. (6.2), then a strong
cutoff dependence emerges. The a„b, terms
lead to integrals that vary as (A')' and (A')' '/',
respectively, with the cutoff. Such a strong cut-
off dependence is not expected for small coupling
constants. If the homogeneous equations of Fig. 9
are to make any sense with regard to the bound-
state problem, then there should be solutions for
which the a, and 6, terms are absent. This prob-
ably means that there is a. degeneracy: a„b, and

a, 6 type solutions are separately possible. The
integral equations (5. 1) and (5.8}are sufficiently
singular and complicated, especia, lly because of
the presence of the massless ghost field, to allow
for this possibility. The next section contains
more discussion on this point.

Assuming that solutions exist without the a„b,
terms in the asymptotic behavior, insertion of the
forms (5.14) and (5.21) into Eq. (6.2), while re-
placing the lower limit by some mass M~

(A'/m')' —(M'/n~')' (A'/m')' —1

for small k. Here a=a (~~6), and the contribution
of A6 has been left out since it is cutoff-indepen-
dent in the limit A- ~. The positive constant e is
of course undetermined by the homogeneous equa-
tions. In Eq. (6.3) only the first term in an epan-
sion in X should be kept, since this mas the guiding
idea in making all approximations. Then Eq. (6.3}
may be compared with the $

' = 0 version of (2.16).

VII. COMMENTS

The author does not mant to exclude the possibil-
ity that the results obtained so far make sense,
but the situation at this point is quite unsatisfac-
tory, for reasons to be discussed below.

The fact that the homogeneous P' =0 integral
equations have solutions does not necessarily
imply that the solutions of the inhomogeneous
equations (Fig. 10) have a pole at P' =0. This
would be the case if the integral operators would

obey the rules of ordinary matrix theory, that is,
if the kernels would correspond to compact
(completely continuous), Fredholm- or Hilbert-
Schmidt-type operators. They are obviously not,
since the spectrum is continuous. It is very like-
ly that the P'c 0 homogeneous equations corre-
sponding to Fig. 10 also have a continuous spec-
trum, so that for any A. &0 the P' W 0 homogeneous
equations have solutions. Under these circum-
stances there is no reason why the solutions of
the inhomogeneous equations should have a, pole.
Apparently, the pole has to be inserted by hand.
One simply takes a particular solution of the in-
homogeneous equation and adds to it a solution
of the homogeneous equation, divided by P . One
cannot divide by (P')", since this would violate
the Ward identities. This does not look very con-
vincing. The whole idea of a pole-generating
mechanism, such as suggested in Sec. II, be-
comes irrelevant. However, there seems to be
no fundamental objection against this possibility
as long as the Schwinger-Dyson equations and the
Ward identities are satisfied. These remarks
apply also to the models of Refs. 4 and 5 (but not
to that of Ref. 3). One may also compare with
Ref. 20.

A related question concerns the presence of the
cutoff. Since a cutoff is needed in the equation
for the mass, one cannot exclude its presence
from the homogeneous equations, although it is
not needed there. Now it could well be that, in a
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certain sense, the integral equations of the type
encountered here are very unstable against the
introduction of a cutoff. It may be that there is a
minimum value of the coupling constant: For
A. & A. - the homogeneous equations with cutoff have
no solution and the solutions of the inhomogeneous
equations do not have poles; for A. & A. ,„ the homo-
geneous equations with cutoff have solutions which
are arbitrarily close to the solutions of the equa-
tions with no cutoff, the spectrum is dense ISA.
=O((inA') ')], and the inhomogeneous equations
generate poles. Appendix 8 given a simple exam-
ple of these phenomena. Typically A, is so large
(of the order 1) that the equations cannot be
trusted any more. This type of behavior can be
expected in theories with dimensionless coupling
constants. The A. effect does not seem to de-
pend on the type of regularization used. The
sharp cutoff, the Pauli-Villars suppression factor
and the analytical regularization procedure (closely
related to the dimensional continuation method}
all yield the same A.

Consider Eq. (5.8} for R, and suppose the upper
limit of the integral is replaced by A', where A'

is very large. Both Q' and l' are restricted to be
smaller than A'. The solutions of the cutoff equa-
tions will be arbitrarily close to the solutions of
the equations without cutoff, if one may choose A

arbitrarily large. In particular the asymptotic
behavior (5.14) will hold, for m'«Q' «A'. Equa-
tion (5.10) determines again the asymptotic behav-
ior, with the upper limit replaced by A'/Qm. It
can be rewritten in the form

A~
g~ 2

Rs'(Q') =Z, K66(Q', I'm=0)R,*'(I') .
0

(7.1)

Now the m=0 kernels may be considered as some
sort of Green's functions for differential operators
of the Euler type. They are polynomials in I /Q'
and Q'/I', multiplied by step functions, and they
satisfy equations of the form

II(n, -D}R(Q', I'; 0) =ps, D" I'5(Q' —I'),
(7.2)

where D=Q 8/SQ', the n, are integers, and the
a„are numerical constants. Thus the asymptotic
forms R &' are solutions of differential equations,
which are unaffected by the presence of the cut-
off. The integral equation (7.1) puts conditions on
those solutions. The general solution to the differ-
ential equation corresponding to (V.l) is given by
(5.14}. If Ae~, then insertion of (5.14) into (7.1)
leads to the condition

b, +b =0, C=' 1-y -1+y ' m' (7.3)

Now, if for A = there is degeneracy, so thai b,
and b are unrelated, then with A + ~ this degen-
eracy is removed by the condition (7.3). For
small X, y= 1 —X/3, and Eq. (7.3) becomes

b = XC-'""'b . (7.4)

It follows that the b term dominates for m'«Q'
«A', while for Q'= A' the b+ term is still smaller
than the b term by a factor A.. These arguments
are not rigorous, and one must be careful espe-
cially for small A. (y near 1) since O(Q ') terms
coming from the neighborhood of t =0 in (5.9) have
been neglected, where Q' ~ A'. So small coupling
constants need large cutoffs.

If, for A=, there is no degeneracy, then one
expects that both 5, and 5 in (7.3) are certain
nonzero single valued functions of y, and Eq. (7.3)
has no solution for real y (that is, for X& —,'): For
large enough C, the b, term always dominates.
For A, &-,' there are real oscillating solutions, be-
having like cosI[ylin(Q /m')+ P], and (7.3) may
be satisfied.

A similar discussion can be given for the equa-
tions for R, and R„expect that there are more
(four} equations of the type (7.3) that have to be
satisfied. For small A., one must now also invoke
the power solutions with 5 in (5.16) near —,

' and —,',
which may be present; in case of a cutoff. The re-
sults are similar to (7.4): The lowest power (5
near —2) dominates and the higher powers are
suppressed by A-dependent factors that vanish as
A-~ as well as by a factor A, . Again this is only
possible if there is degeneracy for the A=~ case.
If there is no degeneracy, then 5 has to be purely
imaginary. From Eq. (5.18) it can be seen that
this is possible for A. a0.2. In the previous sec-
tion it was already assumed that there is degen-
eracy, so that the results obtained there are
stable against the introduction of the cutoff.

It appears that if there is degeneracy for A=~,
then there is still a continuous spectrum for finite
A. This is compatible with the fact that the in-
tegral operators are not of the Hilbert-Schmidt
type even in case of the cutoff. The trace of K K
diverges at ths origin; due to the masslessness of
the ghost particle. Now it is not only the P' =0
homogeneous equation that is relevant for the
question if there is a bound state at P' = Q. More
important is the behavior of the kernels in the
neighborhood of P' =0. For nonzero P' there is
an effective mass in the ghost particle propa, ga-
tors, and the integral operator {having discrete
indices acting on the various invariant functions
as well as continuous ones) is of the Hilbert-
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Schmidt type, if A is finite. A theorem than tells
us that the spectrum is discrete. As P'-0 it
might go over smoothly into a continuous one, but
the example of Appendix B shows that this is not
necessarily the case. Again A. may have to exceed
a minimum value in order to achieve a continuous
transition. The example in the appendix may be
misleading in that the ma. ss of the exchanged par-
ticle is zero. Also, the coupled integral equations
involving massive vector particles coupled among
themselves and to massless scalar fermions are
much richer in structure. Last but not least, the
simpleminded approximations made in arriving
at these equations may be reason for the possible
sensitivity to the presence or absence of the cut-
off.

The occurrence of a minimum (or maximum) a
has been discovered earlier by Goldstein" within
the context of the Bethe-Salpeter equation in the
ladder approximation for the scattering of two
spinor particles. The so-called Goldstein equa-
tions has the same qualitative properties as the
equation discussed in Appendix B. In the cutoff
case, Goldstein only accepted the value A. = 4, but
it turned out later" that exactly at this value of A.

there is no solution. This is what is also found
in Appendix B, but the reasons for accepting or
rejecting solutions adopted there are different
from the ones used in the references quoted. Sub-
sequently Mandelstam" formulated criteria that
Bethe-Salpeter amplitudes must satisfy in order
that they have a physical interpretation. All the
solutions found by Goldstone are to be rejected
according to these criteria. It is not clear that
these criteria are applicable to the present case,
since the zero-mass bound state particle decou-
ples from the physical state vector space.

Finally, the author is of the opinion that most
of the doubts raised here, implicitly, with re-
gard to the effect that the cutoff may have, do
also apply to the models of Refs. 4, 5, and j.8.
Although a cutoff is not needed in these models,
its presence should not do harm either.

VIII. FINAL REMARKS

There is evidence that symmetry-preserving
solutions may exist for the pure Yang-Mills the-
ory. The salient points are that the %ard identi-
ties admit a pole in the cubic vector vertex func-
tions; the approximate homogeneous integral
equations for the residue of the pole in the vertex
function have asymptotic solutions.

It has been conjectured' that there is a minimum
value for the coupling constant, in order that a
vector -meson mass may be generated dynamically.
A possible hint in this direction is found in the
mathematical example of Appendix B, although in
this paper this hint is assumed not to be relevant.
More work has to be done in order that a convinc-
ing picture may result.

The nonperturbative investigations are interest-
ing, but one seems to be far from any practical
calculation. The quasiparticle approach'4 could
be more successful: The bound state one is look-
ing for is introduced as an elementary field, but
one requires its wave-function renormalization
constant to vanish, order by order in perturbation
theory.
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APPENDIX A: THE INTEGRAL KERNELS

The angular integrations are 2m' times the an-
gular average. The basic angular average is

1
ff, (Q', l';m') =

2 ' sin'6]
w 0

m'+ ~'+ @' —2~@cos

fm2 + $2 +QR [(mR + $2 +Q2)2 4)2 Q2]ll2],
1

2E2 Q2 (A1)

=Q 28(Q —l)+l 28(l —Q), m=0. (A2)

A related function is
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(Q2 12.m2) 1
(f —Q}2[m2+(1 -Q}2]

=m-'[K, (Q', 1';0)-K,(Q', &';m')J

=[-Q-'8(Q —l}+l '8(l —Q)](l' —Q') ', m=0.

The complete kernels are continuous at l=Q, even for m=0, and it is appropriate to set 8(0) = 2~. For the
kernels one finds

1 b 1 b 1 1 a
K (a b) =8(a-b) ———+ —— +8(b —a) ——+ ——

17 6 a 12a~ 6 12b
1b 1b2 1a 1a'

K (a b) =8(a-b) ———+ —— +8(b -a) ———+ ——
71 4a Sa2 4b Bb

K»(a, b;m2) =a ' {8(a'+b') —22(a2b+b2a)+m'[18(a2+b')+31ab]+m48(a+b} -m'2 1

+[-7(a~ + b~) + 32(a'b + b'a) + 46a'b2 + m '[- 29(a2 + b') —21(a'b + b2a) J

+ m'[- 15(a'+ b') —26ab]+ m' 3(a+ b) + m2) K,(a, b; m')

+ [—a2+ b4 —10(a'b —b'a)](a —b) 12(a, b; m')),

b 25 b2 1 b3 25 a 1a'
K„(a,b;0) =8(a —b) —+ ————— +8(b —a} 1+ —————

a 12 a~ 4a' 12b 4b

K„(a, b;m') = a '2 [-2(a+b) —m2+[3(a2+b')+2ab+ m'3(a+b)+m2]K2(a, b;m')

-(a' —b')(a b)1 (a b—m')j

1b~ 1a
K»(a, b; 0) = 8(a b) ——,+—8(b —a) ——, (A10)

K22 (a, b; m 2) = —g + 2 (a + b + m 2) K2(a, b; m 2) —g (a —b )2 12(a, b; m 2),

3 b 3 aK (a b 0)=8(a-b) ——+8(b —a) ——
66 4 a 4 b'

where a=@', b=l'. For /-0, Q fixed

(A12)

QR

m'+y' m'+q"
1 ma+Q' l~

77 4 Q2 (
2 Q2)2 1

1 m2 1 Q~ 1 Q4 t'
4 m'+Q' 2 m'+Q' 2 (m'+Q')' m'+Q' ' (A14)

The expressions in (A13) and (A14) can be used
to obtain the behavior for Q -0, uniform in l. For
l -~, Q fixed

f

F(Q', (P Q)', P')

d't 32

(2&)' V'+(l —Q)'

1 Q2
77 2 )2 (A15)

F(l', (l ~ P); P )
[v' + (1+P)'][a' + (i —P)'] '

1 1 Q2 m~+@2
4 2 m'+Q'

APPENDIX B; A MATHEMATICAL EXAMPLE

Suppose an invariant function occurring in a
vertex function is a solution of the equation

where the metric is Euclidean. The constant Z,
is a vertex renormalization constant. %e shall
feel free to give it any value that makes the solu-
tion of (81) cutoff-independent. The interest is in
a possible pole of F at P'=0. To solve (Bl}, an
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expansion in spherical harmonics appropriate to
four dimensions may be tried:

nq', (P Q)', P') = [v'+(P+Q)'][v'+ (P- Q)']

x Q &.(()*;&*)U. P2),
n even

(82)

(w' ~ () ())'] '= -E&.(()';)*;w*)(r. I2),n=0

(82}

where the U„are Tchebyscheff polynomials of the
second kind. Performing the angular integrations
one finds the set of equations

(v' + P' +Q')'G 2
—P'Q'(G 2 + G, )

Then (84a), with G, =0, becomes an equation for
F„which is expected to make sense near &'=0.
For p, =0, this equation is explicitly solvable in
terms of hypergeometric functions, since it is
then equivalent to a second-order differential
equation. To simplify the example to the bone,
the replacement

(v' i P'+ q')' —P'q' (v'+ P' + q')' (86)

will be made. The resulting equations are more
transparent, while the qualitative features that
this appendix wants to emphasize are retained.
Introducing dimensionless variables Q' =m, 'x,
I'=m, 'y, s =(v'+P'}/m, ', F,(q', P') = y(x, s}, and
using Eq. (A2}, the proposed equation for F, takes
the form

@(x,s) =Z, +X — 9(x —y) —+ e(y —x)
dy y y

0 y s+y — x

= Z I+ ~ d I.'~&060
~ 84a

0

(v'+P'+Q'}'G„—P'Q'(G„, +2G„+G„„)
x P(y, s), (av)

dl'l'Z„G„. 84b)

In Eq. (84b), 22 =2, 4, . . . . One may assume solu-
tions such that only G, has the pole at I =0. Thus
one is led to consider Eq. (84a) with G, =0. Re-
markable enough it is consistent with (84) that
G, -=0, but the resulting series may not converge.
To regain the similarity with the equations of the
main text introduce

P (Q'P') =[(" P' Q')'-P'Q']G. (q', P').
(85)

If v40, then it is natural to take m, = v; for v=0,
m, is some reference mass. So for v c0, s ~ 1;
for v=0, s ~ 0. Consider first the homogeneous
equation obtained by setting Z, = 0. Differentiation
of (87) shows that the solutions of (87}are to be
found among the solutions of the differential equa-
tion

x(xP)" +AM)()) =0, (88)

where 2()(x}=(x/(s+x))'. The solutions of (BB) are
for this 2()(x) simple powers xp=(s +x), (8+x)' ",
with X = a(1 —a). The real solutions of (BV) with

Z, =0 are

„'812 —e/~
s &0: ())=ax '(8+x)"' 1+ — — 1+—

s s

=)« '( )"') (1+— 1

0(/&41 (89a.)

(89b)

=cx '(8+x)"'sin 2~P~ ln 1+—
s

(}. y x-)/2(a x8/2 + a x —8/2) (}( p (—

= x-"'(I, + I, lnx),

=x "'fc, cos[-', [P ( lnx]+c, sin[-,') P ( Inx]),

(89c)

(81Oa)

(810b)

(81Oc)

where P = (I -4X))/' and where the a' s, I)'s, and
c's are real. For s &0 there is only one solution;
for s =0 there are two independent solutions. In
both cases X may be any positive real number.
The inhomogeneous equation (87) (Z, 220) has no
solution for nonzero X. The differential equation
is unchanged, and there is no superposition of

its two independent solutions that satisfies (87).
The trouble comes from the infinite range of the
integral: (87) suggests that 4)-Z( as x- ~, but
this is incompatible with the convergence condi-
tion at y=~.

Returning to the homogeneous equation, suppose
the upper limit in (87) is replaced by a large
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number C, and that x, y - C. Since the differential
equation is unchanged as well as the boundary
condition at the origin, the possible solutions are
again to be found among the functions listed in
(89) and (810). Direct substitution of these func-
tions in (87) (Z, =0) leads to conditions [such as
(812}below] that restrict X again to be positive.
For positive A, Q —0 as x-~, and the new condi-
tion may be phrased as

e(y) =o.
c y s+y

(811)

This condition depends only on C/s, which is due

to the simplification (86). For large enough C,

Equation (811) is a nonlocal condition that states
that those solutions of the noncutoff equation that
make the integral vanish are also solutions of the
cutoff equation. There are no more solutions as
can be checked by direct substitution. For s =0,
Eq. (811}can always be satisfied by a suitable
choice of the constants a, , b, „c,, The spec-
trum is again given by 0 & A. & ~. The integral op-
erator is not of the Hilbert-Schmidt type, since
trace (K*K}diverges at the origin. For s &0, the
integral opera, tor is of the Hilbert-Schmidt type
and one expects a discrete spectrum. In fact
(811) determines the eigenvalues X '. Consider
first the case X w &. Inserting (89a), which in-
cludes essentially also (89c) into (811), leads to
the condition

8/a —8/a
(1 P) (1

— —(1 —l3) 1 — =0.s s

Eq. (812) has no solution if P is real. For X &4 t)

is purely imaginary, and (812) may be rewritten
in the form

tan, -'IPIln 1 +-
L s ! (815}

while Q has to satisfy the boundary conditions, for
s &0,

Q-const, x-0; Q-constx ', x-~. (815)

The solution that satisfies the bounda. ry condition
at the origin is

which shows that there is a dense set of eigen-
values for X &-,', with interspacing, in terms of

P, of the order 2m!lnC. The point P =0, A. =& does
not belong to the spectrum as can be seen by in-
serting (89b) into (811). Suppose s = 1 and we let
C increase. Then, if we follow a. particular ~tl ~,

this
~ j3 ( decreases. This phenomenon is familiar

from the quantization procedure of a field enclosed
in a box. There one has 4'„= 2m&,/I. , and as I « ~,
0„-0. Of course one lets n vary with I., such
that k„approaches a limit as I -~. So there is
no reason to reject solutions of (813) because
a particular P is strongly cutoff dependent. As
C -~, the spectrum becomes continuous again,
but there is a gap 0 & A. - —,. To see what happens
if the large momenta are suppressed, rather than
left out, consider a Pauli-Villars-type factor
C/(C+x) inserted into the integral in (87). Then
w(x} in (88) becomes

ur(x) = x " C
s+x C+x'

(816)

where I" is the standard hypergeometric function.
For large C, the boundary condition at infinity
requires that

(2C) g F(1 —aP) F( kP2)+

r(-,'--'.p) r(1+-',p)
(817)

Aga, in, this equa. tion has no solution for 0 &P &1

(0 & X & —,'). Finally, suppose we insert a factor
(s +x) ' under the integral in (87). Small positive
& corresponds to a large cutoff. In the differential
equation now w(x) = x'/(s + x)"', while the boundary
conditions are still given by (815). The solution
that satisfies the boundary condition at infinity is

p = x-'(~ + x)"'Z, ,(2~"'~-'(s +x)-""), (816)

where J is the standard Bessel function. The
boundary condition at the origin now requires that
the Bessel function vanishes at x=0. For small

Z, —p — P y) =0.
c y s+y (820)

For the other two regularization methods the
boundary condition at infinity is now Q -Z„x-~.
From now on the first method will be used. The
combination of (89a,) and (820) gives an equation
for the factor a = a(s) that determines the scale of

For large C this equation can be written

r, the first nontrivial zero of J,-I occurs at

e 8 '2 =6 +(1 65575 )6 l3

+O(e"')

so that the minimum value of A. is again close to —,.
Now let us look again at the inhomogeneous equa-

tion (87). With the crude cutoff, it is satisfied by
the functions in (89) and (810), provided that
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a{s) '=-'Z 'C "'[(I+P)s s 'C8~'

- (I -P)""C '" ]

It can be seen that for 0 & P & 1 there is no po1.e in
a(s), either at s =1, or at s =0. We can make
a(s) cutoff-independent by choosing Z,
=A-,'(1+/)C ""s~', where A is some constant.
Then a(s) =Ass ', and

y(x, s) =Ax '(s+x)"'[(s+x) s ' —ss(s+x) s~'].

For }1= i ( P ~, the form (89c) must be used, which
means a '-2ic ' in (821). For v=0, s ~ 0, and
(821) shows that there is still no pole possible at
s =0. One finds the same result if the simplifica-
tion (86) is not made. For v40, one may choose
C and P such that (813) is satisfied for s =1. Then
(821) shows that there is a pole at s = 1. With a

suitable choice for Z„Z, =+ —,'A(1+ ~~3~')"'C
where the sign is the sign of cos[-,' ((3~ lnC], the
solution can be written as

sin,'-
~ P ~

ln 1+—
$(x& s)=Ax (s +x) .

pi
Equation (823) shows clearly the pole at P'
= v'(s —1) =0, as well as at other values of P'. The
spacelike poles at large positive I" are not due
to the replacement (86). Presumably they are not
present in the solutions of Eq. (Bl). The pole at
P' = 0 has of course been inserted by hand, by
satisfying (813) at s =1. It could have been done
more directly by taking a solution of (87), without
cutoff and with Z, =0, and by dividing by &'. The
point is that with cutoff one cannot get the pole if
~ ~-,', and for ~ & —,', there is still no pole possible
in the p=0 case.
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