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The Bethe-Salpeter equation is used in conjunction with the Froissart bound (assumed true
off the mass shell) to put restrictions on two-photon exchange. Implications are discussed.

I. INTRODUCTION

We wish to study here the Regge asymptotic be-
havior of the sum of all two-photon reducible Feyn-
man diagrams in massive quantum electrodynam-
ics. This is motivated by the "tower" graph cal-
culations of Frolov, Gribov, and Lipatov' and also
Cheng and Wu. ' This paper is an extension of pre-
vious work on m-m scatteting. ' It is found in Refs.
1 and 2 that the sum of all "tower" graphs violates
the Froissart bound by a power for all nonzero val-
ues of the coupling constant n. We ask here if it
is likely that the sum of all crossed-channel, two-
photon reducible graphs violates the Froissart
bound in this manner. We feel that this question
is important because of the following:

1. Massive quantum electrodynamics is a likely
candidate for a quark-gluon field theory.

2. The fact that the tower graphs violate the
Froissart bound by a power is essential to obtain

Froissart-bound saturation in the Cheng-Wu eiko-
nal model. '

3. If it seems probable or desirable that the full
two-photon exchange amplitude does not violate the
Froissart bound by a power, then a search for two-
photon reducible graphs which cancel the leading
behavior of the tower graphs is in order.

We begin with the Bethe-Salpeter equations for
elastic y-y, e-y, and e-e scattering. We then re-
write these equations in a particular way and make
an assumption about the off-mass-shell behavior
of the full amplitudes. We also make an assump-
tion about certain moments of the Bethe-Salpeter
(BS) equation. We find that these assumptions rule
out the possibility that the sum of all two-photon
reducible graphs violates the Froissart bound by a
power. We first study y-y scattering which is the
simplest case and then work our way up to y-e and
e-e scattering.

II. p-y SCATTERING

The invariant amplitudes for y-y scattering we write as

r(q, P, P', X„X„X„g)= T"" '(q, P, P')e„(P+ ,'q, X,)e„(P —,'q, q)~„-(P'- —,'q, X,—)e,(P'+ —,'q, X,),
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where A.
y A@ are the polarization states of the

external photons (see Fig. 1). We use the metric
X2,P-q/2 X+, P + q/2

A a=a,a, -A B. (2 2)

Our normalization is such that for spin-nonf lip
scattering the optical theorem reads

lm T(0, P, P ') = 2
l
K l v s g „,,

where lKl is the c.m. momentum of one photon.
We choose our polarization vectors to be real on

the mass shell and to satisfy

Q e„(K,X,)e„(K,X,) =-g„,+

(2 2)

(2.4)

It follows from gauge invariance, at least to any
finite order in perturbation theory, that~

(P+ 'q) T"""-(q P P')=(P--'q) T""'"'(q P P')
=(P' —,'-q) T""'-~(q, P, P')
=(P'+-'q) T"""(qP P')
=0, (2.5)

x~, P+q&2 X~, P —q/2

FIG. 1. Definition of the arguments of T(q, P, P';
A(, A2, A3, AJ.

for all q, I', and P'. %'e assume that this result
is correct for the true solution to the field equa-
tions. Let us now introduce the full two-photon ir-
reducible kernel through the Bethe-Salpeter equa-
tion' for this process:

T((((:(((8(q P P() f(((:0(&(q P PI) „f~":&'(q,P, K )T":"'(q, K', P )D»-(K' kq)D» (K-'+kq)
2w)

(2.5)

Because the full amplitudes T are transverse as
in (2.5}, we are free to choose the full photon prop-
agator D~~ transverse:

(2.'7)

The photon p. opagator appearing above is renor-
malized to behave as

l ApK~
~2 ~ 2 gpu g2

near the physical photon mass m&. Making the re-
placement (2.7} in (2.6) yields

T ((((;aa(q P PI) f(( uR 6(q P PI) f ((((;h(((q p K()T k 6;cB(q Kz Pt)i d'E' ' n

(K' ——,'q)&, (K'- ~q)~ (K'+ ',q), (K'+-,'q)(;.'-
Axx'+ (K( & )2 866'+ (KI + & )2

&& D'((K'- 2q)') D'((K'+ -'q)') . (2.5)

ft follows from (2.8) and (2.5} that the irreducible
kernel is also transverse:

(P+ .'q)„f"""!q,P, P')-=(P- .q).&"""'(q,P, P')—

=(P'--,'q) f"" (q, P, P')

=(P'+-'q) f"":"'(qP P')

(2.9)

The values of the tensor T"" 8(q, P, P') are
uniquely determined for all values of the external
momenta in perturbation theory. No ambiguity ap-
pears when one goes off the mass shell. The ir-

reducible kernel I"" 8 is also uniquely determined
The normalization which we have chosen for the

polarization vectors e" in (2.4) need only be true
for on-shell photons. We choose this normalization
even for virtual photons. This we do for conve-
nience since it enables us to write the Bethe-
Salpeter equation in terms of invariant amplitudes
only. The longitudinal polarization vector can be
chosen to be

&(q ~g) = ~2(l(ll 0 0 qo)
1

with the z axis in the direction of q. Note that for
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spacelike q there is an ambiguity in the sign of
e(q, A~) due to the Vq2 factor. The transverse-
polarization states do not have this ambiguity. Let
us therefore choose a definite sign for ~q2 in

e(q, X~) in the following. The particular sign we
choose is irrelevant so long as we are consistent.

Equation (2.8) can be rewritten, using (2.1) and

(2.4), as

T(q, P, P', ~„g,Z„X,) =I(q, P, P",~„~„~„~,)--, I(q, P, K', ~„~,Xl ~')i de'
X, X'

&& T(q, K', -P', A. , A, ', X~, A~)

D'((K'- -.'q)') D'((K'. —.'q)') . (2.10)

We now take the absorptive part of (2.10) in the variable (P+P')' We u.se the Cutkosky rules 'Thi. s is
illustrated in Fig. 2. A dashed line through a graph represents the absorptive part of that graph with sup-
port only over positive values of the mass' cut by the dashed line. %'ith this definition one must sum two
identical contributions for different routing of the Cutkosky cut. Equation (2.10) then becomes

Abs T(q, P, P', A „A,„X„X4)=AbsI(q, P, P '; A.„A.„X„A.,}

+ g 2,AbsI(q, P, K'; X„A.„a,Z')AbsT(q, K', P'; Z-, Z', Z„X,)

»'((K'+ lq)')D'((K'- lq)') ~((P+K')') s((P'- K')') . (2. ii)

The normalization of the above absorptive parts is
defined by the forvrard, elastic, spin-nonflip, on-
shell relation .

AbsT =2ImT. (2.12)

It is convenient to work with (2.11) rather than
(2.10) since the absorbed equation is guaranteed to
converge under simple iteration (assuming that no
zero mass bound states appear in the final solu-

tion). In arriving at (2.11) we have assumed that
the external photons are stable, and we restrict
their masses to values below the threshold for in-
elastic photon decay.

lt is well known that (2.11) diagonalizes in the
proper "angular momentum" variable. ' This for-
malism is elegant and powerful, but for our pur-
poses it is sufficient and simpler to work with
(2.11) in momentum space. Let us condense our
notation by introducing the operation x, defined by

a &&, b = Q ,2 ,4 a(q, P, K'; A,„g, 6, 5')b(q, K', P'; 5, 5 ', A-3, g4)
(2~)

~ D'((K" -'q)') D'((K'- lq)') s((K "P)')s((P'- K )'), (2.13}

w'l th

ax, a=a &bs
1

gn-'x~g=gx g" '=g",
E|iuation (2.10) becomes

Abs T'=AbsI +AbsI x~ AbsT,

(2.15)

(2.16)

(2.17)

(2.ig)

which is solved by iteration yielding

AbsT= g (AbsI}" .
g= 1

Let us now introduce the following functions
which are crucial to the development:

AbsT(t) =g ("(AbsI)" . FIG. 2. The Cutkosky rules.
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We also define

AbsT, (g) = t" (Absi)" . (2.19)

$
——1 AbsT($)= f,——1 AbsT, (])
d$ d(

= Abs T(g) x, Abs T($) (2.20)

The following relation may be verified by substitu-
tion:

From this follows the following Taylor's expansion
for Abs T($):

AbsT(() =AbsT(( =1}+Q ($ —1)"$[AbsT($ = l}j"+[AbsT($ = I)]"+'j .
f1= 1

Written out in full E&I. (2.20) is

(2.21)

d d'E'——I AbsT (q, P, P', ~, ~, ~,~;~)=,2, AbsT(q, P, K', ~, ~, ~, ~', ~)AbsT(q, -K', P', ~, ~', ~, ~; ~)(2%)

'((K'lq)') '((K'- -'.q)') 8((P K')') s((P'-K')'). (2.22)

We must now evaluate integrals of the form
[AbsT(E -- I)]". In order to do this we note the
following. AbsT($ =1) on the mass shell corre-
sponds to a physical scattering amplitude. Since
we have no zero-mass particles in our picture
(photons are massive) the Froissart bound' must
be satisfied by these amplitudes for all photon
polarizations. It is our conjecture, and we feel
that it is physically reasonable„ that the Froissart
bound is also satisfied off shell by these amplitudes
with the masses held fixed and s-~. Ne also con-
jecture that the virtual photon masses in (2.22),
(K'+-,'q)' and (K'- —,'q)', can be taken as soft.

With these assumptions let us consider the inte-
gral illustrated in Fig. 3, with

(P'- 'q) =(P.'- 2-q. , o, o, P,'--'q. ), P'=ktl. ,

(2.25)

with P, +-,'q, =-(P,' ——,'q, ) &0. We define light-cone
variables by

0+x'. &- =&o (2.26)

Ignoring spin indices, the integral of Fig. 3 is

s, =(P+K}', s'=(P -K')', s=(P+P'}'. (2.23)

We choose our coordinate system so that

(P + aq) =(Po+ 2q 0~ 0~ Oi Pg+ Rqg), Pi ——2&Iz,

(2.24)

ax, b =- '
& a(q, P, K)b(q, -K, P')D ((K- ~q)')Dr((K+~zqp) 8((P+K}~)g((P'-K)').dE+dE d K

(2.27)

Let us define

u, =(P+ ', q)', u, =(P —-', q-)',

u, = (P' —,'q)', u, = (P'+-,'q)', —

u,'=(K+-,'q)', u,'=(K ——,'q)' .

One finds

s = —,'(u, +u —,'q, q +j~')+K,K—+P,K

(2.28)

(2.29)

(2.30)

u, =P,'P'+ ,q, q +P,' ,'q +-P' ,'q, —-&I,', (2.-37)

u,'=(K, +kq, }(K +kq ) (K, +&&I,)', (-".-38)

u,' = (K, ——,'q, )(K ——,'q ) —(K, ——2q, )'. (2.39)

With a and f& a,s functions of invariants (we omit
writing their dependence on the external masses
u, ~ u, } (2.2V) becomes

+P K„-(K,——,'q, )',
s' = —,(u, + u, —,'q, q +j,') +K,K ——P,'K

—P K, —(-,'q, —K,)',
s=P+P' +P P,'+-, (u, +u, +u, +u, )

—aQ'+0 +9~ ~

(2.31)

(2.32)

(2.33)

P-q/Z, u 2 +q ~2 &Up

u, =P,P +-,q, q + ,'P, q + ',P q, , -(2.34)-

u, =P,P +&q, q —P, ~q —P ~q, —q ', (2.35}

u, =P+P' +-,q+q +P+ ,'q —P' ,'q+, (2-.36-)

P+q 12 P -q &2,u&

FIG. 3. Kinematics of the integral a ~, b.
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x Dr(u(}Dr(u,')8(s, —m, ')8(s'- m, ') .
(2.40)

For convenience we have introduced the actual
lower limit no' of the so and s' integrations, below
which a and 5 have no support. Written out in full
(2.40) is

1axtQ=—
2 +(2 „'a(q', —,'(u, +u, —2q, q +j,')+E,E +P, K +P K, —{K,——,'j,}'

2F)

(E, + 'q, )(E-+sq ) —(K, +2|1~)', (E, —lq, )(E —kq ) —(K.—k4 )')

xb(q', —,'(u, +u, ——,'q, q +j,')+K,K —P,'K —P'E, —(K, ——,'j,)',

(K, +-,'q, )(E +-,'q ) —(K, + Pq, )', (E, ——,'q, )(K ——,'q ) —(K, ——,'q, )')

&&D'((K, +lq, }(K +lq )-(K, +l l,t}')D'((K, —lq. )(E 2q ) —(K--—-'4 )')

x8(-,'(u, +u, ——,'q+q + j~')+K+K +P+K +P K+ —(K~ ——,'q~)'-m, ')

x8(-,'(u, +u, ——,'q, q +j,')+K, K —P,'K -P' E, —(K~ ——,'j,)'-m, ') . (2.41)

We are interested in s very large and therefore
q can be taken as purely transverse. Throughout
most of the phase space the following inequalities
are satisfied:

soft. Taking these inequalities to be true greatly
simplifies (2.41}. We find (with l =-E,E )

u,' =-l - (K, +-2j,}', u,' = —l —(K, ——,
' j,)', (2.43)

s»s„s'»all other mass variables, (2.42)

provided we agree to treat the virtual photons as

so=P, E, s'= —P' E„s=P,P'

sos'= sl,
(2.44)

(2.45'I

oo

xb( q, sl /s „-l —(K + —'j )', —l —(K, ——'q )')

&&8'(- l —(Ki+ Vii)') D'(-l —(Ki- 2q, )') (2.46)

Note that with these kinematic approximations the
virtual photon momenta are restricted to spacelike
values. The expression of (2.46) can be iterated to
calculate the leading behavior of (AbsT)". Putting
in the Froissart bound AbsT(s) =Ps(lns}, with «8

depending on the external masses, q', and the ex-
ternal spin states, we find

(AbsT)"=C„s(lns) +~!" '«+nonleading terms,

(2.47)

d"
„Abs T($)

d „Abs T,(()
g=1

~s![C„s(lns)"' " ' +C„„s(lns)'+'"],

n ~ 2 . (2.49)
where C, =P. Putting this result into (2.20) and
(2.21) yields

(——1 AbsT(() = g
——1 AbsT, (g)(

d
dg dg 4=I,

Let us now define

K, =lim $
——1 Absr, s, $
d

be T,(s},
c C,s(lns}', (2.48) (2.50)
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K„=lim „Aber, (s, $) bsr, (s), n & 2.

(2.51)

Our final assumption is that at least one of the
numbers K„above is not equal to zero. The con-
sequences of all the E„vanishing are discussed in
Sec. V of this paper. I et K, cO. Combining this
with (2.48) and (2.49) we find

IC, ~ lim i |[C,„s(lns)'""]/Aber, (s) . (2.52) + (s =0)
FIG. 4. The "tower" graphs.

Since K, is not zero by assumption, we have the
bound

Absr2(s) ~ICs (Ins) '", (2.53)

1+ 1l& g /32
Aber„.„„(s,f}=P(f)

(in@j' (2.54)

If this is the true asymptotic behavior of AbsT„
even qualitatively; then one of our assumptions is
wrong, since (2.54) is in contradiction with (2.53).
We admit this possibility. On the other hand, one
can easily imagine sets of Feynman graphs which
grom faster than the tower graphs by log factors,
and which are two-photon reducible. These graphs
(we expect that there a,re many of them) are of
higher order in a, the coupling constant, and it is
hoped that their net contribution is small if n is
small. Our assumptions, culminating in (2.53),
demand that these extra contributions exactly can-
cel off the leading behavior of the tomer graphs
and yield a two-photon reducible amplitude mhich
satisfies the Froissart bound up to logarithms.

The situation is summarized as follows: Frois-
sart bound for off shell photons+soft virtual pho-
tons in BS equation+ one nonvanishing moment

for some K and s large.
We mish to compare this result to the leading-

log approximation for the tower graphs. " The
tower graphs for light scattering on light are pic-
tured in Fig. 4. The absorptive part of these
graphs has an asymptotic behavior of the form (for
no spin flip}

(K,) of BS equation- Tower graphs are canceled by
higher-order terms in perturbation expansion
which are tmo-photon reducible in the t channel.
The remainder satisfies the Froissart bound up to
logarithms.

In the next section we discuss the y-e case.

III. y-e SCATTERING

In this section we will discuss photons scattering
with fermions. In the entire discussion the exter-
nal fermions mill always be kept on the mass shell.
We write the scattering amplitudes as

r„(q,P, P, S„S„~„~,)=r",„"(q,P, P', S„S)

x ep(P —2q, jism)

&& e„(P'+ —,'q, .a, ), (3.1)

where 8, and 8, denote the initial and final spin
states of the fermion. The external photons of
(3.1) must end on either a closed fermion loop or a
fermion line which zig-zags through the graph.
This causes T,"& to be transverse in any finite or-
der in perturbation theory. We assume that the
true solution has this property also. Thus we have

(P' ,'q)„r.""„(q,P, P- '—)=(P".'q). r,""„(q,P, P -) =0.

(3.2)

We next introduce the Bethe-Salpeter equation

T "y(q, P, P', S„S,) =I"y(q, P, P', S„s~)—— (,4 T y(q, P, E'; S„S2)I '" (q, -E', P')
2F j

xD„,(If 2q)D&, ,(II + 2q) . — (3.3)

I ~ ' ""above is the same kernel as in (2.6).
I,"„"(q,P, P', S„S2) is the sum of all Feynman graphs
which contribute to y-e scattering, and which do
not have a two-photon cut in the crossed channel.
Note that single-photon exchange does not contri-

bute because of Furry's theorem. It folloms from
(3.3), (3.2}, and (2.9) that I"' is transverse. It
also follows that me may choose the renormalized
propagators Dz~ (Z) to be transverse. Equation
(3.3) thus becomes
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a 4 I

T", "(q, P, P', S„S,)=I""(q,P, P', S„S,)-—
( ), T, y~(q, P, K', S„S,)i ' '"'(q, K'-, P')

(K'- —,'q)~(K' ——,'q)~ ' (K' +-,'q), (K' +-,'q),
)Zxx' (K( 'q)2 866' (KP+ lq)2

xD'((K' —.'q)'—)D'((K'+ -'q)') .

Expressing (3.4) in terms of invariant amplitudes we find

T, „(q,P, P ', S„S„~„g)= I, „(q,P, P'; S„S„!„~,)
d'Z'

,~ T, y(q, P, K', S„S„A,A. ')

xI(q, -K', P'; X, ~', X„Z,)D'((K'+-,'q)')D'((K'- —,'q)') .

Using the Cutkosky rules to take the absorptive part of (3.5) we find

I

AbsT, „(q,P, P', S„S„X„A.,) =AbsI, „(q,P, P', S„S„X„A.,) + P, „AbsT, „(q,P, K', S„S„X,X')
&)

xAbsI(q, K', P', X-, X', A. „~,)
xD'((K '+ -'q)') D'((K' —2 q)')

(3.5}

(3.6)

Abs T, „=AbsI, „+Abs T, &x,AbsI.

We next consider the generalized equation

Abs T, z (() = IAbsI, „+$Abs T, „($)x,AbsI .

(3 7)

(3.8)

This equation is guaranteed to be solved by itera-
tion:

As in Sec. II we write (3.6) in the abbreviated form
Abs T,

&
($) = ]AbsI,

&
+ p $" ' 'Absj, x, (AbsI)" .

n

(3.9)

We now introduce the two-photon reducible ampli-
tude

Abs T„q(t) =Abs T, q(]) —]AbsI, „. (3.10)

The following relations may be checked by substi-
tution:

——1 AbsT, „($)= $
——1 AbsT„&($) =AbsT, ~($)x„AbsT($),
k

(3.11)

AbsT, y((}=AbsT, ~($ =1}+(( —1)[AbsT, „($=1)+AbsT, „($= l)x, AbsT($ =1)]

+ p ($ —1)""{AbsT, &(] = 1)x, [Abs T(] = 1)]"+Abs T, ($ = l)x, [Abs T(( = 1)]""}.

Written out in full, Eg. (3 .11) is

cf d'Z'——1 AbTs„y( , q,P'P, „SSA.„A;j)=, „AbsT, (q, P, K'; S„S„A., P. ', ()

xAbsT(q, K', P', X-, Z', x„A.,; j)
»'((K"-,'q)') D'((K'- —.'q)')

x e((P+K')') e((P'- K')') .

(3.12)

It follows from (3.11) and (3.12) that

——1 AbsT~, y($) AbsT, rx, AbsT,
d$

(3.14)

„AbsT„(]) =n![AbsT, x, (AbsT)"
d$"

+AbsT, ~x, (AbsT)" ],
(3.15)
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for n ~ 2. Let us introduce the following moments: Choosing i such that K, »-'0, we have from (3.16),
(3.17), (3.18), and (3.19)

K, = lim (—-1 AbsT„&(()d(

IC„= lim „Abs T„($)
~ OO

AbsT„

(3.16)

Abs'I', , o 2

(3.17)

Abs T„~(s, i) ~K, „s(lns)"", s -~ . (3.20)

The tower-graph contribution to Abs T„& does not
satisfy (3.20) as in the photon-photon case"

At sT„„,.„„=P,„(i)s"""'32/(ins)'. (3.21)

We assume, as in Sec. II, that at least one of the
E„above is not zero. We also assume that the
four photon amplitudes AbsT and the photon elec-
tron amplitudes AbsT, satisfy the Froissart
bound off shell. We take the virtual photons in
(3.14) and (3.15) as soft. This leads, as before, to
the asymptotic results (the kinematics is the same
as in II)

We next study the e-e case.

IV. e-e SCATTERING

In this section we discuss fermions scattering on

fermions. The external fermions are always kept
on shell. We first introduce the "transposed" y-e
a.mplitudes

——1 AbsT2,
& E ~C„s lns ', (3.18)

T„(q,P, P', I,„g,S„S,)=T,„( q, P, P-;S„S„!„~,),
(4.1)

d „AbsT„„(&) ~n![C„,„s(l ns)"'"], no 2.
(3.19}

with the same definition for I&,. The Bethe-
Salpeter equation for the invariant e-e scattering
amplitude is

T„(q,P, P', S„S„S„S»)= I„(q,P, P '„S„S„S'„S»)—2~ Q,2,» T, ~ (q, P, K'; S„S~,A., A. ')
&)

xI y, (q, -K', P', X, A. ', S„S»)

xD ((K' —~q) )D ((K'+ aq) ) (4.2)

=I„(q,P, P '; S„S„S„S,) ——Q

Taking the absorptive part we find

Abs T„(q,P, P'; S„S„S„S,) =AbsI„(q, P, P'; S„S„S„S»)

de'
( ), I, y (q, P, K', S„S„A., X ')

x T , (q, -K', P. ', A, , g', S„S,)
xD'((K —,'q} )Dr((K —,'q}') . (4.3}

/

)»
Abs T, „(q,P, K', S„S„X,A ') AbsI „,(q, -K', P ', X, X ', S„S,)

xD'((K'+ 2q)') D'((K' lq)')-
x 6((P+K')') 8((P'- K')') (4 4)

with a similar equation coming from (4.3). We
again abbreviate these as

AbsT„, ($) =AbsT„(g) —$ AbsI„.
We find the following relations:

(4.7)

Abs T„=AbsI „+Abs T, „&,AbsI,
=AbsI„+AbsI, „~,AbsT&, .

We next consider the generalized equation

(4.5) $——1 AbsT, , $ =AbsT, x, AbsT, 4.8d
d(

dN—„Abs T„,($)
AbsT„($) = $ AbsI„+ $ AbsT, „(g)x,AbsI„,

= $ Absj„+ $ AbsI, „x,Abs Tz, ( $),

(4.6)

and the two-photon reducible part

= n![Abs T, z x, (Abs T)" 'x, Aber,

+Abs T, „x,(Ab sT)" 'x, Abs T„,],
n 2. (4.9)
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We next introduce the usual moments

d
d(

K„=lim „AbsT2„($)
CP

„d(

Abs T24t

(4.10)

AbsT„, , n & 2,

(4.11)

and assume that at least one of these is nonzero.
Putting the Froissart bound into (4.8) and (4.9)
yields

$
—„—1 AbsT„, (t')
d

I g=z
~ C„,s (lns)', (4.12)

„AbsT„,(t') cn!C„„s(lns)"'", n ~ 2.

AbsT„, (s) ~K„s(ins)"", (4.14)

for large s. The "tower" graphs again do not sat-
isfy (4.14); for spin-nonflip scattering they give a
contribution"

AbsT„„,„„=P„(t)s""'~32/(lns)'. (4.15)

The cases for e-7 and e-y scattering are identi-
cal to the e-e and e-y ones. In the next sections
we consider the consequences of these results.

V. GENERAL REMARKS

(4.13)

If K, is nonzero then from (4.10), (4.11), (4.12),
and (4.13}we must have

It is clear that for all the moments K„ to vanish we
must demand all the n' s independent of $. All the

$ dependence is in P. In this case we can certainly
change the order of limit and differentiation in
(5.1) and (5.2). The same is true if AbsT, (s, $) is
a finite sum of terms of this form. We feel that
this exhausts all cases of physical interest.
Therefore we feel safe in interchanging the limits,
and we accept (5.3) as the only reasonable possi-
bility. The reader may find our arguments of Ref.
3 on this matter entertaining. We obtained there
the same result (5.3) from a somewhat different
line of reasoning. There we expanded AbsT, (s, ()
in a Taylor series about $ =1 by using the equiva-
lent of Eq. (2.21). Assuming that the sum of the
absolute values of this series was polynomially
bounded in s led to (5.3).

Reexpressing AbsT2(s, $) as a polynomial in $,
we have from (5.3)

lim Q (()"(Absf)" AbsT, (s) =&,
S~~ tf=2

(5 5)

in some region about $ =1. The reader can see the
pathology of this situation. The left-hand side of
(5.5) seems to contain no term linear in $, whereas
the right-hand side is purely linear in (. There
is no known example of this kind of behavior in ex-
isting studies of the Bethe-Salpeter equation. We
therefore feel that the strongest assumption lead-
ing to the bounds here discussed for Abs 7, is that
of the Froissart bound off shell.

We wish to point out that we have not made any
positivity assumptions in this paper, nor have we
used any positivity arguments.

dlt
K„= lim „AbsT2(s, $)

S~m
AbsT2(s) =0, n ~ 2.

(5.2)

Suppose we can interchange the order of limit and

derivative above. Then we get a unique solution:

lim AbsT, (s, ()/Abs T,(s) = g, (5.3)

in some region about $ =1. Let us see how rea-
sonable this is. Suppose AbsT, (s, $), for large s,
is of the form

AbsT, (s, () =P(t $)s"' 't (lns) ' ''~ [ln(lns)]

&& ~ ~ ~ fln[ln( ~ ~ ~ lns)]] ~ 'tl (5 4)

If in any of the preceding cases all the moments

E, vanish let us see what can be said. Recall that,
in each case, this implies

K, = lim (——1 AbsT, (s, f) AbsT, (s) =0,d
N

(5.1)

VL CONCLUS&ONS

We have established reasonable conditions which
limit the growth o'f two-photon exchange in massive
QED. These conditions must be wrong if tower
graphs are the main contribution to two-photon ex-
change in any process studied here. Assuming
that our conditions are correct one is forced to
ask whether perturbation theory breaks down in
the asymptotic limit in massive QED. The situa-
tion is quite a bit more hopeful in cp (and we ex-
pect also rp'} field theory. ' Here the leading-log
contributions do not violate our conditions until the
coupling is increased beyond a critical point. No
problem is encountered for sufficiently small val-
ues of the coupling. In massive QED these condi-
tions are contradicted by the leading-log tower
graphs for arbitrarily small coupling. We find
this situation distressing yet interesting.

The problem addressed here is not without phys-
ical interest. It is well known that total proton-
proton cross sections are increasing with energy
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(at s =2500 GeV ), One model which attempts to
explain (and in fact predicted) this behavior is the
eikonal model of Gheng and%u. This model is a
perturbative calculation in massive QED, where
the tower graphs are taken as a Born term in an
eikonal expansion for the scattering amplitude.
The result they find for total cross sections is
o„,~ (lns)', saturating the Froissart bound. This
saturation depends critically on the fact that the
tower graphs themselves (the Born term) violate
the Froissart bound by a power. A model of this
type will have difficulty coexisting with the condi-

tions leading to the bounds here discussed. It may
be that the CERN results coupled with the Gheng-
'Nu model offer experimental evidence that the
virtual Compton amplitude violates the Froissart
bound at energies of s =2500 GeV' for spacelike
photons.
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It is examined whether the massless Yang-Mills field theories can describe massive vector particles

which have a common mass. The nonzero mass is supposed to be accompanied by poles in vertex

functions. It is demonstrated that such poles can be consistent with the %ard identities. Homogeneous

linear integral equations describing approximately the residues of these poles are shown to have

asymptotic nontrivial solutions.

I. INTRODUCTION

It was conjectured' some time ago that theories
with a local gauge group may describe massive
vector particles, where the mass is of pure1, y dy-
namical origin. One way to achieve this is by
means of the so-called "Higgs mechanism" lead-
ing to the classes of spontaneously broken gauge
theories' which have received much interest in
recent times. Because these models can be treat-
ed by perturbation theory, they are practical, at
least for the description of weak interactions. Yet,
because of the often large number of scalar fields
that have to be introduced, there can be many
free parameters resulting from the multitude of
possible couplings of the scalar fields among
themselves. It is therefore useful to investigate

the possibility that vector particles may acquire
a mass without the introduction of scalar mesons.
This has been done, ' ' essentially by exploiting
the analogy with the Meissner effect in the theory
of superconductivity, with the qualitative conclu-
sion that this spontaneous mass generation is in-
deed possible.

The present investigation deals with the pos-
sibility that the pure Yang-Mills field, without
other couplings, may generate massive vector
particles, specifically, without breaking the global
symmetry so that the particles have equal mass.

It is known" that the vector particles can only
be massive if their proper self-energy function
has a pole at p'=0. In Sec. II a simple mech-
anism that may lead to the formation of such a
pole is proposed, and it is reviewed how this pole


