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An effective action and potential for composite operators is obtained. The formalism is used to
analyze, by variational techniques, dynamical symmetry breaking and coherent solutions to field theory.
A Rayleigh-Ritz procedure is introduced which replaces arbitrary variations with parametric variations.
Previously unsolved nonlinear equations become, in the Rayleigh-Ritz approximation, solvable algebraic
equations.

I. INTRODUCTION

5r(y, G)
&y(x)

er(y, G)
~G(x, y)

(1.1a)

(I.lb)

Hence the formalism is especially appropriate for
the study of dynamical symmetry violation, which
is characterized by the fact that even though (1.1a}
has only the symmetric solution P(x) =0, sym-
metry-breaking solutions exist for (I.lb}.

In Sec. II we define r(g, G) and derive a series

Field-theoretic descriptions of natural processes
suffer from a serious shortcoming: The only
available method for solving dynamical equations
is the perturbative expansion. Yet it is clear that
there exist phenomena, apparently physically im-
portant, which cannot be easily seen in the pertur-
bation series. Examples are spontaneous sym-
metry violation, bound states, entrapment of vari-
ous experimentally unobserved excitations, etc.
What is needed is an approximation scheme that
preserves some of the nonlinear features of field
theory, which presumably lead to these coopera-
tive and coherent effects.

Recently in the course of various investigations
of spontaneous symmetry violation at zero and
finite temperature, it became possible to sum
large classes of ordinary perturbation-series dia-
grams which contribute to the effective action r(P)
(the generating functional of single-particle ir-
reducible s-point functions), and which preserve
a much richer nonlinear structure than the famil-
iar classical (tree) approximation. ' ' In the pres-
ent paper we continue that development. %'e study
a generalization of the effective action, r(P, G),
which depends not only on p(x) —a possible ex-
pectation value of the quantum field 4 (x)—but also
on G(x, y}—a possible expectation value of
T4(x)4(y). Physical solutions require

expansion for it which is analogous to the WEB
loop expansion previously obtained for I"(p).' In
Sec. III we show that the bubble sum for r(p),
which has been recently performed' ' and which is
dominant in an O(lV)-invariant spinless theory for
large N, is trivially obtained in the present for-
malism. It corresponds to a single graph —that
of the Hartree-Fock approximation. Section IV
is devoted to spontaneous symmetry violation by
bound states. We show that the Hartree-Fock
approximation to r(Q, G) leads to a gap equation
for G, which upon linearization gives the ladder
Bethe-Salpeter model that recently has been of-
fered as an example of dynamical symmetry vio-
lation. ' We also demonstrate how the nonlinear
aspects can be analyzed. Rather than considering
the arbitrary variation (1.1), which leads to an
intractable nonlinear integral equation, w'e per-
form a Rayleigh-Ritz variation which gives a non-
linear algebraic equation. In Sec. V we adopt our
formalism t:o the study of time-independent but
position-dependent solutions to (1.1). We show
that r(p, G) in that case corresponds to the sta-
tionary expectation of the Hamiltonian in a nor-
malized state lg& for which

&tl@(x)lt&= 4(x),

&01@(x)4(y)IC&l.,=,, = e(x)e(y)+«(x, y).

Now, in the Hartree-Fock approximation, (1.1)
becomes equivalent to the variational equations
derived by Kuti, ' in his interesting development
of a functiona1. Schrodinger picture for field theory.

Studies of the sort here presented were initiated
years ago by Lee and Yang, ' and others. ' These
authors concerned themselves with nonrelativistic
statistical mechanics. With the exception of a few
isolated works, ' little has been done to extend and

apply these techniques to relativistic field theo-
ries. We hope that our use of functional methods
to replace combinatorial analysis makes the gen-
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eral proofs more transparent, and that our sample
applications demonstrate the utility of these ideas
for practical calculations.

Evidently it is also true that

5r(y, G) = —Z(x) — d'y K(x, y)P(y), (2.6a)

II. THE LOOP EXPANSION FOR I (Q,G) (2.6b)

A. Definitions

We define Z(J, K), the generating functional for
Green's functions of nonlocal, composite fields
(the derivation will be carried out for Bose fields;
the generalization to fermions is trivial, and will
be indicated in Sec. IV):

g(d K) c((l(()lv& J x(

Since physical processes correspond to vanishing
sources 7 and K, Eqs. (2.6) provide a derivation
of the stationarity requirement (1.1).

Let us observe that the conventional effective
action is merely r($, G) at K =0, or equivalently
from (2.6b), it is r(p, G} at that value of G(x, y)
for which (2.6b) vanishes:

d4 exp —I(4) +
J

d'x 4 (x)J(x)
r(y) =r(y, G,),

6r(y, G.)
5G, (x, y)

(2.'I)

+~ dxdy@ x K x, y 4' y

(2.1 }

The 4 integration is functional. I (@) is the clas-
sical effective action

Furthermore it is known that I (P, G) is the gener-
ating functional in P for boo-particle irreducible
Green's functions expressed in terms of the propa-
gator G.' For example the diagrammatic expan-
sion of

I(4) =
~

d'xZ(x). (2.2a)
6r(y, G)

6&(x)6e(y) .=.

( (e( Jd'x(', ,„,(x..). , (=2.2b)

where D(x -y) is the free propagator

iD '(x —y) = -(Cl+m')6'(x —y) (2.3)

and the interaction Lagrangian Z;„, is at least
cubic in the fields.

I ((f(, G) is adouble Legendretransformof W(Z, K).
We define

Z is the effective Lagrangian, containing gauge
and ghost terms jlf a gauge theory is discussed.
The field 4'(x) can possess components; the speci-
fying index is suppressed. The classical action
(2.2a} may also be written as

((e)- Jd'xi'ye(x)(a '(x -v)e((') ~ (,„,(e(,

is the Feynman-Dyson series for the inverse 2-
point function of the theory, with taro-particle
reducible graphs deleted, and with lines repre-
senting RG(x, y). (The reader may convince him-
self of this by working out all the differentiations. ")

We now describe the series expansion for
r(p, G). We introduce the functional operator
u '(P) by the definition

6'I(e)
6y(x)6y(y)

6'I... (e)iD (x y) +
6 ( )6 ( )

(2 8)

The required series is

r (Q, G) = I(p) + 2 i h Tr LnG " + ,'i h Tr 6 '(P)G-
+r2(P, G)+const. (2.»)

5W( J,K)
6 Z(x)

5W(J, K} = l[y(x) y(y) +«(x, y)l.

(2.4a)

(2.4b)

The trace, the logarithm, and the product S 'G
in the second and third terms are taken in the
functional sense. The constant, independent of p
and G, is evaluated so that (2.'7) is satisfied:

Eliminate 4 and K in favor of Q and G and set

r(y, G) =W(d, K) (d x y(x)d(x)

d'xd'y fI) x x, y Q y

—~A d'xct'y G x, y (2 6)

r(p, G) =I(p)+ ,NTr LnDG '+2M-Tra '(p)G

+r, (P, G) —,'ih Trl. — (2.9b)

r, (p, G} is computed as follows. In the classical
action I(4) shift the field 4 by (t((x). The new ac-
tion I(4+ P) possesses terms cubic and higher in
4; these define an "interaction" part I„„(g;4)
where the vertices depend on Q(x). r2(Q, G) is
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given by all the two-particle irreducible vacuum
graphs in. a "theory" with vertices determined by
I;„,(P;4) and propagators set equal to G(x, y).
Another way to say it is that only those vacuum
graphs are kept which, upon opening one line,
yield proper self-energy graphs. Since the ver-
tices depend on Q(x), and G(x, y) is not merely
a function of x -y, this is not a translationally
invariant theory Ne. vertheless, r2(g, G) is easily
determined by the usual Feynman-Dyson-Nick
expansion. I'(P, G)isof order h', and the number
of loops corresponds to powers of I.

In subsequent sections, formula (2.9) will be
evaluated in illustrative examples and applied in

various contexts. The remainder of Sec. II is de-
voted to the derivation.

B. Derivation of (2.9)

The derivation of (2.9) is facilitated by two ob-
servations. First, note that inasmuch as r(p, G)
is the generating functional (in P) for two-particle
irreducible n-point functions for the theory gov-
erned by the action I(4') (and lines set equal to
KG), it follows that I'(0, G) is the sum of all two-
particle irreducible va.cuum graphs of the same
theory. According to (2.5) and (2.6) this is also
given by

I (0, G) = TrG ' —N ln d4exp ——,'4iD '4+1,„,(4)+@do ——4 ' 4
Br(0, G) 1 ~. . . I Br(o, G)

BG A
'"' k BQ

+ih ln d4exp] —[-,'@ID '4]

=two-particle irreducible vacuum graphs of a theory governed by I(4), with lines representing AG.

(2.10)

rx(p) =W(J, K) —Pd. (2.11)

(In the remainder of Sec. II we use a compact no-
tation where all integrations are suppressed and
derivatives are functional. ) In (2.10) &' is that
value of J which makes BW(Z, K)/B/=p vanish,
i.e. , all tadpoles are removed. The normaliza-
tion factor, frequently omitted since it is a con-
stant, is here explicitly exhibited.

Second, observe that the double Legendre trans-
form (2.4) and (2.5) can also be performed sequen-
tially. Thus we may set, at fixed K,

is equivalent to (2.4) and (2.5) follows from the
equality

BI' (Q) BW(Z, K) BZ BW(J,K) BZ
BK 8 4 OK

@ BK 9K

BW(J,K)
BK (2.14)

To establish (2.9) we use (2.13). According to
(2.1}and (2.13), rx($) is the effective action for a
theory governed by the classical action

Then we define

(0) 1
(4 4 @G) (2.12)

I (4) =l(4}+-,'4K4.

Hence according to previous analysis4

(2.15}

1 (4, G) = rx(y) —-'yKy —-'g TrGK (2.13).

That the definition of I"(Q, G) in (2.12}and (2.13)

rx(4 ) IK(4 ) rlc(4 )

where rf(p} has the representation

(2.16a)

(2.16b)

1 f(p)= 15 ln d4 exp —Ix(4-+Q) —I (p) —4'
»'(4) Br;(4) [

g Bp BQ

=-i~ ln d@exp
@

4 ~+ ~~ +K
Br', (4)

Upon equating (2.9) [which is here viewed as defining r,(p, G)] with (2.13) and using (2.15) and (2.16),
we find

r2(p, G}+const=-~I Tr[IX& '(p)+K] G —~lK Tr LnG '+rf(p). (2.17)

The proof of (2.9) will now follow, if it can be shown that r2(g, G), as given by (2.17), is the sum of two-
particle irreducible vacuum graphs governed by vertices of 1,(P; 4) and propagators G.

We proceed by eliminating K in (2.17). According to (2.6) and (2.9), K satisfies
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——2' =--22kG +2ih S (1j1)+
1 1 . 1 1 -1 2(G)

BG

Hence (2.1'I) is

(2.18)

I;(Q, G)+const = TrG ' ' —iIfln d4exp —~24iG '4+I (4.;4) -4 ' ——4 ' ' 4aI;(4, G) al'"(4) 1 ai;(4, G)
8G 8$ A BG

+ Nln ~ d4exp —[-4'G '4]~.
a ' (2.19)

Compar, „g (2 18) with (2 10) we see that I',(4, G) is precisely the sum of two-particle irreducible vacu-
um graphs in a theory governed by the action —24f G 4 +f„,(p;4), since it has already been previously
shown' that al'r(y)/a1j1 is precisely that value of an external current which makes tadpoles vanish. This
completes the proof.

C. Discussion of (2.9)

The series for I'(g, G) may also be understood in the following way. According to its definition, I'(P, G)

is given by

e'"'@'~'~" = d4 exp —[I(4) + (4 —4)4+ 2'4K4 -——2'4K' 2'lf Tr-G-K]

dC exp —I(4) —(4 —4) 4' ——(4 —1t1)
' (4 —4) + Tr G 4' [. (2.20a)

Upon shifting by Q, which removes the one-particle reducible graphs, we find

I'(Q, G} —TrG ' = -Nln d4 exp —f(p, G; 4) [,ar(y, G)

r(q, G; 4) = r(4, 4) 4 "(4 " -'4 "(~ "4.
8$ 8' 8G

Varying this with respect to G gives

-TrG ' d4exp —I(p, G;4)' =- ' d44 exp —f(p, G;4)
a'I (y, G) i ar(4, G)

BGBG I ' '
] apaG I

d44 ' 4exp
&

f(4, G;4')1 a 21'(4, G) i
BGBG

(2.20b)

(2.21a)

G-' =x-'(4) —iK —Z(4, G)„

where

2i al;(4, G)'kG=a

(2.22a)

(2.22b}

The first term on the right-hand side vanishes,
since the expectation of the field 4 in the theory
with the action f(&j&, G;4} is zero. [This is a con-
sequence of the shift which was performed in

passing from (2.20a) to (2.20b) and was established
explicitly previously. '] The remaining terms in

(2.21a) therefore imply

Jd444exp[(2/a)f(y, G;C)}
Jd4 exp((f/a)f(4, G;4)}

This means that G is the exact connected propa-
gator of the theory.

Turning now to (2.18), we see that

as the proper self-energy part, with no propa-
gator insertions. However, since Z is also given
by a derivative with respect to G of I;, I; must be
two-particle irreducible. For if I", has a two-
particle reducible contribution of the form I'GGI",
then Z would have a contribution of the form I'GI";
but such structures do not belong in Z. The ab-
sence of two-particle reducible contributions to I",
is a consequence of the fact that the propagator G
has no radiative corrections, and is exact.

D. Concluding remarks

Frequently one is interested only in translation-
invariant solutions. In that case, we set 4(x) to a
constant 4, and take G(x, y) to be a function only
of x -y. A generalization of the effective potential
may be defined by

Hut (2.22a) is just the Schwinger-Dyson equation
for the propagator and &(4, G} is to be interpreted

I (4, G) d'. =-I'(y, G)i„„„.„.„„, (2.23)
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The series for V(4, G) can be easily obtained from

(2.9). We define the Fourier-transformed propa-
gator s

G(P) = jd'xe"'" "'G(x-y), (2.24a)

(2.24b)

D(P) = d'x e'"" "D(x -y).
~'

(2.24c)

Equation (2.9) reduces to

V(P, G) = U(P) ——,

'ibad,

IndetD(P)G '(P)

FIG. 1. Two-particle irreducible graphs contributing
to I')(P, G) up to the three-loop level in a AC 4 theory.
The solid line represents the propagator A G{x,y). There
are two kinds of vertices: a three-point vertex propor-
tional to A, q and a four-point vertex,

+V (P, G). (2.26) 4' = (4')' a =1, . . . , X. (3.1)

The determinant and the trace are no longer func-
tional; they apply to the component degrees of
freedom U(Q. ) is the classical potential; -V, (P, G)
is the sum of all the two-particle irreducible vac-
uum graphs of the theory with vertices given by
f,„,(P; 4) and propagator G(P). The vertices still
depend on Q, but this is now a constant parameter.
Since translation invariance is maintained, an

overall factor of space-time volume must be re-
moved.

In terms of V(P, G), the stationarity require-
ments become

The propagator iS ' (P) is

A.in„'{P;x, yI = — 2+m'+ P'(x) 5„6'(x-y)

(3.2)

Vertices of the shifted theory are given by the
interaction Lagrangian

sV(y, G)

8$
(2.26a) (3.3)

BV(P, G)
ac (2.26b)

V(P, G) is a function of Q and a functional of G(P).
Hence only the second derivative in (2.26) is func-
tional.

The sequences of Legendre transforms may be
continued. In this way an effective action can be
defined which depends functionally not only on P
and G, but also on irreducible 3-point, 4-point,
etc. functions. The obvious generalization of (1.1)
is the requirement that the effective action is sta-
tionary with respect to independent variations of
any irreducible Green's function. Details of this
will be given elsewhere. "

Consequently the diagrams contributing to I;(P, G)
are as depicted in Fig. 1, up to three-loop con-
tributions. Each line represents the propagator
hG„(x, y), and there are two kinds of vertices:

III. AN O{N)-INVARIANT SPINLESS MODEL

As an illustration of the general formalism, we
now present an analysis of an O(N)-invariant spin-
less model, governed by the Lagrangian

FIG. 2. Two-particle reducible graphs which do not
contribute to I2{P,G) in a A4 theory. [These graphs
do contribute to the ordinary effection action I (Q).
In that instance the solid line represents the propagator
au(4; x, y). )
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a four-point vertex proportional to ~ and a three-
point vertex, arising from the shift, proportional
to XP,(x). The numerical factors are not indi-
cated; they are determined in the usual fashion by
Wick's theorem.

[If we were computing the ordinary effective
action I'(Q), then the lines would represent the
propagator gB„[P;x,y) and there would be addi-

tional contributions which are two-particle re-
ducible. On the three-loop level these are depicted
m Fig. 2.]

We shall evaluate I'(P, G) in the Hartree-Fock
approximation, which corresponds to retaining
only that contribution to F,(P, G) which is lowest-
order in coupling constant. The relevant graph is
the first entry, the double bubble, of Fig. 1:

I'(rir, G)+ conte=f(4) r+'NTr I nG r+-,'iITru r(y)G-, g' (d'x[G„(x, x)G„(x,x)+2G„(x,x)G (x, x)].
4

(3 4)

From this I (Q) can be obtained by solving for G„(x,y):

51'(y, G)
5G„(x,y)

2
=--,'iaG. , '(x, y)+-,'igm. , r[y;x, yj — [5„G„(x,x)+2G, (x, x)]5'(x -y), (3.5)

G„'(x,y) =u„'[4r;x, y)+ [5„G„(x,x}+2G„(x,x)]5'(x -y).

Eliminating u„' between (3.4) and (3.5) finally
gives, apart from constants,

r (y) = I (y) + -,' i)I Tr I.nG-'

parts of (3.5) it is sufficient to keep only the first
term in the bracket. Thus

g '(x, y)=i CI+m'+
N

y'(x)+Br Xgg(x, x)

+, d'x[G..(x, x)G„(x,x)

+ 2G„(x,x)G„(x,x)], (3.5) Upon defining

x 5~(x —y). (3.5)

where G„(x,y} satisfies the equation (3.5).
It is of course impossible to solve (3.5) for

G„(x,y) e»ctiy. However, a simplification occurs
if we consider the large-N limit, and keep terms
dominant in ¹ In that limit P, is to be taken to
be O(VN), hence u„and G~ are O(1). We decom-
pose

G„(x,y) =5„g(x,y)+G„(x,y), (3.'I)

where G„(x,y) is traceless. To retain the O(l}

X(x) = m'+ y'(x)+-', X@g(x,x)

we find that

g '(x, y) = iÃ+ X(x)]~"(x -y)

A.
Z+ X =a+ m'+ y' —-'iXII(a+ X.

)-'.'
6N

'-'
From (3.6)

(3.9a)

(3.9b)

(3.10)

A.rrrr= fx'x(-', x, r.x r. ——.'xx'r' —, y') ~ —.'rrrrxTxxrx(rx x) ~
xx Jx'x x —m' —

r&
r*

X' — i''X —ap'X +2iiih'Tri n(CI+X). (3.11)

The result (3.11) has been previously obtained. ' '
The power of the present formalism is now ap-
parent: Only one graph has to be evaluated. Our
method in this example is related to the combina-
torial trick which has been previously utilized in
the analysis of this problem. '

IV. DYNAMICAL SYMMETRY BREAKING

We construct the Hartree-Fock approximation

to the generalized effective potential for an Abelian
gauge theory of fermions and vector mesons which
has recently been studied as an example of dynami-
cal symmetry violation. ' A gap equation is de-
rived; in linearized form it coincides with the
Bethe-Salpeter ladder equation which was pre-
viously solved. ' A Rayleigh-Ritz procedure is
developed to study the nonlinear aspects of the
problem.



JOHN M. CORN%ALL, R. JACKI%', AND E. TOMBOUL)S 10

A. Effective potential

The Lagrangian is

g = g(i p —m —g„y& A" —gsr2y&B")g

-B B~

(4.1)

where g =(g„p,} is a two-component field m "iso-
spin" space and v', is the usual Pauli matrix. When

the gauge symmetry

$-e' '2

(4.2)

is spontaneously broken, the 8 meson picks up a

mass M~, and the masses of the fermions split
from the symmetric value m by an amount +&m.
There is a gauge symmetry for the A meson, also,
which remains unbroken.

The generalized effective action for this problem
will depend only on the complete propagators of the
theory: G(x, y) for the fermions and at'"(x, y),
z =A, B, for the vector mesons. A field dependence
is not included, since we do not expect that any of
the fields acquire a vacuum expectation value in
the absence of sources. The formula (2.9) is now

applicable, with the field variable eliminated and
with the following modification which reflects
Fermi statistics: All factors of --, appearing in
(2.9) are replaced by 1." Moreover, since we
seek a translation-invariant solution, only the
effective potential is of interest.

Thus for our problem we have

V(G, a,.) =-i J, tr[lnS "(P)G(P) S'(P)G(-P)+ Ij

d'
+-,'I t „ tr[inD-'(P)~, (P) -D-'(P)~, (P)+1j+V,{G,n, ).

J 2Ã/
(4.3}

Space-time indices on the boson propagators have
been suppressed, and in Sec. IV h = 1. S(p} and
D""(p) are the free propagators:

S(P) =

V2 (G, 6,. ) = 2 i
(=A, B

tr I", G(P)I',.'G(P + 0)

xz, „,(i:)
I'a =gs&"T'

(4 4)

+9" —gP" p Pp "/pm

As is discussed below, the Landau gauge must be
used for consistency with the subsequent analysis.
In the Hartree-Fock approximation V, (G, E,) is
given by the graphs of Fig. 3, where the solid lines
represent G(P), the wavy line represents 6„""(p},
and the zigzag line represents hs""(P). The analytic
expression is

The reason for using the Landau gauge can now
be explained. Our Hartree-Fock approximation
replaces the complete B"gg vertex by the free ver-
tex. But in a spontaneously broken theory, this
vertex has a Goldstone pole, which certainly is not
in the bare vertex. The approximation therefore
makes sense only in the Landau gauge, since then
the Goldstone pole is annihilated in all vacuum
graphs.

B. The gap equation

Demanding that V(G, n. , ) be stationary against
variations of G gives from (4.3}and (4.5)

G- -S-'. g r, GI;n, (4.6)

For notational simplicity, all integrations are
suppressed. Equation (4.6} is also represented
pictorially in Fig. 4. The symmetry-breaking
part of G ' is proportional to &,. Since S ' has no
such contribution, the symmetry-breaking part

PIG. 3. Hartree-Pock approximation to V2{G, b; ). The
solid line is the fermion propagator G; the ~avy line is
the boson propagator A~; the zigzag line is the boson
propagator 4~ I"z and 1~ represent the fermion-boson
interactions and are defined in (4.5).

PIG. 4. Equation satisfied by the fermion propagator.
S is the free fermion propagator, given in (4.4).
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/Xv=V= —r 6 ~ & Q r

FIG. 5. Equations satisfied by the boson propagators.
D is the free boson propagator, given in (4.4).

satisfies a homogeneous, nonlinear equation. Even
when the meson propagators are replaced with
their free form, Eq. (4.6) remains nonlinear and

intractable. [In that approximation (4.6) is the gap
equation proposed years ago by Johnson and oth-
ers. '~] When the equation is further simplified by
linearizing the Fermi propagator, i.e. , setting
6 ' =S"' —Z, t" =S+SZS, the symmetry-violating
part of (4.6) coincides with the ladder Bethe-Sal-
peter equation, which, as has been shown pre-
viously, ' possesses symmetry-breaking as mell as
symmetry-preserving solutions.

The equations for the Bose propagators are ob-
tained by varying V(G, n, ) with respect to n;. One
finds

(4.7}

3
2 (8'z —ga )+0(&~ «gs ). (4.10b)

Because ~ is small, it is a good approximation to
take

Z„(p') = - I 6m', .
I
-p2) m&

(4.10c)

(This ignores various threshold effects, which in

any event are mashed out in subsequent integra-
tions. ) The normal part Z„ is quadratic in the
coupling constant and is set to zero. Before dis-
cussing Z~, we turn to the meson propagators.

We define

FIG. 6. Linearized gap equation for Z~, the symmetry-
breaking part of the proper fermion self-energy. + is
also denoted by V, and dashed lines represent free prop-
agator s.

Graphically this is represented in Fig. 5. In its
Iinearized form, the equation, together with (4.6},
implies that the B meson acquires a mass (see
below).

We shall need the results of the linearized theory
for the subsequent analysis. Hence me summarize
them nom.

G-' =S-' —Z,
Z=Z +Zq+Z

(4.8a)

(4.8b)

Z~ is the symmetry-violating part, proportional
to ~, . Z„+Z~ is symmetric, where Z„ is that

part of the self-energy which is also present in

the normal solution while Z~, though symmetric,
arises from the symmetry-violating properties of

the theory. The Linearized equation for Z~, which
follows from (4.6), is given below and in Fig. 6,
where the insertion V represents Zv (dashed lines
are free propagators):

Z, =- r, SZ„Sr,D.
i=A, B

(4.9)

The solution to (4.9) is'

p2
Z „(P') = i6m-

I
- (PI » m2 nl' (4.10a)

C. Summary of linearized theory

The linearized theory is analyzed for gA', g~'«1.
For the fermion propagator, me define

(4.11)

For the A propagator, which has no symmetry
breaking, Il "(p') is dropped since it is O(g„'). For
the B propagator, G in (4.7) is expanded in powers
of Z, from (4.8a). We seek the symmetry-violating
part, hence only Z~ is kept. It is sufficient to go
to second order in Z~. All other terms mhich are
not kept are quadratic in the coupling constant. It
was found' that the symmetry-violating part of
lie(p'), Iisv(p'), behaves like a constant near p'=0;
and more recently it was shown that Ilsr(P'} de-
creases at infinity":

II'(P')
I
-P2j ~ e2

The B-meson mass is also calculable':
2

(4.12)

(4.13)

We shall not use this formula for M~'; rather it
shall be derived below. [The approximation scheme
which yields (4.12) is not gauge-invariant in that
the vacuum-polarization tensor for the B meson is
not transverse. However, since we are in the
Landau gauge, only the g"' part of that tensor
survives when the complete propagator (4.11) is
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formed. The final results are gauge-invariant. "]
Note that the symmetry-violating objects Z~ and

Ils»(p2) are of zeroth order in the coupling constant.
Finally, &2 is determined. When (4.8) is in-

serted in (4.6) and iterated, one finds"

y (I) + g(2)
S S + S

&,"'=- P r, sz, sz, s,
$=A2B

(4.14)

The graphical representation is in Fig. 7, where
the large dot represents the symmetry-breaking
8 mes-on self-energy given by (4.12). Note that

Zs is proportional to the symmetry-breaking pa-
rameters (5m)2 and Ms2 and is second order in the
coupling. For large p, I'2(p} decreases like
(P'/f ')(-P'/~') ".

I'IG. 7. Equations giving Zs, the contribution of
symmetry breaking to the symmetric part of the proper
fermion self-energy. The large black circle represents
&VB

D. Raylcigh-Ritz approximation

By performing an arbitrary variation on V(G, A, )
nonlinear equations emerge which can only be
solved in a linearized approximation. %'e now

develop a strategy for analyzing the nonlinear as-
pects of the problem. Rather than performing
arbitrary variations, we evaluate V(G, n. , ) with
specific, parameter-dependent expressions for C
and 4„and then vary these parameters. The
forms for the propagators that we shall use are
solutions of the linear theory, ' summarized in
Sec. IVC. They depend on the symmetry-breaking
quantities ~m, MB2, and c. Our goal therefore is
to write down an effective potential which depends
on the numbers &m, MB2, and e, and whose mini-
mum approximately determines them. [Clearly,
&m plays the role of some suitably regularized
expectation value (g(x) r2$(x)}.j However, we
must insure that our formula is free of diver-
gences. A priori one can expect to encounter
quartic, quadratic, and logarithmic divergences.
In fact all these divergences are absent for the
following reasons.

The quartic divergences disappear if we sub-
tract from V(G, 6,) the same expression evaluated
at symmetric forms for the propagators, denoted

BQ
n =-,'Dm

a~m „.,B

BA
+ MB2

g 2=0,"6m=0B

+higher powers of the masses. (4.16a)

» Sa/66m„2 2 only terms linear in 6m are kept.
But it is also true that

sn d'p, sG(p) 6V(G, n, ) ~

66m „2, (2v)' 66m 6G(p)
~, „,2, '

(4.16b)

by the subscript N. [In scalar field theories this
is accomplished by setting V(p)~&-o =0.] We there-
fore consider

0 = V(G, 6,}—V (G, n,. ). (4.15}

It was shown previously that the quadratic diver-
gences are also absent, provided the propagators
solve the linearized theory; specifically provided
that e is given by (4.10b)." [It is unnecessary to
require that Ms2 be given by (4.13}.] This is be-
cause any quadratic divergence in 0 is proportional
to (5m)2 or Ms2. (0 has no dependence on odd
powers of 5m or Z» since tr»2=0. ) It is easy to
show that these terms vanish when the propagators
satisfy the equations of the linearized theory:

8Q d'P s~g "(P) 6V(G, ~, )
eM,2 „, , (2v)' sM, 2 6d,g "(p),„.. ..,

sG(p) 6V(G, n, )
s Ma' 6G( P)

(4.16c)

Since only terms linear in 62n matter in (4.16b),
the symmetry-breaking part of G(p) must satisfy
only the linearized equation for 5V(G, 6,)/5G(p)
to vanish. In (4.16c) all symmetry-breaking pa-

rameters are set to zero. Hence that term will
vanish provided h~s" (p) satisfies its equation up to
symmetry-breaking terms. Therefore when e is
fixed by (4.10b), and is not viewed as a variational
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parameter, there are no (5m)' or Ms' terms and
no quadratic divergences.

Finally, the logarithmic divergences are re-
moved by the power-law falloff in the mass opera-
tors (4.10) and (4.12). What could be a possible
logarithmic infinity becomes a finite term propor-
tional to an inverse power of c. Such terms nec-

essarily involve (5m)', Ms', and (5m)'Ms'. lt is
the inverse powers of e that spoil ordinary per-
turbation theory, since c is O(g„', gs'). However,
once they have been isolated, the weak-coupling
limit may be taken with impunity.

According to (4.3) and (4.5}, Q is given by the
following symbolic expression:

Q(it~, M »)2=- itr[»G»'G G-»'G+I]+hi Q tr[»&;» '« —&;» '&i+I]
i "-A, B

+, t,Z„[G G„] —,'i p trii'»'[« —~,»]+-,'i tr[r, Gr, G~, —r, G„r,G»«»]. (4.17}
f =A, B

The exact variational equations for the normal
propagators have been used to eliminate S ' and
D ' in (4.3) in favor of the complete, normal prop-
agators G~ and 6f„. These equations are, of
course,

fi Q tr[r( Gr( G« —r( G» r( G» «»]
f=A, B

= -i trZ»[ G —G»]+ 2i Q trII»[ « —ii, »] +0,
f =A, B

(4.19)
Q = -,'i P tr[r, Gr, G - r, G„r,G„][ ~, —~,„]

f =A, , B
C~ '=S ' —Z~, (4.18a)

+-,'I g trr, [G-G„]r,[G-G„]it,„.
f =A. , B

Z r;G»ri«» (4.18b)

(4.18c)

(4.18d)

The last three terms in (4.17) may be combined.
Observe that the last term may be rewritten, with
the help of (4.18), as

Hence the last three terms in (4.17) can be re-
placed by Q. [It is important to appreciate that it
is entirely legitimate to use Eqs. (4.18}t o»mp» fy
the dependence of 0 on no~maL propagators. It
would be illegitimate to make corresponding re-
ductions on the symmetry-breaking propagators,
since they contain variational parameters. ]

Equations (4.17) to (4.19) for Q are exact (in the
Hartree-Fock approximation}. They will now be
approximated. First we set G„=S, EN=0, 6f„
=&A=D, IIA=O. Consequently,

Q(5m, Ms)=-i tr[l nS'G —S '0+1]+—,'i g trI', [G —S] I', [G —S]D
f =A, B

+2itr[lnD 'Os- D 'os+1]+ 2itr[ r»GrsG —r~»S] [ as —d] . (4.20)

The evaluation proceeds by inserting Eq. (4.8}
for G, with Z„=0, and Z» and Z~ given by (4.10)
and (4.14}, respectively, while as is set equal to
(4.11), with lie(p') = Ilvs(p') given by (4.12). We
keep only terms that are proportional to inverse
powers of the coupling (these come from inverse
powers of e}, as well as terms of zeroth order in
e and coupling. That is, we set e to zero every-
where as long as no divergence arises; if & =0 is
not allowed, (4.10) and (4.11) are used. Moreover,
even if a divergence is present at e =0, terms
that are multiplied by higher powers of the cou-
pling constant are dropped.

Rather than integrating immediately, it is con-
venient to simplify. %e rewrite the logarithm of

the first term in (4.20):

i tr 1n6 'S = i tr in(1 —Z „S—Z» S) . (4.21a)

This is expanded in powers of Z~. Chly the first
power is significant; higher powers give contribu-
tions O(g„', gs'). Thus we may replace (4.21a) by

itr In(1 —Z„S)—itr zsS
1-Zvs

= i tr ln(1 —Z„S)—i t rZ ~ G . (4.21b)

Next we analyze the second term in (4.20), which
is a two-loop integral. Note that the 1", 's provide
two powers of the coupling strength. Thus for
present purposes it is sufficient to keep only terms
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which diverge when &=0 (it is easy to verify that no e ' terms are present):

ai g trI', [G —S]I', [G —S]D =i p tr[ G —S]I";[G —S]I', D —,'i —g tr[ C —S] I', [G —S]I,D
i=A, B $ =A, B f =A, B

=i Q tr[G —SJI", [SZ S+SZ„SZ„S]I',D —'i -Q tr[SZ S]I', [SZ S]I', D
&=A, B f =A, B

'i——p tr[SZ„SZ„S]r,. [SZ„SZ,S] I",D. (4.22a}

In expanding 6 —S, Z~ has been ignored compared to Z~, and only the first two powers of &„are kept. All
terms that are dropped lead to convergent integrals at e =0, hence they are at least quadratic in the cou-
pling. Also, only even powers of Z» survive the trace. Equations (4.9) and (4.14) allow us to recognize
that (4.22a) is equivalently

-t'tr[G —S] [Z»+Zq' ]+~itrsz»SZ» + ~i trSZ»sz»Szs'

=-itrG[S ' —G ' —Zis'i]+itrszis'i+wtrsz»SZ»+ ,'itr—sz»SZ»szs'i. (4.22b)

consequently the first two terms in (4.20) re-
duce to the following, with the help of (4.21) and

(4.22):
itr ln(1 —Z»s) + ~itrZ»SZ S+ i trZi'&G

itrz-s G +i trzs' S+ qi trsz»SZ»SZ~~'~ . (4.23a, )

itrln(1 —Z„s) + ~itrz»sz»s

+-,'i g tr[SZ„SZ S]I",[SZ SZ S]I',D (4.24).
i =A, B

The last term in (4.20) is also expanded in powers
of Z~. The significant contribution is

The last four terms in (4.23a) combine to

i trZs' [S- G] + 2i trSZ»sz»szs'

~i trSZ„SZ»SZg' . (4.23b}

'i tr[ S-Z S] I' [SZ„S]I' [ & - D]

+ i tr[ S]I"s[ SZ»SZ„S] I' s[ &s —D] (4.25)

Therefore the final, simplified expression for the
first two terms in 0 is

%e thus arrive at a completely reduced formula for
0:

II(6m, Ms2) =i trln(1 —Z»S)+ ~itrz»SZ»s+ ~i g tr[SZ, SZ,S]r, [SZ,SZ, S]1',[D]

+ 2i tr[lnD 'd, s —D 'd, s+ I] + ,'i tr[SZ»s—]I'a[sz»s] I s[ nell»D]

+itr[S]1,[SZ,SZ, S] I',[A, il„'D] . (4.26)

We have replaced d,s-D by C sII»D. A graphical representation for (4.26) is give~ in»g. 6.
The integrations are straightforward, subject to a minor ambiguity mentioned below. The final result is

+ 1 —4eln, —2e —,+ 1 —4@in, +e +O(g„,gs ).3Ms4 Ms' 3gs M s'(5 m)'
128m2 e rn 2 — 128m'2 m 2 (4.27}

All divergences are absent, as anticipated by our
general argument. The first two terms in (4.27)
come from the first two terms in (4.26). The third
term in (4.26) gives no significant value. The
O(Ms') term in (4.27} arises from the fourth term
in (4.26). The O(Ms'(6m)') contribution to 0 re-
sults from the last term in (4.26). The ambiguity
occurs in the terms that are Eeroth order in the
coupling. They receive a contribution both from
asymptotically large and from finite momenta.
This ambiguity could be resolved by specifying

5m'

=gx ~gs +1.
(4.26)

more exactly the transition between the power-law
behavior (4.10a), (4.12a) for Z„, ll„and the low-

energy behavior (4.10c), (4.12b). However, various
reasonable transition behaviors make only a small
difference in the numerical coefficients.

Variation of MB' yields
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In deriving (4.28), we have assumed that

l4ein(Ms'/m') l
«1. This means that Ms' cannot

become arbitrarily small or large compared to
m'. Equation (4.28) coincides [up to O(e) terms]

with (4.13), giving us the promised derivation of
that result. We substitute the value (4.28) for Ms'
into (4.27) and obtain an effective potential which
depends only on Qn:

Grn 5nz '

(4.29)

This has a minimum at

(4.30)

(
125 0.06 0.32 0.64—

m 3 e e(r ' —1)' (r ' —1)'

(4.31)
provided that quantity is positive; also it must be
less than I. Furthermore, we have dropped
4&ln[a3/(r' —1)](5m/m)' compared to 1 in (4.31);
this approximation was already appealed to in the
calculation of M~'. There are two kinds of solution
to (4.31). First, when r is large compared to 1,
the last two terms in the brackets of (4.31) may be
ignored and e comes out to be =0.06. In this case
M~' «m'. As r approaches 1, the second term in
the brackets becomes negligible compared to the
third. Then (r' —I)' =0.64(1 —I/2e) and it must be

Because the underlying physical model is unreal-
istic, we shall not pursue a detailed study of
(4.29), beyond noting the form for small Gm/m

(lcm/m l
must be less than 1; otherwise 0 becomes

complex):

(5m)' 25(6m)' (6m)'
32m'e 48m' 120m'm'

that ~ ~ —,
'

~ It is not clear whether such a large ~ is
really consistent with our approximation scheme.
In any case for these solutions Ms' =m'. [The re-
quirement that l4e ln(Ms'/m')l «1 is not very re-
strictive and can be easily met ]

E. Discussion

Observe that the form (4.29) is reminiscent of
the effective potential in a theory with scalar me-
sons, where 5m plays the role of the scalar
fields. " There is a quartic term in 5m, followed
by a logarithmic one. The main differences are
the appearance of inverse powers of the coupling
constant, and the fact that 0 becomes complex for
I5m/ml &1.

It is interesting to contrast the present results
with the linear theory. Now 5m is calculable and
there are constraints on the coupling constants
(e and r). In the linear theory, neither of the two
conditions is present.

In a further investigation, we hope to survey
graphs that contribute beyond the Hartree-Fock
approximation. It is most important to ascertain
whether it continues to be possible to select the
dominant contribution, for small coupling, and
whether our present results are stable against
higher-order corrections.

pl) + l/2
/

7i

V. STATIC, POSITION -DEPENDENT SOLUTIONS

There is considerable interest in finding solu-
tions to field theory which correspond to an energy
eigenstate l P} in which the expectation of the field
4 is nonvanishing and non-translation-invariant,

+ [/2IA t'} I l '9 IA +
/

l /2 I E) p- ~' w 'v Q I p

Q I),

-I/Zgf) ] l

vW

—I/2

+ l/2 I'q
C

F~

FIG, 8. Formula for Q(6m, M~2).

(CI4(~) ls) =4(~). (5.1)

Since lg) is an energy eigenstate, Q(x) is time-
independent, @(x)= Q(x). Although at the present
time the physical interpretation of these states has
not been firmly fixed, physical intuition suggests
that they correspond to coherent excitations, not
unlike the familiar Thomas-Fermi nucleus of con-
ventional theory. One might suppose that the ob-
served, physical particles correspond to such
states, while the excitations associated with the
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underlying fields are trapped for some marvelous,
as yet ununderstood reason.

We demonstrate that the formalism, which we

have here developed, provides a natural frame-
work for a study of these questions. We first show

that F(P, G), for static g and G, determines the
stationary expectation value of the Hamiltonian H
in a normalized state

I g& for which

( pic (x)lq& = y(x), (5.2a}

& 01@(x)@(y)I g&l.,=,,= 4(x)4(y)+ ~G(x, v),

&CIHle&- ~&ale& — dx J(x)&el'(x) le&

~dy K(x, y)& 0 IC (x)c (y) ly&l.,=„, (5 5)

Clearly
I P) satisfies the equation

H d—xJ(x)C (x)

dxdyK(x, y)@(x}@(y)I.,=„jq& =e Ie& . (5.8)

&&IHI&& =E(y, G).

(5.2b)

(5.3)

Thus Ig& is an energy eigenstate of a theory
governed by a ~odified Hamiltonian or, equiva-
lently, by an action with source terms added to it,

(The operators are all evaluated at a fixed time
x'.)

For static solutions, I'(P, G) is time-translation-
invariant, and has an overall factor of time "vol-
ume. " The relation between I'(P, G} and E(Q, G)
will be shown to be

-E(y, G) df=r(y, G)l„.„, . (5.4)

[The precise meaning of I'(p, G) I„„,, is spelled out

below, ] Thus we see that the stationary require-
ments on I'(p, G), (1.1), are merely instances of
the quantum-mechanical variation principle.

E(P, G) is computed for a scalar self-interacting
field theory in the Hartree-Fock approximation and

the equations for p and G are derived. Next, fol-
lowing Kuti, a Schrodinger picture is introduced,
and the abstract variational principle is realized
in a functional Schrodinger equation. Kuti's
Rayleigh-Ritz method of solving this equation' is
shown to be equivalent to our Hartree-pock ap-
proximation.

d'x Z(x) + d'x J(x)C (x)

+-,' d'xd'yK(x, y)4(x)C(y),

J(x) = J(x), K(x, y) = 5(x, —y, )K(x, y) .
(5.7)

The energy eigenvalue of this problem is e. We
restrict the discussion to the lowest energy eigen-
state.

It is known that the energy of the lowest state is
also given by

W(J, K) = —e dt, (5.8)

,W(J, K) =& VIH-ly& — dx J(x)& y IC(x) iy&
1

where W(J, K) is defined in (2.1). (The time infinity
may be removed if the sources are considered to
be acting over a large but finite time interval. )
Hence we conclude that

A. Physical interpretation of l"(P,G) ),,„„.,
The problem of finding all the bound states of a

general quantum theory, and specifically of a field
theory, may of course be formulated as a varia-
tional principle. One seeks the states Ig& which
make &flHI&& stationary against arbitrary varia-
tion of P&, subject to the normalization constraint
& g I g&

= 1. Rather than performing the arbitrary
variation in one fell swoop, it is convenient first to
perform a restricted variation, where certain
quantities are held fixed, and then to vary these
quantities.

%'e choose to require additional constraints:
The expectations of 4(x) and of 4(x)4(y)l, , are
fixed. Imposing all conditions with the help of La-
grange multipliers, one is led to consider the vari-
ation of

'fdxdy K(-x,-y)& 4 I4 (x)c(y) Ig& I.,=„,

df. (5.9)

=r&qlc( )ly&

=ry(x),

5K(„-'-) = l&&tl4'(x}@(y) IP) I.,=„,
(5.10a)

,'r [ @(x}p(y)+@G(-x,y)]

Varying this with respect to J and K and recalling
that lg& is a normalized eigenstate of the modified
Hamiltonian, we find
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&Clfils) =E(4, G)

= ——)W(J, K) —J d'x J(x)y(%}-—,
' fd'x d'yK(x, y)[4&(z)4&(y)+hG(%, y)] (5.10b)

The right-hand side of (5.10b) is -(I/r)r(y, G)l„„,,
[compare with (2.4) and (2.5)]. The precise mean-
ing of r(P, G) l„„;,. is as follows. First r(P, G) is
evaluated with time-translation-invariant forms
Q(x) =P(%); G(x, y}=G(x,—y„%,y). This does not
yet give r(p, G) l„„;„sincewe still must express
G(x, —yo; x, y) in terms of G(x, y). From (2.21b)
and (5.10a) we see that G(x, y) =G(0;x, y). The de-
sired relation is obtained from the equation

r(p, G) + const = I(p) + —,'ih Tr LnG '

+-,'ih Tr n-'(y}G

d'xG x, x G x, x,

where
(5.14}

in '(@;x, y}=-[ + I'+-,'X4&'(x}]5'(x -y}.

,'nK(x, y-)
5r(y, G)

5C xo —yo;x, y

= --,'h5(x, —y,)K(x, y) .

The equation

5r(y, G)
, = --,'h5 (x, —y, )K(%, y)&t"&x, y&

(5.15)

I»;a&=exp(-& a r' (5.11)

Once G(xo —y, ; x, y) is known in terms of G(x, y),
r(p, G) can be expressed as a functional of 4&(%)

and G(x, y). This then is r(&f&, G) l„„;,."
The arbitrary variation is now completed by

varying E(p, G) with respect to p and G, and de-
termining values for 4& and G which render E(P, G)
stationary. For a physically sensible system,
there will always be a solution with constant p cor-
responding to the vacuum expectation value of
4 (x).

There may also be a solution with a position-
dependent Q(%). This then corresponds to a non-
translation-invariant energy eigenstate l &l&}, with
eigenvalue E(P, G). l &l&} is uoi the vacuum, since
we do not expect translation invariance to be spon-
taneously broken. Since the underlying theory is
translationally invariant, the state lg) is infinitely
degenerate with respect to energy. One can con-
struct other states by an application of the momen-
tum operator P,

implies

G '(x, y) =-if&(x' —y')K(x, y)+u '(y; x, y}
+-,'i~hG(x, x) 5( -xy) (5.18)

G '(x, - y, ;%, y) = i5 "(x,- y, )5(%- y)

+f5(x, —y, )f(x, y) .

Hence if we define the Fourier transform

(5.1V)

G '(&u;%, y) = dx, e' *OG '(x, ;x, y),

we find

G '((u;x, y) = i(u'5(%-y)+if-(x, y),

G(~;%, y) =, (x, y),

(5.18a)

(5.18b)

where the inverse in (5.18b) is taken in the func-
tional sense in the x, y variables. It follows that

G(», y) =G(o;x, y)

Time-translation-invariant solutions to (5.16) are
clearly of the form

Each of the states l&}&, X} has the same energy, and

(q;%le(x)ly;a) =y(%+a). (5.12)

Momentum eigenstates may also be formed:

(x, y)„2v &y f-
1/2( )

l4& =/ d* ~(mt& ~ I&;~&. (5.13)
or

f(x, y) = —,'G '(x, y) . (5.19)

B. Sample calculation
Hence G(xo —y, ; x, y) is expressed in terms of
G(x, y) by

We compute E(4&, G) for the self-interacting Bose
field considered in Sec. III. For simplicity, and
to make contact with other work, we consider only
one field, f&f =1. From (3.4)

G '(x, -y„%,y) =i5 "(x,—y,)5(%- y)

+ g' 5(x, —y, )-,'G '(x, y),

(5.20a)
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G '((u; x, y) = i-(u'5(x -y)+-,'i G '(x, y). (5.20b)

We can now evaluate I'(p, G) ~,.„„„.The first term
on the right-hand side of (5.14) gives simply

2'l @ dXp —Tr Ln(-(o +-,G )2 I - 2

2m

dx, TrG-'(x, y)
\

dx, J d x -„.
'
[ i4 (x)] '+ m 'y'(x} + 4, p'(x}

dxp d x G '(x, x) . (5.21b)

(5.21a)

The second term is evaluated in the Fourier rep-
resentation:

Constants have been dropped and both Tr and Ln
refer to functional operations in x, y variables.
The third term is

2ih d'xd'ygl '{p;x, y)G(», —J„'X,y)

2

=-,'g d'»q-, G(»„X,y) + v, 'G(0;x, y) i-, ;-[m'+-,'Xp'(x)] G(0; x, x)
(+0 xp=p

d», dx —&u'G(~; x, x) + v, 'G(x, y) -„-- [m'+ -,'Zy'(x)] G(x, x}
I -- 2'

dip dX 4G X, X +Qg G X, y ~ — — PP'l + 2A. Q X Cr X, X (5.21c)

Again constants have been dropped when (5.20b) was used to evaluate the ur integration. Finally, the last
term in (5.14) is

-~8Ak' dx, dxG 0;X,x G 0;X,x =-+A~& dxp dXG X X G X X (5.21d)

Collecting all the terms in (5.21) we get I'(Q, G) ~„„;,, hence E(Q, G):

E(y. G) = dxp[Vy(x)]'+-', m'y'(x)+ —,y'(x)

+-,'-h[-V, 'G(x, y) ~-„-„+m'G(x, x)+-,'Xy'(x)G(x, x)]+~BIG '(x, x)+—,'Zk'G(x, x)G(x,x) . (5.22')

+ k-,'Xy(x)G(x, x),
—,'G '(x, y) = [-v'+m'+-, 'Xy'(x)

+ h —,'zG(x, x)] 5(x —y).

(5.23a)

(5.23b)

Consequently the energy of the physical state ~g)
is

dX &A/4 X +@A@2 X Q X, X)-AG X, X

The equations which are obtained from varying
P(x) and G(x, y) in E(&p, G) are

0 = -r 'y(x) +m'y(x) +&z4'(x)

Fock approximation which modify the mass term
m' by the position-dependent quantity /I —,'AG(x, x).

C. Schrodinger representation

An entirely different approach to the study of un-
conventional solutions of a field theory has been
developed by Kuti. ' Here we review his develop-
ment and show that it leads to the same results-
Eqs. (5.22), (5.23), and (5.24)—as our method.

An abstract quantum-mechanical state may be
realized by a "wave function. " For a field theory
involving the field operator 4(x), the wave function
is a functional of a c number 4(x) (the time is
fixed, hence suppressed}:

+ O'-,'XG(x, x)G(x, x)], (5.24)
(5.25a)

where P(X) and G(x, y) satisfy (5.23).
In the classical limit II -0, P(x) is a solution to

the classical equation of motion, and G(x, y) is the
classical propagator. The quantum corrections
are the self-consistent corrections of the Hartree-

The action of the operator 4 (x) on
~ $) is realized

by multiplying 4{4] by 4(x):

4. (x) ~4) -4 (x}4{4). (5.25b)

The only other independent operator in the theory
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is the canonical momentum II(x). The action of
that operator on lg& is realized by functional dif-
ferentiation

J
r 2 2

dx —— . +-,'[i4(x)]'+ m'4'(x)
2 M x)54x

rl(x) Iij& --. 4{4}. (5.25c)
+—4'(x) 4'{4j = E 4{4j . (5.27)

4l

Finally, the inner product is defined by functional
integration:

(p, !g,&- dC 4,*{4}4,{4}. (5.25d)

More precisely what is being done is introducing
eigenstates at fixed time of the field 4(x). When
these states are denoted by I4&, the wave function
4{4}is merely

(4 Iy& =4{4}.

The analogy with ordinary quantum mechanics is
clear.

Energy eigenstates satisfy the Schrodinger equa-
tion

A direct solution of the functional integro-dif-
ferential equation is of course impossible. Let us
return, however, to the variational principle which
can be used to derive (5.26). We demand that

& y i+i y& j d4 j d F4*{4}X4{4}
((ig& f d4 i4{4}I'

be stationary against arbitrary variations of 4{4}.
In the usual fashion, this yields (5.26). The form
of

()IHIP'&

can be computed as follows. We define

@(x) = f dC 4(x) i4 4}i'
(5.29a)

j d4 C (x)4(y) I4{4}!'
y KG 'y fd414{4}i

(5.29b)

It follows that

dx X —. , 4(x) 4{4}=~&{4}, (5.26) (5.30a)

where R.{II(x),4(x)} is the Hamiltonian density.
The time development is

4{'I }=e-ist/h 4{4}
For example, in our Bose model (5.26) is

«4(x)4(y)14{4+ ~j I' =«(x, y) « I4{4}I'

(5.30i )

Hence (g

IHIP'&/(g

Ig& for our Bose model is given
by

dx —.'[vg(x)]'+ —,'~'p'(x)+ —,4'(x)+-,'+[-~, 'G(x, l)l-„;+m'G(x, x)+-,'~y'(x)G(x, x)][

+' d4 I4{4}I' d4
/

dx ia' +—[4'(x)+ 4y(x)4 (x)] I4(4 ~ 4) I2[ (5 31)
I, , 544

M (-)

[We recognize that the first integral in the exact
formula (5.31) coincides with the corresponding
terms in our approximate expression for E(p, G)
in (5.22). The second integral in (5.31) is approxi-
mated in (5.22) by the last two terms in that equa-
tion. ]

Rather than applying the variational principle in
an arbitrary way, which would merely reproduce
the intractable exact equation (5.27), a Rayleigh-
Ritz type ansatz is made. Following Kuti' we take
as a trial function

4{4}= exp ——d xdy[4(x) —4(x)]4h

~ G-'(x, y) [4(y) —e(y)] t

(5.32)

and view p and G as variational parameters. %ith
this choice (5.30) is obviously satisfied, while the
second integral in (5.31) gives

x [~~A G '(x, X) +5'~xG(x, x)G(x, x)] (5.33)

This reproduces the last two terms in (5.22).
Hence Kuti's Rayleigh-Ritz approximation is en-
tirely equivalent to our Hartree-Fock calculation.

This set of equations has been studied in two-
dimensional space-time by Kuti, ' Dashen, Hass-
a he, a dNeve .'

D. Comments

Although the two approaches to the problem of
static solutions in a field theory yield the same
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evaluations for p(%) and G(x., y), the following dif-
ferences should be noted. It is difficult to study
the systematics of the corrections to the Rayleigh-
Ritz method. In our method, the effective action
I'(P, G) and the energy E(p, G) can be expanded in
the series (2.9). On the other hand, Kuti's method
gives an explicit expression for the wave function.
Hence one can evaluate off-diagonal matrix ele-
ments of arbitrary operators, not just diagonal ex-
pectations of products of fields, which is all that
the effective action provides.

VI. CONCLUSION

%e have illustrated how the generalized effective
action compactly probes the nonlinear structure of
field theory. Moreover, by a suitable parametriz-
ation, the exact nonlinear integral equations can
be replaced by approximate ordinary equations in-
volving numerical parameters. The former give a
precise pointWy-point description of the theory,

but are intractable. The latter summarize only

average properties of the theory, but can be
studied by conventional techniques, just as the ex-
act Schrodinger equation can be well analyzed by
the Rayleigh-Ritz variational principle. That this
can be done for field theory in principle has been
known since Schwinger's work in the early fifties,
but as far as we know the present work contains
the only application of this method.

ACKNOV!!'LEDGMENT

S. Kuti shared with us his unpublished research-
es, and we are most grateful to him. One author
(R. $.) benefited from conversations with R.
Dashen, while another (J. M. C.) acknowledges
the hospitality at the Center for Theoretical
Physics at M.I.T. Finally, we all are grateful to
A. Kerman who explained to us how methods, simi-
lar to those studied here, are used in many-body
physics.

*This work supported in part through funds provided by
the Atomic Energy Commission under Contract No.
AT (11-1)-3069.

)Alfred P. Sloan Research I'ellow.
~L. Dolan and R. Jackiw, Phys. Bev. D 9, 3320 (1974).
2H. Schnitzer, Phys. Rev. D 10, 1800 (1974}.
3S. Coleman, R. Jackiw, and H. D. Politzer, this issue,

Phys. Bev. D 10, 2491 (1974).
R. Jackiw, Phys. Rev. D 9, 1686 (1974}.

5R. Jackiw and K. Johnson, Phys. Bev. D 8, 2386 (1973);
J. M. Cornwall and R. E. Norton, iMd. 8, 3338 (1973}.

8J. Kuti, unpublished.
T. D. Lee and C. N. Yang, Phys. Rev. 117, 22 (1960}.

~J. M. Luttinger and J. C. Nard, Phys. Rev. 118, 1417
(1960). P. Martin and C. De Dominicis, J. Math. Phys.
5, 14 (1964); 5, 31 (1964).

~El. D. Dahmen and G. Jona-Lasinio, Nuovo Cimento
52A, 807 (1967); A. N. Vasil'ev and A. K. Kazanskii,
Teor. Mat, Fiz. 12, 352 (1972} fTheoret. Math, Phys.
12, 875 (1972)l. Also T. D. Lee presented, in the
course of a seminar at M.I.T., a. relativistic generaliza-
tion of the results of Ref. 7. One of us (J.M. C.) has
been informed by P. Mannheim that he is working on an
effective potential for composite operators in quantum
electrodynamics.
A graph is said to be "two-particle irreducible" if it
does not become disconnected upon opening two lines.
Otherwise it is "two-particle reducible. "

~~In this connection it is important to note the relation-
ship that exists between derivatives of Z(g, G) and
W(J, K). That formula is a generalization of the result
relevant to the ordinary effection action l(g):

o2r(y) o'v"(J)
6(IF)(x}Aflak) (z) 6J(z)6J(y)

Using a self-explanatory compact notation the formulas
are

2 4 4
a ~ h

2 4
+ —v~~- wP r(-~ w~~ ——-1,

(
2 4

r@~-~&. Qlac Wz~+ ~Y ZzcN zz= -1,

(
2 4~roc- m~@ roc ~'J~+ 2rc;c&lsr- 0

(
2 4+:ref."-

2 @ res &sic —0.
Ii h

~2R. E. Norton and J. M. Cornwall, unpublished. See
also Dahmen and Jona-Lasinio, Ref. 9.

~SThis is most easily understood by recalling that for
fertuious the functional integral fdgdeexp{ai JAP) gives
DetA, while for a boson I d P exp {~ igAQ } = Det ~ ~A.

4K. Johnson, in proceedings of the Seminar on Unified
Theories of Elexnentary Particles, 1963, Rochester,
N.Y. (unpublished}; Th. A. J. Maris, V. E. Herscovitz,
and G. Jacob, Phys. Rev. Lett. 12, 313 {1964}.
J. M. Cornwall, Phys. Rev. D 10, 500 {1974}.
%e are using a similar notation, H, for two different
objects. In order to avoid confusion we explain in
detail. %hen an argument is explicitly indicated, viz.
II{42},as in {4.11}and (4.12), we mean the Lorentz-
invariant part of the vacuum-polarization tensor. In
symbolic equations like (4.14), II occurs without an
argument; in that case it denotes the full Lorentz-
covariant vacuum-polarization tensor. The connection
is rr -II~'{n) = iS ~'II{n'}.

~VCornwall and Norton, Ref. 5.
~IS. Coleman and E. %einberg, Phys. Rev. D 7, 1888



10 E FF ECTIVE ACTION FOR COMPOSITE OPERATORS

{1973); S. Weinberg, iMd. 7, 2887 {1973);R. Jackiw,
Ref. 4.

t~The analysis of the physical interpretation. of Z{P, G)I,~„,
is an adaptation to the present context of the correspond-
ing argument for P5)~„,,„.. That discussion is due to
K. Symanzik, Commun. Math. Phys. 16, 48 {1970). We

learned it from S. Coleman, in proceedings of the
Lectures given at the International Summer School of
Physics "Ettore Majorana, " 1973 {unpublished).

~oR. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.
D {to be published).

PHYSICAL REVIEW D VOLUME 10, NUMBER 8 15 0C TOB ER 1974

Confinement of qnarks*

Kenneth G. %ilson
Laboratory of nuclear Studies, Cornell University, Ithaca, iVevv York l4850

{Received 12 June 1974)

A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires

the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory

on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge

fields as angular variables {which makes a gauge-fixing term unnecessary). The lattice gauge theory has

a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free

quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The

strong-coupling expansion involves sums over all quark paths and sums over all surfaces {on the lattice)

joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

I. INTRODUCTION

The success of the quark-constituent picture
both for resonances and for deep-inelastic elec-
tron and neutrino processes makes it difficult to
believe quarks do not exist. The problem is that

quarks have not been seen. This suggests that
quarks, for some reason, cannot appear as sep-
arate particles in a final state. A number of
speculations have been offered as to how this
might happen. '

Independently of the quark problem, Schwinger
observed many years ago' that the vector mesons
of a gauge theory can have a nonzero mass if vacu-

um polarization totally screens the charges in a

gauge theory. Schwinger illustrated this result
with the exact solution of quantum electrodynamics
in one space and one time dimension, where the

photon acquires a mass -e' for any nonzero charge
e [e has dimensions of (mass)'~' in this theory J.
Schwinger suggested that the same effect could oc-
cur in four dimensions for sufficiently large cou-
pllngs.

Further study of the Schwinger model by Lowen-
stein and Swieca' and Casher, Kogut, and Suss-
kind' has shown that the asymptotic states of the

model contain only massive photons, not elec-
trons. Nevertheless, as Casher clat. have shown

in detail, the electrons are present in deep-in-
elastic processes and behave like free pointlike

particles over short times and short distances.
The polarization effects which prevent the ap-
pearance of electrons in the final state take place
on a longer time scale (longer than 1/m&, where

rn& is the photon mass).
A new mechanism which keeps quarks bound

will be proposed in this paper. The mechanism
applies to gauge theories only. The mechanism
will be illustrated using the strong-coupling limit
of a gauge theory in four-dimensional space-time.
However, the model discussed here has a built-in
ultraviolet cutoff, and in the strong-coupling limit
all particle masses (including the gauge field
masses) are much larger than the cutoff; in con-
sequence the theory is far from covariant.

The confinement mechanism proposed here is
soft (long-time scale). However, in the model dis-
cussed here the cutoff spoils the possibility of
free pointlike behavior for the quarks.

The model discussed in this paper is a gauge
theory set up on a four-dimensional Euclidean lat-
tice. The inverse of the lattice spacing a serves
as an ultraviolet cutoff. The use of a Euclidean
space (i.e. , imaginary instead of real times) in-
stead of a Lorentz space is not a serious re-
striction; the energy eigenstates (including scat-
tering states) of the lattice theory can be deter-
mined from the "transfer-matrix" formalism as
has been discussed by suri' and reviewed by
Wilson and Kogut. ' A brief discussion of the


