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A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires

the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory

on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge

fields as angular variables {which makes a gauge-fixing term unnecessary). The lattice gauge theory has

a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free

quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The

strong-coupling expansion involves sums over all quark paths and sums over all surfaces {on the lattice)

joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

I. INTRODUCTION

The success of the quark-constituent picture
both for resonances and for deep-inelastic elec-
tron and neutrino processes makes it difficult to
believe quarks do not exist. The problem is that

quarks have not been seen. This suggests that
quarks, for some reason, cannot appear as sep-
arate particles in a final state. A number of
speculations have been offered as to how this
might happen. '

Independently of the quark problem, Schwinger
observed many years ago' that the vector mesons
of a gauge theory can have a nonzero mass if vacu-

um polarization totally screens the charges in a

gauge theory. Schwinger illustrated this result
with the exact solution of quantum electrodynamics
in one space and one time dimension, where the

photon acquires a mass -e' for any nonzero charge
e [e has dimensions of (mass)'~' in this theory J.
Schwinger suggested that the same effect could oc-
cur in four dimensions for sufficiently large cou-
pllngs.

Further study of the Schwinger model by Lowen-
stein and Swieca' and Casher, Kogut, and Suss-
kind' has shown that the asymptotic states of the

model contain only massive photons, not elec-
trons. Nevertheless, as Casher clat. have shown

in detail, the electrons are present in deep-in-
elastic processes and behave like free pointlike

particles over short times and short distances.
The polarization effects which prevent the ap-
pearance of electrons in the final state take place
on a longer time scale (longer than 1/m&, where

rn& is the photon mass).
A new mechanism which keeps quarks bound

will be proposed in this paper. The mechanism
applies to gauge theories only. The mechanism
will be illustrated using the strong-coupling limit
of a gauge theory in four-dimensional space-time.
However, the model discussed here has a built-in
ultraviolet cutoff, and in the strong-coupling limit
all particle masses (including the gauge field
masses) are much larger than the cutoff; in con-
sequence the theory is far from covariant.

The confinement mechanism proposed here is
soft (long-time scale). However, in the model dis-
cussed here the cutoff spoils the possibility of
free pointlike behavior for the quarks.

The model discussed in this paper is a gauge
theory set up on a four-dimensional Euclidean lat-
tice. The inverse of the lattice spacing a serves
as an ultraviolet cutoff. The use of a Euclidean
space (i.e. , imaginary instead of real times) in-
stead of a Lorentz space is not a serious re-
striction; the energy eigenstates (including scat-
tering states) of the lattice theory can be deter-
mined from the "transfer-matrix" formalism as
has been discussed by suri' and reviewed by
Wilson and Kogut. ' A brief discussion of the
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transfer-matrix method is given in See. III.
In Schminger's speculations about four dimen-

sions, the photon mass mould be zero for any
charge e less than a critical coupling e„. for e
&e, the photon mass mould be nonzero and vary
with e. Figure 1 shows how a plot of m& vs e
might look. The point e, is a point of nonanaly-
ticity. Similar nonanalytic points, called critical
points, occur in solid-state physics at certain
types of phase transitions. Consider, for in-
stance, a ferromagnet in the absence of an ex-
ternal field. For any temperature above the Curie
temperature T~, the spontaneous magnetization
M is 0. Below T&, M is nonzero and a function of
temperature. At Tc there may be either a first-
order phase transition (in which case M is dis-
continuous at T~} or a second-order phase transi-
tion (critical point) for which M-0 as T- Tc
from either side.

By analogy with the solid-state situation one
can think of the transition from zero to nonzero
photon mass as a change of phase: this analogy
is best understood by imagining the particles of
quantum electrodynamics to be the excitations of
a medium (the ether) In th. is case it is the ether
which undergoes a change of phase at e, . There
is again a question whether this change of phase
is first-order (cf. Fig. 2) or second-order (Fig.
I). (Coleman and Weinberg" have found a non-
trivial example of a first-order transition in an-
other context. )

The model discussed in this paper is a single
Abelian gauge field coupled (with strength g) to
massive quarks. In weak coupling the gauge field
behaves like a normal free zero-mass field (de-
spite modifications introduced in the lattice quan-
tization) and the quarks are unbound. In strong
coupling the gauge field is massive and the quarks
are bound, showing the existence of the second
phase. Thus there should be a phase transition at
some intermediate value of g. Nothing is known
about this transition at the present time.

The quantization procedure and strong-coupling
approximation described in this paper can be ap-
plied to non-Abelian gauge theories also. This
will be explained briefly in Sec. III.

An extraordinary feature of the strong-coupling
expansion of the lattice theory (see Sec. IV) is that
it has the same general structure as the relativis-
tic string models of hadrons. ' The vacuum ex-
pectation values of the gauge theory involve (in
the strong-coupling expansion} sums over all
quark paths and sums over all surfaces connect-
ing these paths; the surfaces are generated by
the gauge field treated in strong coupling. The
paths and surfaces are defined on a discrete lat-
tice. There are geometrical difficulties in relat-

I

e

FIG. 1. Speculative plot of photon mass vs renormal-
ized charge e, in unknown units. The transition at e,
is second-order (see text).

ing the surfaces on the lattice to the continuum
surfaces of the string models; it is not known at
present whether these difficulties can be over-
come.

In Sec. II the nature of the quark binding mech-
anism will be discussed, qualitatively. In Sec.
III the gauge theory will be formulated on a. dis-
crete lattice, both classically and quantum mech-
anically. In Sec. IV the strong-coupling expansion
for the lattice gauge theory is explained. In Sec.
V a cursory discussion of weak coupling is given.
In Sec. VI there is a brief discussion of the prob-
lem of I orentz invariance and the rela. tion to
string models.

D„,(x) =(Ili TJ„(x)J„(0)i(I}, (2.I)

whose Fourier transform determines the e'-e
annihilation cross section into hadrons. Assume
that the currents J„(x)are built from quark fields
as in the quark-parton model. Assume that the
quarks interact through a single gauge field. {The
restriction to one field is only for simplicity. } In
the Feynman path-integral picture the propagator

FIG. 2. Speculative plot of photon mass vs renormal-
ized charge e if there is a first-order transition at ec.

II. QUARK BINDING MECHANISM

The binding mechanism will be explained in this
sec'tion using the Feynman path-integral picture.
The path-integral framework will be used in an
intuitive rather than a formal way. Consider the
current-current propagator
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D„,(x) is given by a weighted average over all pos-
sible classical quark paths and all possible classi-
cal values of the gauge field. The currents J„c,x}
and J,(0) are thought of as producing a quark pair
at the origin which later annihilate at the point x:
One has to sum over all paths joining the points
0 and x for each of the pair of quarks.

An example of paths for the quark and antiquark
are shown in Fig. 3. The vacuum can also emit
and absorb quark pairs; this leads to further
closed loops as illustrated in Fig. 4. All possible
loops must be summed over too. It is also pos-
sible to have independent loops for the points 0
and x (Fig. 5), but this possibility will not be im-
portant here.

The weight associated with a given quark path
or set of paths includes a factor of exp[ig)A„(x)
xds" J, where A„(x) is the gauge field. Here

..ds" is a line integral or a sum over line inte-
grals for each of the quark-antiquark loops, in-
cluding the loop joining the points 0 and x. The
constant g is the coupling constant of the gauge
theory. There are further weight factors inde-
pendent of A. Finally, independently of the quark
paths there is another weight factor, namely, the
exponential of the free action for the gauge field.
The combined weight factor is then averaged over
all quark paths and all gauge fields A„(x) to give
the current-current propagator.

In order that quarks exist as separate final-state
particles it must be possible to have quark-anti-
quark loops with well-separated quark and anti-
quark lines, at least when x and 0 are far apart.
This is illustrated in Fig. 6(a). If the quark and

antiquark paths are unlikely to separate beyond a
fixed size, say 10 "cm [see Fig. 6(b)], then
clearly no detector will see a. quark or antiquark
in isolation.

It is assumed in this discussion that vacuum
loops are not important. If vacuum loops are im-
portant enough then space will be filled with a
high density of vacuum-produced quark-antiquark
pairs. In particular, there will be many quark-
antiquark pairs inside a detector of macroscopic
size. The question then is whether there can be
an excess of quarks over antiquarks, or vice
versa, in a region of macroscopic size. This is

I IG. 4. Example of current loop {as in Fig. 3) with an
extra vacuum loop.

a more difficult question to answer and will not
be discussed in this paper.

Note that x must be large: If x is small there
is little likelihood of finding a large size loop.
This may seem a bit peculiar: One expects quarks
to appear in the final state of e -e annihilation
only at large virtual-photon momentum q if they
appear at all, and large q means small x, not
large x. The answer to this paradox has two
parts. First, the important paths in the Feynman
path integral bear no detailed relation to possible
physical final states (the paths are paths of bare
particles, not physical particles). Secondly,
large x does not necessarily mean small q. In
fact the study of whether well-separated quark-
antiquark paths exist for large )( is really a. search
for a quark-antiquark threshold in e -e annihila-
tion, which would contribute a term -exp(2mivx )

to the current-current propagator for large x,
where m is the quark mass. (Here —means up to
a. power of x'. ) Such a term corresponds in mo-
mentum space to the singularity at the threshold
q' = (2m)'.

Suppose the gauge-field averaging is performed
before the quark-paths averaging. Then one deter-
mine the average over all gauge fields of the
weight factor exp[ifgA„(y)ds" ] weighted further
with the exponential. of the free gauge-field action.
For an Abelian gauge theory this average can be
computed explicitly: It is

X

FIG. 3. An example of quark {q) and antiquark {q)
paths connecting the points 0 and x.

FIG. 5. Example of separate quark loops for the points
0 and x. {Integration over the gauge field produces gauge
propagators which connect these loops. )
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exp -g dS ds D]Ip y —y

where D»(y -y') is the free gauge-field propa-
gator.

The quark binding mechanism can be seen by
comparing the above expression for one space
dimension and three space dimensions. In three
space dimensions this calculation gives no binding
{the binding occurs only with a modified gauge-
field action: see Sec. IV), while there is binding
in one space dimension. In three space dimen-
sions D„,(y —y') behaves as (y —y') a. In con-
sequence large values of (y' —y) are negligible in
the double line integral. Hence, the double inte-
gral is proportional to P, where P is the length
of the loop. Unfortunately the integral is divergent
at y'=y; a cutoff is needed for the integral to
make sense. Since a cutoff will be introduced any-
way in this paper, this is not a major concern.
For simple loops, the perimeter P is roughly of
order (x')~' (ignoring the case that x is close to
the light cone). Thus one has an exponential of the

type one expects when free quarks are present.
In one space dimension, D„,(y -y') behaves as

ln[(y -y') ] for y' —y large, and y' and y can freely
range separately over the loop. In this case the
double integral is proportional to P'. Now the

-i,cp2gauge-field average behaves as e "~, where c
is a constant. In this case the contribution of large
loops is heavily suppressed and there are no free
quarks. [The case of nearby quark-antiquark pairs
as in Fig. 6(b) is special —in this case large y —y'
is unimportant due to cancellation between the
quark path and the nearby and oppositely directed
antiquark path. In this case the double integral
behaves as P, not P', but in this case there are
no isolated quarks. ]

In the strongly coupled lattice gauge theory de-
scribed in later sections, the gauge-field average
of exp[igf&A„(x)ds" ] behaves as ex(ipc'2), where 2
is the enclosed area of the loop. This heavily sup-
presses large loops, such as in Fig. 6(a), where
A is of order P'. One can think of one factor P as
being roughly (x')'~', the other P as being analo-
gous to a mass multiplying {x')"'. Since P-~ as
x- ~, the quark-antiquark threshold is at infinite
mass.

In all these calculations one can have a large
loop if there is a nearby vacuum loop (Fig. 7). In
this case one always gets e" behavior. For ex-
ample, in the strong-coupling case the relevant
enclosed area is the area between the two loops
which is proportional to the perimeter P provided
the separation of the two loops is fixed indepen-
dently of P. This is in accord with Schwinger's
picture. While an isolated mell-separated loop

FIG. 6. (a) Loop with well-separated quark and anti-
quark. (b) Loop with small separation between quark
and antiquark.

may be suppressed (due to P' or A dependence in
the exponential) a loop closely shielded by a vacu-
um-polarization loop is always unsuppressed.

The binding mechanism proposed here is soft:
The exponential damping is associated with large
size loops having large areas. The behavior of
small loops is irrelevant to the binding mech-
anism. Also for small loops both their area and
perimeter are small and neither is of great im-
portance in an exponential.

The mechanism discussed here works equally
well for Dirac quarks or scalar quarks. This is
in contrast to the Higgs mechanism which can
wipe out the charge of scalar particles only.

III. LATTKE QUANTIZATION OF GAUGE FIELDS

A. Classical action on a lattice

In this section the gauge-field action (space-
time integral of the Lagrangian) will be defined on
a discrete lattice with spacing a in Euclidean
space-time. The simplest way to proceed is to
consider a continuum action, substitute finite-
difference approximations for derivatives, and

replace the space-time integral by a sum over the
lattice sites. However, the result of this is an
action which is not gauge-invariant for nonzero r~.

Because of the vagaries of renormalization this is
likely to mean that the quantized theory still lacks

FIG. 7. Quark-antiquark loop with nearby vacuum
loop.
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gauge invariance in the limit a-0 (if such a limit
exists). The alternative is to formulate gauge in-
variance for a lattice theory, and tinker with the
action so that it is gauge invariant for any a. This
alternative will be pursued here.

For convenience a charged Dirac field g coupled
to a single gauge field A„. will be discussed in de-
tail. Generalizations to non-Abelian gauge groups
will be noted later.

On the lattice the fields are g„, g„, and A„„,
where n is a four-vector with integer components
referring to points on a simple hypercubic lattice.
A simple action on the lattice for the Dirac field
(ignoring the gauge field for now) has the form

A~ = -a' m, y„y„

F„q„=(A„,p, —A„, —A„,„-
q + A„„)/a .

It is convenient to define a rescaled form of

Ert PV ~

(3 7)

~n P a~+ff 9

In the action A&, the field B„„actslike an angular
variable: A& is periodic in B„„with period 27t.

The free gauge-field action will be defined to pre-
serve this property. This does not mean that

A„„ is an angular variable in the continuum limit.
Owing to the relation (3.6), A„„becomes an infin-
itesimal angular variable A„(x) for a-0; such a
variable has the range -~ &A„{x}&~ without any
periodicity.

A gauge-invariant lattice approximation for
~p+v —+vA p ls

+aaQQ0„yp(4, +p —0, p), (3.1) f„yv = +g+n pu

(3.2)

(3.3)

A„„-A„„—(y„,p -y „)/a,
where g is the coupling constant and y„ is arbi-
trary. The terms g„g„,p and g„&„p are not in-
variant to this transformation; the corresponding
gauge-invariant expressions are g„g„,„-

xexp(tagA„~) and $„$„pexp( fagA„p g). -Thus, a
gauge-invariant form for Av is

ff

—a'P m, g„t)„. (3.5}

It is convenient to define

where m, is the bare mass; P. is a unit vector a-
long the axis g; ar, „replaces the space-time in-
tegration of the continuum theory, and (g„„„
—g„„")/2a replaces Vj. There is no over-all
factor of i due to the Euclidean metric. A gauge
transformation on the lattice can be defined as
follow-".

= &„P +&„+P,V —&,+u, P
—&„V ~

A simple l.attice action for the gauge field which
preserves periodicity is

1
rt PV

nPV
(3.9)

In the continuum limit, f„„,-0 due to the factor
cP in the definition of f„„„.Thus for small a, one
can write

Ae= 2
z~ (I+~i.&. .f.&. ——-
nPV

(3.11}

which is the conventional gauge-field action in a
lattice approximation. The terms involving

f„„,', f„„„',etc. all vanish for a —0 even after
removing a factor a' to convert g„ into an inte-
gral.

The full action may now be written

The constant term is irrelevant. The linear term
in f„„,is 0 because f„„„is odd in the indices p.

and v. The quadratic term gives

A~= -~a ~ F„„v2

nP&

A=-cg $„g„+Kg+ ($„y„g„,pe' » —$„,gy„g„e 'e»)+, p g e'~vU,1

n n n PV
{3.12)

with e=moa', K=a'/2. This action reduces to the
usual continuum action for a-0; for finite a it is
gauge invariant and periodic in the gauge field.
Note, however, that the continuum limit is a
classical limit in which the lattice variables g„,

and A„„approach continuum functions Q(x),
$(x), and A„(x) with x=na. The continuum limit
of the quantized theory is much harder to discuss
owing to renormalization problems.

B. Quantization

The problem of principal interest here is the
quantization of the gauge field. Therefore, the
gauge field v ill be quantized by itself to start with.
Later the quantization of g will be discussed. At
the end of this section the generalizations to non-
Abelian gauge theories will also be described.

The quantization of the lattice gauge theory will



KE NNE T H G. WILSON 10

be carried out in two steps. The first step will
be to define a lattice version of Euclidean vacuum
expectation values, starting from a lattice ver-
sion of the Feynman path integral. The second
step will be to define a quantum theory on the lat-
tice, which will allow the introduction of a real
time variable and the definition of particle states
and scattering amplitudes. In both cases the lat-
tice provides an ultraviolet cutoff and there is no
Lorentz invariance. Lorentz invariance can only
be achieved in the limit a (lattice spacing)-0, if
at all, and in practice this is a difficult limit to
evaluate.

As discussed in Sec. I, one would like to calcu-
late the gauge-field average of exp[ig)A„(x)ds" ]
weighted with the gauge-field action. On a lattice
the line integral becomes a sum over a closed
path P on the lattice (see, e.g. , Fig. 8). The sum
has the form: ig (+)B„„,where a particular B„„
is present in the sum if the path connects the sites
n and n+P (-B„„appears if the path goes from
n+P to n)

On the lattice, an average over all gauge fields
involves integrating over all values of the 8„„for
all n and p, . Normally one would have integrals
over an infinite range: -~&B„„&~,but because
of the periodicity in J3„„there is no point to in-
tegrating over more than a single period. Thus
the lattice version of the gauge-field average is

+

+ +

(0,0) (I,O)

FIG. 8. Example of a lattice path I'.

D„„,=Z ', da

xexp if„„,—if„„+,~ e
muP

(3.15)

finite lattice volume), but these divergences are
normally removed by the division by Z (this divi-
sion is equivalent to removing all vacuum loops
in perturbation theory).

One can define more conventional vacuum ex-
pectation values in a similar manner. For in-
stance, one can define a propagator. In the ab-
sence of a gauge-fixing term it is awkward to de-
fine a propagator for the gauge field 8„„itself;
instead one can define a gauge-invariant propa-
gator as

xexp i Q(+)B„„+,Q e'~m v

p 2g npv

(3.13)

z= IIII zz„„exp, P ' ')
m u -n' .2g yIP &

(3.14)

Note that no gauge-fixing term has been added
to the action. The finite range of B„„makes a
gauge-fixing term unnecessary. In continuum

gauge theories where A„(x) has an infinite range
[-~&A„(x)& ~] a gauge-fixing term is essential
to have a convergent functional integral. The rea-
son for this is that the volume in path-integral
space generated by all possible gauge transforma-
tions is infinite; the gauge-fixing term provides
a convergence factor in this volume. " In the lat-
tice theory the total volume of integration is finite
if the lattice itself is of finite extent; no conver-
gence factor is required. For a lattice of infinite
extent there are divergences due to the infinite
number of integrations (in other words, the in-

This is a propagator for the operator e' ~»; it is
defined only for the lattice points n of a Euclidean
space-time lattice. If the lattice spacing is a, this
means the propagator is defined only for imag-
inary times of the form in, a, where n, is an in-
teger.

A theory defined only for discrete imaginary
values of the time leaves much to be desired.
Fortunately, one can generalize the theory to de-
fine a Hamiltonian for a quantized theory. The
particle eigenstates and scattering amplitudes of
the theory can then be obtained, in principle, by
diagonalizing the Hamiltonian. The Hamiltonian
mill be defined using the transfer-matrix formal-
ism. Only a brief discussion of the transfer-ma-
trix approach will be given here. For a review' of
the ideas see Wilson and Kogut. ' A detailed dis-
cussion including approximate calculation of sin-
gle-particle energies and scattering amplitudes
in a simple scalar field theory is given by suri. '

Consider the expression for Z. Introduce finite
bounds on the lattice coordinate n„say

(3.16)

Introduce periodic boundary conditions (see be-
low'}. Then one can write Z as the trace of a ma-
trix V, more precisely
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Z=TrV ' (3.1 t)

(3.18)

The quantity Uas written out below looks com-
plicated, but all it is is that part of the action A

referring to a given nearest-neighbor pair of val-
ues for np; terms in A referring to a single value

of n, are divided equally between the matrices
connecting np to n, +1 and np to n, —1. The result
1s

U=, g Pg (e'~-„„+e'fn~~)
4+/ ll gy

+ &gg (e nio+ 8' noi),
2g

n i

where

(3.19}

f n, , =Bn, +Bn+f, , —Bn+f, ; —Bop

and
If.;o=B. +B";,o-B-.; —B o ~

(3.20)

(3.21)

With the definition of V given here, the trace
Tr V'" ' is easily seen to reproduce all the inte-
grations involved in the equation for Z, and the

sum of the 2K+1 exponents Ureproduces the ac-
tion A except for some additional terms coupling

the boundary np=N to the boundary np=-N to
achieve a periodic structure.

Note that the 0 components of B„„have received
special treatment. This is because there are no

terms in A involving B„p for more than one value

of np; this makes it possible to include integra-
tions over B~ in the definition of V rather than in

the definition of matrix multiplication.
The matrix V is used to define the quantized

theory. Briefly, this is accomplished as follows.
Vis a Hermitian matrix, i.e.,

V(B, B'}*= V(B', a} . (3.22)

[This result can be verified by close examination

This formula is made possible by the fact that
each term in the action A involves no more than

two adjacent values of n, .
To set up the matrix V, one must first under-

stand the space on which it acts. The space used
here is the space of all functions P(Bn;) (periodic
in each B-„,with period 2m), where the index i

runs from 1 to 3 only, and the lattice variable n

has only three components (n„n„n,}. The matrix
Vwill be defined as a function of two sets of argu-
ments, say B-„; and B-„',, these two sets of argu-
ments referring to the space-time fields B„; for
two adjacent values of n, . Matrix multiplication
of two V's involves integrations over a set of
variables (B-„,j. Define V as

of Eqs. (3.18)-(3.21). One must remember that

the variables 8-„p are integrated out in the de-
finition of V. This means that in forming the com-
plex conjugate of V one can also make the change

of variable B-„„--B-„.] Hence V has a complete
orthogonal set of eigenstates 4 and eigenvalues X.

The Hamiltonian H is now defined as follows: The

eigenstates of 0 are the eigenstates of V; the

eigenvalues of H are given by

F. —-a lr&, (3.23)

where A. is the corresponding eigenvalue of V. The

reason for the factor a ' will be evident shortly.
The reason for using the logarithm is so that the

energies of multiparticle scattering states will be
the sum of single-particle energies (see suri').

A problem arises with this definition if V has

any negative eigenvalues A, . If this were to happen,
H would have complex eigenvalues. This did not

happen in the case studied by suri'; whether it
happens here the author does not know; this ques-
tion must be studied further. Even if V has nega-
tive eigenvalues, they may be irrelevant in the

limit a-0 if such a limit exists.
The definition (3.23) means that

(3.25}

(3.26)

~nil, yn ~np Xn+ j (3.2'I)

U(&.„)—U(J.) U(&.„)U'(y. +„-), (3.28)

where y „b„„y„+p
' is computed according to the

multiplication law of the group. A simple gauge-
invariant action for the gauge field is

(3.24)

This means Vis the operator which propagates a
state through an imaginary time ia. It is a con-
sequence of this that the propagator D„„,„is a
vacuum expectation value for imaginary time inpa

in the theory with Hamiltonian H. For proof of
this statement see Refs. 5 and 6.

The lattice quantization procedure can be ex-
tended to non-Abelian gauge theories. This is
done as follows. In place of the single variable

8„„, one has a set of variables B„„where n is an

internal index. For each n and )L(, , B„„is to pa-
rametrize an element h„„of the gauge group. In

place of exp(iB„„)one substitutes U(b„„), where U

is the unitary matrix representing 5„„ in the quark

representation. The product $„y„p„,„- exp(iB„„)is
replaced by g„y„U(b„„)$„+„".A gauge transforma-
tion is defined by a set of group transformations

y„; under these transformations
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1 1
2 ~ Tr ~A( np n+ j u~n+0 p nv

npv

(3.29)

where the unitary transformation UA is taken from
the adjoint representation of the group. (Any rep-
resentation will do as wel1. .) In the classical con-
tinuum limit, b„becomes an infinitesimal group
transformation B„„=gaA"„(na} with A~ fixed as
a-0]; in this limit one can show, with some ef-
fort, that A~ reduces to the standard continuum
Yang-Mills action. %hen the non-Abelian theory
is quantized, the integrations over 6 „are group
integrations over all elements of the group. These
are compact integrations (for compact groups} and
no gauge-fixing term is required.

Since qua, rk binding can be illustrated using
Abelian theory, the non-Abelian theory will not
be studied further.

Finally, the quantization of the Dirac field mill
be discussed. It is convenient initially to quantize
the Dirac field in an analogous manner to the
gauge field. The only problem tha. t occurs is to
define "integration" for a Fermi field. This can
be done. "

The property of the integral that is crucial for
quantization is translational invariance in the in-
tegration variable. For example, when quantizing
a scalar field Q on a lattice the field averaging
involves the integral f"„dP„whi ch has the trans-
lational invar iance

for any integrable function f and any constant J„.
It is this translational invariance that makes the
Feynman path integral provide a realization of
Schwinger's action principle (see, e.g. , Ref. 12
for further discussion). Analogously one needs
to define an integration over Fermi fields with
the same translational invariance. Stated ab-
stractly, one wants to define a bracket operation
( ) defined on functions of purely anticommuting
Fermi fields g„with the property

(3.31)

where q„and q„are anticommuting c-numbers
(these have been introduced by Bchwinger}. The
bracket operation should produce a number for
every function f; it should also be a linear opera-
tion. Thus for a finite lattice it is sufficient to
specify the bracket ( ) for all monomials in the
4„and g„. Because of the anticommutation rules,
g„2 and P„' vanish (more correctly, y„' and $„2
vanish where 4 and $„„are any component of g„
and g„), therefore, there are only a finite number
of possible monomials. It is now easy to see that

the bracket ( ) must vanish for all products of
j's and p's, except the product containing all
possible $'s and $'s. For example, suppose there
are two lattice sites 0 and 1, and g„and $„are
single component fields. Then the brackets must
be

(3.32)

~$0400141&

where 1 is a constant which was chosen arbitrari-
ly. This definition of the bracket operation satis-
fies translational invariance: for example,

because the terms multiplying the p's are all 0.
Note also that the a.nticommutation rules mean
that, for example,

(&O~o~i&i& = -1 .
(In a,nalogy to the scalar case, one requires g,$,

not fog=1 —44o )
One can now define the Feynman path integral

on a lattice for the complete gauge theory in-
cluding the Dirac fields. For example, the cur-
rent-current propagator on the lattice is

fr

m V -ff

(3.34)

where A is the full action of Eq. (3.12) and

(3.35)

This formulation of the path integral is different
from the formulation discussed in Sec. II. Hom-
ever, one can easily derive a lattice form of the
path integrals of Sec. II from the present expres-
sion. The procedure is to expand Eq. (3.34) in
powers of K, where K is the coefficient of the
nearest-neighbor coupling terms $„y„y„,-„e's"&

etc. This nearest-neighbor coupling term can be
represented diagrammatically by a line from the
site n to the site n+ p,. The expansion is best
described by studying an example of a term from
the expansion of the numerator of Eq. (3.34),
which will now be discussed. An example of a,

term in the expansion is represented diagram-
matically in Fig. 9. The expression for this term
is
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Tl

eee. ) 2'&r„r, «, 2..r «-0...r.& .e" '&,.r tr e "''2„r,r„e " 1'„r.,r,.e "- e"'r =0
If' V

(3.36)

(D for diagram), where the four lattice sites involved are (n„n, }=(0, 0), (1, 0), (0, 1), and (1, 1); the values
of n2 and n2 are constant and have been suppressed in the notation of Eq. (3.36). The action Ao omits the K
term, and is

Ao=-cg q„q„+ 2 g g e'"o. .
n 2g n PV

(3.37)

The calculation of D has two parts, one being the integration over all gauge fields 8„„,the other being the
calculation of the g, g bracket. These are independent calculations, i.eer D factors into DODs. The quanti-
ty D~ is

Ir 1 sfDs IIII dD p (DOo, o++ o, 1 D01.0 00.1} 2
m V -7l' aPV

(3.38)

This is an example of a guage-field average of the exponential of a line integral over a closed loop, the
loop being the loop of Fig. 9. The g bracket calculation can be factorized further into separate bracket
calculations for each lattice site, since A, contains no terms involving &}& or $ and coupling different lattice
sites. Consider only the four lattice sites on the loop, for simplicity. By moving the g's around some
(using the anticommuting rule) the bracket becomes

(4.y.&},.e """&t„y,4„e ""'"T&„y„k„&t„ydl.,e ""'"&I.,y, k..e "-'-&I'.y .4, ) .

To make a product of all possible (I&'s and &1&'s

means one must have products of all possible g~'s
and $00's, all possible &I&»'s and $0, 's, etc. In sum-
mary the complete bracket may be written as a
product of four separate brackets. Define

DO =(&t10e " 10T&'10) (3.39)

D~ ——-K Tr(DOy, DOoyOD'Oy, DO „yo) . (3.41}

The matrices D~& and D&„are easily determined.
For example, D& explicitly is

De, e= &„,e p -eg 2„r&e„r) e„e . &R.eel

The exponential can be expanded in powers of c;
assuming the spinors have four components
only the c' term can produce a product of all four
&)10's times all four $,0's; the result is

D&0. 8 ~a B~

(the minus sign comes from the convention that
the bracket is positive when &J'108 appears to the
left of $102). A similar calculation gives

2
t(v (3.44)

The results of this example are easily general-
ized. A term of general order K' is nonzero only

(3.40)

Both D& and D&„are matrices in spin space due to
the spinor indices implied for j», ip, O, g„, and

The full bracket is simply

if the nearest-neighbor couplings combine to form
closed loops (the lattice site at the endpoint of an
open line would have an extra &)&„or $„so the
bracket at n would give 0). The bracket calculation
for a closed loop gives a trace involving K times
a y matrix for each line in the loop and D's for
each lattice site in the loop (except the points n

and 0 where there are currents). The average
over gauge fields involves an exponential of a sum
of 8„„'saround each loop. There can be any num-
ber of loops.

IV. STRONG-COUPLING APPROXIMATION

The gauge field average Z(P) which determines
whether quarks are bound was defined on a lattice
in Sec. III (Eq. 3.13). There are two limits in
which this average can be calculated. The most
interesting limit is the strong-coupling limit
g-~. This is the limit which exhibits quark bind-
ing. A strong-coupling expansion will be derived
in this section.

0
(o,o)

FIG. 9. Elementary square on the lattice.
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The strong-coupling expansion will be the basis
for a reformulation of the gauge-field theory as a
string model. This will also be explained in this
section.

Consider specifically the numerator of Eq.
(3.13), to be denoted f„(P):

Expanding in powers of 1/g', the zeroth-order
term is

f'„'l(P)= IIII dB„, exp i P (+)B„„.
m v L P

1x exp! iQ (a)B„„+,Q e'f~~~J .
P nP. V

(4.1)

This term vanishes, since for a,ny B„„which ap-
pears in g~, there is an integral J",dB„„
xexp(s iB„„)which is zero. Thus one must seek
higher-order terms in g ' which cancel the B„„
in the line integral. The first-order term is

I~."(P)=, IIII dB „gexp i Q (s)B„„+if„,
m v -7 ~7;0 P

The quantity f,„,is itself a line integral of the gauge field; it is the line integral a,round a. square originat-
ing at the lattice site l of size & (unit square). The integral for f~„'!(P) will vanish unless it is
possible to find a unit square such that f,„, cancels completely the line integral Q~(+)B„„. This
is possible only if the path P is itself a unit square. Otherwise the first-order term vanishes and one
must study the terms of order g ' or higher.

The term of order g '" has the form

The only nonzero terms in this sum are those for
which

(4.5)

[See Eq. (3.8) for the definition off„, in terms of
B„„,J This equation can be understood geo-
metrically. Each f&„corresponds to a square of
size a on the lattice. For this sum to vanish the
set of squares defined by f,,„, f,„... must
combine to ma, ke a surface with boundary P. (To
be precise, each f,„,corresponds to a line inte-
gral around a square, and when these squares are
joined to make a surface the line integrals must
cancel along all internal lines of the surface. The
line integrals along the boundary P of the surface
must run in the opposite direction to the original
path P.) See Fig. 10.

For a, given path P the lowest nonzero order in
I„(P}is determined by the minimal area A en-
closed by P, the area A being the area of any sur-
face built of unit squares on the lattice with
boundary P. Then j~(P)-(g') " ', apart from a
numerical factor.

This is the result promised in See. II: The
gauge-field average f„(P) behaves as
exp(-A(lng')/a'J, i.e., exponentiaHy in the area
enclosed by P. Hence, according to the argu-
ments of Sec. II, quark pa, ths will not separate

macroscopically, and there will be no quarks
among the final-state particles.

Consider higher-order terms in the expansion
of I~(P) for given P. There are many such terms
because there are rainy surfaces with boundary
P. In particular, there a,re many ways to combine
subsets of f 's to add to zero so such subsets can
be added to any minimal sum of f's which forms
a surface with boundary P. The simplest example
of a set off 's which add to zero are the set off 's
corresponding to the six faces of a unit cube.
Written out, this gives

j + ' P + ffnp v J n+ff, If, v ~fnv 7f J nip, vm' fnffp fn+v, vfp

(4.6)

which is easily checked using Eq. (3.8). [Equation

FIG. 10. Filling of enclosed area of path I' by elemen-
tary squares.



(4.6) is the lattice analog of the equation
elJ vm o~ P (x}—0 ]

Let A(P) be the minimal area as defined above
enclosed by P. Since one can place a unit cube
anywhere on this minimal area, it means that
there are roughly A(P)/a' more terms of order
g "(g') "~ }I' in the expansion of I„(P) than
there are terms of order (g') " ''. [One can
place unit cubes anywhere in space, not just on
the minimal surface; but when one divides I„(P)
by Z all disconnected terms cancel, as usual. J

This suggests that the 1/g' expansion is not very
useful in the limit A(P) - ~, which is the limit of
interest for quark binding. However, experience
with related problems suggests that I„(P) is not
the appropriate qua, ntity to expand; instead one
should try writing

I(P) =Z 'I„(P)

(gz)-A(P} -c(P.g }

and expand c(P, g') in powers of g
' instead. One

would expect c(P, g'} to be dominated by a term
proportional to A{P), say

c(P, g') =A(P)f( g ')+ 0(P)

(where P is the length of the path P). The crucial
question is the nature of the series for f(g ').
Past experience with similar types of expansions
(namely, the high-temperature expansions of
statistical mechanics: see, e.g. , Ref. 13) suggests
that f(g ') will have a convergent expansion at
least for g ' less than a critical value g, '. How-
ever, no calculations have been done in the gauge-
field theory for f(g ') as yet.

Consider the complete expansion of I(P). Each
nonzero term in the expansion corresponds to a
surface with perimeter P. The complete expan-
sion corresponds to a sum over all possible sur-
faces with given perimeter P. "All possible" sur-
faces include surfaces which intersect themselves
(to take into account terms where a given f„„,ap-
pears several times in the sum f...,,, +

+f...„,,). There is a weight factor for each sur-
face, aside from the power of g ' determined by
the area of the surface. For a simple surface,
the weight factor is 1; the weight is more compli-
cated for self -intersecting surfaces.

Thus, the strong-coupling expansion for the
current-current propagator has the same general
structure as in string models of hadrons. One is
actually dealing here with a double expansion. An

expansion in the coefficient A. (appearing in the
Dirac field action) was needed to define quark
loops on the lattice; the sum of the K expansion
is a sum over all possible quark loops. The g

'
expansion is needed to define surfaces filling in

the quark loops. The sum of the g
-" expansion is

a sum over all such surfaces. This is precisely
the structure appearing in string models: com-
bined sums over quark loops and interpolating
surfaces. However, the loops and surfaces of the
gauge-field theory are defined on a lattice where-
as the loops and surfaces of the string models are
defined on a. continuum. It may not be easy to de-
rive quantitative relations between the two types
of surfaces.

V. VfEAK-COUPLING APPROXIMATION

The weak-coupling approximation will be dis-
cussed briefly, leaving many questions open. Only
the pure gauge field will be discussed. Consider
again the expression

4(P}= IIII
1

xexp,
'

~ Q (*)B„„,g e''
2k" np v

Suppose the integration variables were f„„,, rather
than B „. For small g, only small values of f„„,„
would be important in the integral, in order that
Bee' ~~& be near its maximum value 1. One would
then expand:

(5.2)

Kith this approximation one could extend the limits
of integration on f„„,from +v to +~, with negli-
gible error; one would then have a set of Gaussian
integrals to evaluate.

In practice the integration variables are the
B„„not the f„„, However, one can make a.

change of va, riable from the 8, to the f„„, It is
not possible to eliminate all the 8 „by this trans-
formation, a, nd not all the variables f„„,, are in-
dependent. Nevertheless, the transformation is
sufficient to make I„(P) calculable for small g'.

To ma, ke the change of variables precise, con-
sider a system of flnlte size (1 ==- Pl, " I}}t)w3. th

periodic boundary conditions. Then one can
change variables from the 8, to a subset of the

f„„,plus some gauge transformation variables
Q„, plus four extra variables („, a.s follows:

(i) For n, wI}li, n „n„n, arbitrary, .B„~ (}}.=1, 2, 3)
is replaced by f„„, For B„„,one writes

and replaces 8„,by p„. This is the essence of
the transformation from J3„„ to f„» for p. +0 and
from B~ to 5„. To complete the transformation
one must discuss the surface no =¹
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(ii) For no=%, n, 0N, and n2 and n, arbitrary,
B„„(l),el) is replaced by f„». B„,is replaced by
(t}„, with + (linear combination off„„), (5.5)

B„~= Q„+i (5.4)

(iii) For no = n, = N, n2 o N, and n, arbitrary,
B„„(p,o2) is replaced by f„». B„,is replaced by
p„, with B„,=f„„-—ft}„.

(iv) For n, =n, =n, =N, and n, cN, B„„(y,+3}is
replaced by f„», B„,by 4)„, where B„,= Q„„-—4)„.

(v) For no=n, =n~ =n, =N one writes B„„=t„with
f„being the new variables. One also sets $„=0
for this value of n.

The variables f„» which are not integration
variables (for example, f„„„with p, a0 and vs0,
for n, wf(f) can be expressed in terms of the inde-
pendent f„„„variables using Eq. (4.6); neither
the P„nor &„ appear in these expressions.

When an arbitrary B „ is expressed in terms
of the new independent variables, one finds (g,
is present only if m, =X):

i.e., the P variables define a gauge transforma-
tion and f, represents a translation of some of
the B's. It is easily verified that the integrand
of Z„(P) involves only the f's: It is independent
of both the Q's and g„(the latter does not appear
because any closed path I' has as many -B„,
terms as +B„„terms on the sublattice n, =N}.
Hence the Q„and g„ integrations can be computed
triviaUy. The f integrations are nontrivial be-
cause of the constraint (4.6).

What one wants to accomplish is to reduce the
lattice theory for small g to something like a con-
ventional free gauge-field theory. This means
restoring the B „as the integration variables, but
with infinite limits of integration, and with a
gauge-fixing term included. Suppose, for example,
one starts with

(5.6)

where the o( term is a lattice version of a (V„A„)
gauge-fixing term. This integral can be computed
by explicit Gaussian integration methods rather
more easily than the f„„„integrations for I~{I'}.
In addition, 1„(P)can also be reduced to an inte-
gral over a subset of the f„„„,using the same
change of variables as for I„(P}. The result is
different in this case due to the Q. term which cou-
ples the P's to the f's; also there is no conver-
gence factor for the g integration. To make I„'(P)
well defined and equal to 1„(P), one must (a) put
in a convergence factor for the & integral, i.e., a
term ——,'P(Q„B„„) and (b) add a quadratic form in
the f 's to compensate for the result of the Q inte-
gration of the gauge-fixing term. The author has
not carried through this calculation; but since the
net result is still that Z„(P}=I„'(P) is a Gaussian
integration in the B's, the result will presumably
be similar to the conventional free-field calcula-
tion reported in Sec. II.

VI. PHASE TRANSIONS

In the strong-coupling limit (g-~, K-0) the
gauge theory is far from being Lorentz-invariant.
More precisely, since the action was defined on a
Euclidean metric, it is Euclidean invariance that
is missing. In the strong-coupling limit, vacuum
expectation values decrease rapidly at separations
of only a few lattice sites (there is a factor g 2 or

K or both for each unit lattice spacing of separa-
tion}. This corresponds to the existence of masses
much larger than the cutoff. [The usual rule is that
if a propagator falls as e '~ ~ for x large then the
lowest mass intermediate state contributing to the
propagator has mass I/$. If the propagator be-
haves as g '" for distances x=na, then the cor-
responding mass is 2(lng}/a. This is larger than
the cutoff momentum v/a if g is large. ]

Thus, one is interested in practice in values of
g and Ksuch that the correlation length g is much
larger than the lattice spacing a, in order that the
corresponding mass is much less than the cutoff.
One knows from statistical mechanics that large
correlation lengths are associated with second-
order phase transitions (critical points). Thus
one seeks special values g, and K, for g and K at
which there is a phase transition. "

It has already been argued that there are two
distinct phases for the gauge field, a strong-cou-
pling phase for large g which binds quarks, and a
weak-coupling phase for small g which does not
bind quarks. The arguments given neglected quark
vacuum loops, which is reasonable if K is small.
There should be a transition between these two
phases which would occur at a critical value g,
for any g and any small value of K. This is one
possible phase transition; it is this transition
which was discussed in Sec. II. But, as w'ill be
argued below, this is probably a first-order tran-
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sition rather than second order.
Suppose one wishes to construct a model of

strong interactions using the lattice theory of this
paper with the gauge group separate from ordinary
SU(3) &&SU(3) symmetry. Then the gauge fields
would all be SU(3) X SU(3) singlets, while the quark
fields would carry SU(3) &&SU(3) quantum numbers
as well as gauge-group quantum numbers. A
little thought shows that in the strong-coupling
limit (g-~, K-O), SU(3) x SU(3) is an exact sym-
metry rather than a spontaneously broken sym-
metry. Varying g does not change this situation;
so one must hope that by increasing K one can
change the exact SU(3) x SU(3) into broken SU(3)
xSU(3). If this does not work one is free to intro-
duce additional terms into the quark field action
in hopes of forcing a spontaneous breaking of
SU(3) X SU(3). Suppose, for simplicity, that SU(3)
xSU(3) can be broken by increasing K. Then there
will be a phase transition at a critical value K,
for K where one changes from exact SU(3) X SU(3)
to spontaneously broken SU(3) &&SU(3). If this
transition is a second-order transition then there
will be a large correlation length for K near K„
in this case the theory might be a realistic model
of broken SU(3) x SU(3) for K slightly greater than
K, (with g large enough to maintain quark binding).

In summary, the transition of real interest is
a transition in K (or some other parameter intro-
duced into the quark action) rather than g.

Apart from special limits (g- ~ and K-O, or
g small) it is very difficult to solve the lattice
theory. It is especially difficult to solve the lat-
tice theory near a critical point with a large cor-
relation length. Various methods have been de-
veloped by statistical mechanicians to deal with
this problem. In the remainder of this section
these methods will be discussed briefly. There
are essentially three approaches to consider:
(1) mean-field techniques, (3) series expansions,
and (3) the renormaiization-group approach.

Mean-field techniques'5 are the simplest and
crudest methods for studying a critical point; in-
variably they are the methods one uses first in
studying a new situation. They are used to deter-
mine if there is a phase transition, whether it is
first or second order, and to give rough estimates
of the behavior near the transition. None of the
results of a mean-field calculation are entirely
trustworthy. Examples of mean-field calculations
will be given later.

An example of a series expansion would be the
expansion of the current-current propagator for
small momentum (momentum(&1/a) in powers of
g and K, to high order ing ' and K. Dne then
uses Pade-approximant techniques to look for
singularities in either g or K that wouM be as-

sociated with a mass approaching 0. In simple
statistical-mechanical problems one can generate
12 terms or so in analogous expansions. The ex-
pansion for the lattice theory of this paper is more
complicated, but one could hope to generate maybe
6 or '7 orders with some practice. Series expan-
sions require considerably more effort than mean-
field calculations; they apply mainly to propaga-
tars, being very awkward to perform on three-
and four-point functions, and one must have a
clear idea of what one is trying to learn before
attempting such calculations. See Ref. 16 for one
of the best series-expansion formalisms; see
Ref. 13 for a general review.

The renormalization-group approach is poten-
tially the most powerful and accurate method for
studying lattice theories near a critical point,
but at present the renor malization-group tech-
niques are too limited in scope to be applicable
to the present problem. See Refs. 6 and 17.

Return to mean-field ideas. " The prototype
mean-field calculation is a calculation of the
magnetization as a function of the external field
for an Ising ferromagnet. I et s„be the spin at
site n with values +1 only; let the interaction be

=Kgb' s„s„.„-+hg s„, (6.1)

where K is related to the spin-spin coupling and
h is proportional to the external field. Then

/

,&I=Z '(s, exp KP Q s„s„,„"+h g s„

where ( ' ) means a sum over all configurations
of all spins, and

Z = exp A s„s„,„-+h s„

M = tanh(2dKM+h) . (6.6)

If 2dK&1 this equation has a unique solution for
M as a function of h; in particular, M = 0 for
h =0. For 2dK&1 the solution is multiple-valued;
stability considerations show that one must choose
a solution with M w 0 when h = 0.

In the mean-field approximation, one assumes
that the spins s„,", coupled to s, can be replaced by
their average value M. As a result, the formula
for M simplifies to a sum over s, only, namely

M = Z ' {2~~~+"~'0 (6.4)
$0=" 3.

with d being the dimensionality (3 usually) and

Z ~ ~{2dK hf+h) sa0-
Sa=4 1

The result is
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In this approximation one has actually replaced
Q&s„- by 2dM, which is a good approximation if
d is large. This is generally true of mean-field
theories.

An analogous mean-field calculation can be per-
formed for the lattice gauge theory. In this case
a simple external field term has the form

/gQ (e'~np + e 'en')
np

(this is to be added to the gauge-field action), and

M can be defined to be the expectation value of
e' 0~. The question is whether M is zero in the
limit h-0. In the gauge-field theory e' ou couples
to a product of three other exponentials; as a
mean-field approximation one replaces this prod-
uct by M'. The result of this is that

M=&

2(d —1)
xexp M'+h (e' oI + e 'ao~)

(6.'1 )

where d is the space-time dimensionality, and

Z, = exp, M'+ A (e'so~ + e "o~)"2(d —1)

M =0 for h =0. If g is small then there are solu-
tions with M+0 for h =0, and stability considera-
tions show again that the M+ 0 solutions are pre-
ferred.

In the magnetic case, one finds that the spon-
taneous magnetization M goes to zero for 2dk-1
[from Eq. (6.6)]. However, the gauge-field case
never has a solution for h =0 with M small but
nonzero. Thus there is a first-order transition
at the value of g for which M changes from zero
to being nonzero.

A nonzero value of M in the limit h -0 means
one has spontaneous breaking of the gauge-field
symmetry. So for small g the theory shows spon-
taneous breaking.

A much more thorough discussion of the mean-
field approximation has been given by Balian,
Drouffe, and Itzykson. " A Hamiltonian formula-
tion of the lattice gauge theory has been given by
Kogut and Susskind. ' A clear review of quark
confinement in the lattice theory is given in Ref.
20. Another formulation of the connection between
strongly coupled gauge theories and string models
is given in Ref. 21.
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%'e demonstrate that in asymptotically free gauge theories the wave-function renormalization constants

for spin-1/2 fields do not vanish. (The scalar fields, if incorporated, also have this property. ) However„

there exists a subclass of such theories where the Z's for the gauge fields themselves tend to zero in

the limit of infinite cutoff. These features are shown to be gauge-independent. This suggests the

potentiality of constructing asymptotically free strong-interaction theories in which the only elementary
fields are "quarks" and all other hadrons are bound states.

I. 1NTRODUCTION

Qauge-invariant quantum field theories based on
non-Abelian groups are being actively investigated.
A number of rather unique properties have been
discovered about such theories. These features,
when interpreted optimistically, indicate that non-
Abelian gauge theories may provide the framework
within which theories of strong interactions (or
event unified theories of all elementary-particle
forces) may be constructed.

Gauge theories are renormalizable, ' It has been
shown, by way of the renormalization-group equa-
tion, ' that the origin of the coupling-constant space
is an ultraviolet-stable fixed point only in non-
Abelian gauge theories. 4 This asymptotically free
nature of the theory provides us with a field-the-
oretical explanation of Bjorken scaling —rather
the explanation of lou, t Bjorken scaling is ap-
proached in the deep Euclidean limit. ' This same
property indicates that the effective couplings can
be large in the infrared limit —it just may provide
the desired quark-conf inement mechanism. '

There are also a number of works suggesting
intriguing connections of gauge theories to dual
models and relativistic string models of hadrons. '

This confluence of field-theoretical and S-matrix
approaches to strong-interaction physics is also
indicated by the works of Qrisaru, Schnitzer, and
Tsao." These authors have demonstrated that
vector mesons and spin--,' fermions in such field
theories satisfy the usual criteria of Reggeization:
factorization of Born amplitudes and Mandel. stam
countings. However, as possible candidates for
strong-interaction theories, the class of gauge
theories investigated in their works may have
some drawbacks: These gauge theories are not
asymptotically free and while spin--,' particles
(tiuarks'?) iie on Regge trajectory, scalar fields
do not. (It would seem an unattractive picture of
having spin--, fermions composite, but not all
other particles. ) In this paper we shall use an-
other criterion for the compositeness of fields
appearing in a Lagrangian field theory, i.e., the
vanishing of the wave-function renormalization
constants. Our results suggest the possibility of
constructing strong-interaction field theories
which are asymptotically free and in which the
only elementary fields are quarks and all other
hadrons are composite.

In Sec. II we shall demonstrate, through a
straightforward exercise of solving the renormal-


