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The 3-quark component of the proton's wave function is extracted from deep-inelastic proton
and neutron scattering data. We employ theoretical results based upon a theory of the hadronic
wave function which is consistent with the interchange theory of fixed-angle and high-transverse-
rnomentum processes.

INTRODUCTION

In this paper we describe a theoretical extraction
of the quark distribution functions of the proton,
using the deep-inelastic scattering data for neu-
trans and protons. ' The present analysis differs
from those previously given' in that the Porneron
and Hegge contributions are assumed to have spe-
cific, theoretically motivated, threshold damping.
This enables us to subtract these contributions in
a mell-defined manner, isolating those portions of
the distribution functions most closely related to
the simplest three-quark component of the proton's
wave function. Among other results we find that for
this component the g-quark distribution function is
a single power of (1 —x) (x is the fraction of the
proton's momentum carried by the quark) times
that for the 6' quark, for all x.

I. THEORETICAL CONSIDERATIONS

We begin by considering the probability u, (x) for
finding a quark i of a given type, carrying a frac-
tion x of the proton's total linear momentum (in a
frame in which the proton's linear rnornentum is
large). In general each such probability function

may be thought of as having three contributions:
(i) It has a contribution u, (x) arising from the

simplest possible quark state consistent with the
nucleon's (or meson's) quantum numbers: for
instance, 6'6'g for the proton, 6'g for a m', etc.
The wave function (which when integrated over
transverse momentum gives the probability distri-
bution function) for this simplest constituent
state might, for instance, obey a relatively simple'
Bethe-Salpeter type of integral equation. Such a
component will not exhibit either Regge behavior
or Pomeron behavior [u,(x), , 1/x, with o. =-,' or
1, respectivelyj. It should exhibit a maximum
when the quarks present have approximately equal
shares of the hadron's momentum (x- ~ for a nu-
elean) and should, of course, be absent for quarks
not required to be a part of the szmplest quark
state of the given hadron (e.g. , (PRAT for a proton).

(ii) It also has a contribution which exhibits non-
Pomeron Regge behavior. In general, both this
contribution and the Pomeron contribution (iii) will
be present provided the quark-proton scattering
amplitude exhibits these respective types of high-
energy behavior (this connection is discussed in
Ref. 3, for instance), as expected of a strong-in-
teraction amplitude. In general, however, the
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non-Pomeron Regge contribution, which we denote
by r, (x), need not be present for every quark type
i . In fact, extension of conventional duality argu-
ments to the quark-proton scattering amplitude
suggests that for the proton r, (x) v 0 only for i =6'
and g. According to the duality argument non-
Pomeron Regge behavior should only appear in a
quark-proton amplitude when the outgoing quark is
able to arise from one of the initial proton quarks,
in the sense of the usual dual diagrams (Fig. 1).'
As we shall see, it is likely that this should only
be regarded as a good approximation.

(iii) The probability function also has an SU(2),
and perhaps SU(3), symmetric contribution s,(x),
arising from the Pomeron behavior of the quark-
proton scattering amplitude. Both this and the
Regge component presumably arise from proton
constituent states containing more than the sim-
plest three quarks. Thus we shall speak of a "sea"
of quark-antiquark pairs.

Consistent with the above separation we write

us'(x) = u~~(x) + s (x) +r ~~(x),

uu~ (x) = u ' (x) + s~(x) + r ~ (x),

u'(x) =u'(x) = s'(x),

u ~&, (x) = ur' (x) = s'(x) .
For the Pomeron and Regge contributions we

take the forms

a(1 —x)", a'(1 —x)"s(x)=, s'x =

(2)
as(1 —x)"s a„(1—x)"u

rs(x)= ~, ru(x)= " ~
In what follows we shall motivate specific values
for n, nq, and n„.

In the picture of the Pomeron in which it arises
from a quark-antiquark "sea" component to the
hadron wave function, the minimal such state for
the proton corresponds to a qqqqq state. ' The
quark-antiquark pair can always be thought Df as
a meson or combination of mesons. The extrac-
tion of a sea-component quark could thus be thought
of as occurring in two steps. The proton first
emits, by a bremsstrahlung process, a meson with
probability dictated by a fu11 strong-interaction
amplitude with Regge behavior. The meson in turn

emits the sea quark according to the simple Bethe-
Salpeter qq component of its wave function. This
is illustrated in Fig. 2. In general one should in-
clude other intermediate hadrons H with the result

u ", (x) = Q —G„g„(z)u",. (x/z) . (3)
H

Gs~„(z) is the probability for a hadron A to emit a
secondary hadron II with fraction z of A's initial
linear momentum P (in a frame in which P -~).
The above picture corresponds to the two-compo-
nent (hadron reducible-hadron irreducible) picture
of a hadronic wave function introduced by Blanken-
becler, Brodsky, Gunion, and Savit. ' G„~„has
Pomeron and, in general, Regge behavior for z
~0m

~1
Gs)A(z) ~ 0 z

which gives rise to Pomeron and Regge behavior
for u", (x). G„~„,&,„appears in the interchange-the-
ory discussion' of production of high-transverse-
momentum pions at the CERN ISR and at NAL. '
It was found that

(1—z)'
~g/proton ~ (M = meson)

z (5)

q or q

gives an excellent fit to the data. This form cor-
responds to Pomeron 1/z behavior with a specific
threshold damping. The above threshold depen-
dence can be easily motivated using the quark pic-
ture discussed earlier.

Consider the minimum proton state from which a
pion or other meson may emerge, qqqqq. In order
to discuss meson emission from such a state we
must introduce interactions between the quarks.
Ne choose for spin--,' quarks to assume that vector
gluon forces or similar interactions with dimen-
sionless coupling constant on the quark level are
relevant. This assumption together with the finite-
ness of wave functions at the origin (or, more
naively, a. weak binding limit for the quarks within
a hadron) results in simple scaling laws, for as-
ymptotic hadronic form factors and fixed-angle
scattering and for high-transverse-momentum par-
ticle production, in good agreement with experi-

q
=q

ate )

proton

FEG. 1. Naive duality graph for the quark-proton
amplitude.

prot

FEG. 2, The qqqqq state of the proton considered as
a meson, I, plus three quarks.
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The production of a qg state with all the momen-
tum, P, of the initial proton state may (for exam-
ple) proceed with minimal suppression as in Fig.
3. Beginning with a weakly bound qqqqg state in
which each quark carries —,

' (as stated earlier„one
really only requires that the quark wave functions
introduce no anomalous dimensions, i.e. , are fi-
nite at the origin) of the proton's momentum P,
various vector gluons are exposed in order to
transfer this linear momentum entirely to the qg
meson state (the rl and g now carry ,'P eac—h in the
weak-binding approximation). It is apparent, how-
ever, that this process requires propagation of
quarks with 0 linear momentum, i.e., these re-
maining quarks are far off the mass shell. This
actually results in the emission being suppressed
by a well-determined number of multiplicative
zeros.

This number is most easily determined by per-
forming the calculation of a diagram such as that
of Fig. 3 using time-ordered perturbation theory
in the P ~ frame. Any energy denominator

1 1 1
ln Fig. 3

1 j 2 j 3

containing a quark with O~P is 0 since the quark
energy, proportional tom /OxP, is infinite. Since
nonoverlapping gluon denominators are always
compensated by trace factors in this theory with
no anomalous dimensions on the quark level, we
ignore them. Thus the emission amPLitude of Fig.
8 (in which we must include the initial- to final-
state energy difference —we imagine operating on
the particl, e in question with the number operator
a~a) has a triple zero resulting in an emission
Probability

[The 1/(1 —z) results from an uncompensated crea, -
tion-annihilation energy factor in this approach. ]

As a simpler example consider that of Fig. 4 (a
complete calculation of which appears in Appendix
A), irr which a meson emits a quark carrying all the
initial momentum. According to the above tech-
nique this configuration should be suppressed as

k" (1 —x) .
This corresponds to the Drell-Yan relation' if the
mesons have monopole form factors as argued
from interchange theory and the scaling laws men-
tioned earlier.

Combining Eqs. (6), (7), and (8) we obtain

~r p ~p ( ) ~ (I ~)5+1+1='I

the extra single power arising from the limits of
the convolution integral of Eq. (8).

We should note at this point that the same result
for s (x) obtains for H =baryon in Eq. (8). It is not
difficult to see that for many baryons

Gbaryonjproton ~ (I &)3

Combining this with

ub y'"~(1 —x)'

for at least some of the quarks within a baryon,
w'e again obtain contributions to the quark sea with
the threshold damping of Eq. (8). In Appendix B
we give complete rules for hadronic bremsstrah-
lung.

The result of Eq. (8) agrees with an alternative
argument which applies the Drell- Yan relation to
the form factor of a parton which is part of a five-
quark proton state. " The absence of anomalous
dimensions on the quark level implies that

P(f) -—1
t4

I

I

l

( I

5 P 0

I

I

E;

is&op
IDIO P

I/lO Pr

I

E, F

op—op—op

for such a parton. According to the Drell-Yan re-
lation, this quark's distribution function should
then behave as in Eq. (8). Direct vector-gluon dia-
gram (Fig. 5) calculation verifies this result. Four
infinite ~'s appear. The net result is that in Eq.
(2) we take n = 7. No other choice can be motivated
in as simple and self-consistent a theoretical ap-
proach. One should note that for a pion the mini-

—P
i

2

oP
FIG. 3. Vector-gluon exposures required in order to

transfer the full proton momentum, P, to the qq pair of
a qqqqq proton state. Vertical dashed lines represent
uncompensated intermediate states with &n6~ite energy
in time-ordered perturbation theorJJ.

FIG. 4. A meson emitting a quark with the entire
initial momentum I' of the meson. See also Fig. 3 cap-
tion.



ISOLATING THE 3-QUARK COMPONENT OF THE PROTON'S. . . 245

oP

—P& pi

9'~s p
I I

oP
oP
op

FIG. 5. An alternative diagram for calculating the
probability of a proton emitting a quark carrying all the
proton's initial momentum when arising from a qqqqq
state.

mal sea component is qgqg which yields a thresh-
old suppression for the sea component of (1-x)5.

The Regge distribution components r t and r„of
Eq. (2) are discussed in the same way. One ex-
pects that the simplest Bethe-Salpeter-type com-
ponent to the proton's wave function does not dis-
play Regge behavior and hence such behavior must
arise, via a bremsstrahlung type of process, from
the Regge behavior of hadronic amplitudes. The
question arises, however, as to why Regge be-
havior should appear only in the (P- and X-quark
distribution functions. It might seem that since all
hadrons H produced in the bremsstrahlung process
are summed over, Regge behavior should appear
in the other distribution functions as well. Indeed,
this is the case in general; however, there is an
important factor which serves to enhance the 6'-
and X-quark Regge components above those of
other quarks. Recall that according to the duality
diagram rules proposed by Lipkin and others, "
the magnitude of the Regge component in the am-
plitude for AH scattering (the probability for H
emission is proportional to the imaginary part of
the AH amplitude) is proportional to the number of
single qg annihilations possible between quarks of
A and antiquarks of H. That is, Regge behavior
arises from dual diagrams of the form of Fig. 6.

r, ( )x-(1 —x)' (baryon source). (13)

From Fig. 7(b) we see that for meson (M) emission
this same argument leads to

I3P
3

protori

oP
op

op
P

For instance, pP scattering (i.e. , emission of a
proton by a proton) is characterized by 5 possible
annihilations, pn by 4, pZ" by 6, pp by 0, etc.
Thus for Regge components, emitted baryons hav-
ing the maximum number of quarks in common
with the proton are greatly enhanced. Meson emis-
sion is clearly suppressed relative to baryon emis-
sion since fewer annihilations are possible with a
qif state and because there are fewer mesons [35
versus 56 for the standard SU(6) multiplet] than
baryons. More precise statements are possible
and will appear elsewhere. " For the present pur-
poses we regard Eq. (1) as an adequate approxima-
tion.

We must now discuss the expected threshold
damping. We assume that bremsstrahlung (char-
acterized by Regge behavior) of a baryon or me-
son proceeds dynamically according to the dual
diagrams of Fig. 6, so that threshold behaviors
can be obtained by exposing the minimum number
of gluons required to accomplish the momentum
transfer. For instance, for baryon (B) brems-
strahlung we have Fig. "l(a), which by the now-
familiar counting rules requires

(12)

Recalling that the quark Bethe-Salpeter component
for baryons behaves as in Eq. (10), we obtain"

oryon ~ Baryon

proton (o) —P
I

2

P
I

prot (b)

oryon ~ Meson

q P 'I

P rotorl

I

-PI I

3

op
op
op

FIG. 6. (a) Baryon (B)-proton duality diagrams;
Regge behavior is present for proton emission of B
only when such a planar diagram can be drawn. (b) As
in (a), only for mesons (M).

FIG. 7. (a) Explicit dynamical mechanism for trans-
ferring the entire proton momentum P to a baryon, B,
while preserving duality diagram topology. (b) As in (a),
but for a meson M.
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or

Regge
G(p/pro(on (1 &)

r, (x) -(1—x)' (meson emission). (15)

and near any particular x =1/(o value, with an error
estimated from the dispersion and statistical er-
rors of those same points. " In the notation of Eq.
(1) we have

Despite this preference for the meson terms as
x-1, the x-0 region is dominated by the baryon
emission, as stated earlier, so that we shall take

vWt(x) -=Fp(x) =x[~(u, +r,)++(u + r )

+ (0
& +g„+g]

(we drop the proton superscripts),

(17)

in Eq. (2). (The results given later are not sensi-
tive to the choice of 7 as opposed to 5.}

II. ANALYSIS OF THE DATA

F pP" = F-P2(x) F—,"(x)= ,'x( u—,+r, uu —r-) (.15)

Since we cannot, without additional input, deter-
mine a and a' [Eq. (2)] separately, we define the
combination

We now turn to an analysis of existing deep-in-
elastic scattering data for neutrons and protons in
order to ascertain what support there is for the
picture proposed here. For "data" we use those
given in Fig. 8(a) and 8(b). The points given rep-
resent an average of existing experimental data at

Q4—

A (1 —x)'9S 9S-:9 0

x

For any given value of A define

F P(NP) FP ( ) ~ A(l x)
x

(NP stands for non-Pomeron). Then

ut+ r g = ', (3FP(~' +—F',"),

(19)

(20}

~X~ 0 limit

0.2—

(3FP(NP) 4FPn)at ~ 5 2 2

We determine the values of a and a~ (for any A)
by assuming the Regge forms to hold by & =20,
i.e., xup(x) ~,-, „=0. The appropriate value of A
is then determined by demanding that

(up+re)dx=2,

Q. l

Q. I Q—

0.08—

I I I

0.2
I I I I ) I

0.4 0.6 0.8 I.Q

(u„+r„)dx=1,

as required if the quark distributions are to result
in the correct quantum numbers for the proton.
The assumed Regge forms are, of course, em-
ployed to calculate the integral contributions with
x&0.05. As emphasized by Bloom, ' both sum rules
cannot be fully saturated, though with new o„/op
data, incorporated in Fig. 8(a), one can come quite
close. We find, using our Regge extrapolation,

0.06—
I)

Q Q4—

0.02—

0

(b)

I I I I

0.2 0.4 0.6
X = I/cu

I i I

0.8 I.Q

(up-u +r~ r)dx=0. 293'(-7),

where ? &0.04. This value is A-independent.
Taking A =0.2 we obtain

(u„+ru) = 0.997,

with aq and a~ determined to be

(23)

(24)

FIG. 8. (a) v)Vg (X= 1/cu) for the proton. (b) vWtp

—& 8'2", the difference bebveen the deep-inelastic struc-
ture functions for proton and neutron. These "data"
represent an average of existing experimental data for
the taro quantities.

at=1.88, a =1.023 . (25)

From Eq. (21) and the now completely determined
forms of r ~ and r„we may extract the simplest
Bethe-Salpeter components of the proton-quark



10 ISOLATING THE 3-QUARK COMPONENT OF THE PROTON'S. . .

0.8—

Q4

0
0

I

tX

~ Non - Regge~ Up

N - Regge
n

X (o)

'O.
X~x

I
X X-X~

0.6 0.8
I I

0.2 0.4

Up

~-5 x (I-X)
/ IE

/

begin 5 x ( I
- X )

I e

X~ U

I.Q

— P
I

pP

oP

FIG. 10. Explicit mechanism for producing a single
quark (from a qqq proton state) with none of the initial
proton's momentum.

u„(x)/uI(x) = c(1 —x) (26)

time-ordered perturbation-theory denominator is
infinite.

Of greatest interest, however, is the behavior of
u„(x)/uN(x). It is well known that as x-1, this
ratio must vanish if F2(u =1)/Ft(~=1) = —,'. From
Fig. 9(b) we see that within errors

I.Q

0.8-

Un

up(I-X}

i
j" Iiii
1

(b)

I I I

0.20
1

0.4 I.Q
X

FIG. 9. (a) The simple 3-quark component of the pro-
ton's 6'- and X-quark distribution functions (uy and kz).
Both Pomeron and Regge contributions have been elimin-
ated. {b) The ratio [~~(x)/u ~ (x)]/g -x) as a function of
x. The average value is = 0.7.

(x) = fxut(x)dx=0. 3, (27)

fox all x. Any other simple power is ruled out. In
addition any substantial change in the threshold be-
havior of s and s' destroys this result for x &0.5.
It also does not hold for x(0.2 if one uses
(u„+ru)/(ud +rI). The Regge contributions must
be removed. This result, Eq. (26), adds weight to
the identification of u„and uq with the purely 3-
quark component of the proton's wave function. In
a model in which the X quark is more strongly
bound to one of the 6' quarks than the remaining t
quark is to either, "Eq. (26) seems the simplest
possible result for the relative distribution func-
tion.

%e should also point out that

distribution functions, ut and u„. These are plot-
ted in Fig. 9(a), and have a number of very rea-
sonable properties.

One should note, for instance, that uq is exactly
proportional to (1 —x)' for xa 0.35, as expected
from the Drell- Yan relation as well as from the
simple models with canonical dimensions on the
quark level referred to earlier. In addition, u~
appears to vanish as x»0 as a single power of x
(though assuming pure Regge behavior for x (0.05
in uq+rq leads to some uncertainty in this state-
ment). This is expected for the simple three~nark
component of the proton's wave function since only
one linear zero is required when two quarks carry
the entire momentum of the proton. This is ap-
parent from Fig. 10, where only one nongluon

as one might have expected for a weakly bound 3-
quark system, and that

uI(x)dx =0.67, fuu(x)dx =0.34, (28)

')'dx = 0.025,
0

relative to the total momentum carried by all
quarks:

(29)

i.e., there are twice as many 6' quarks in the 3-
quark portion of the proton wave function as there
are X quarks.

Finally, if we assume an SU(3)-symmetric Pom-
eron (s = s'), then the total momentum carried by
A. (or A, (PZ) quarks in the proton is

/

3-quark piece Regge Porneron
x(u~+u + ut+ u„-+ u~+u~)dx= + + =0.59 .

r
(30)
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Note that J (ut+u6-+uu+uu)dx=0. 54, consistent
with the experimental value determined from neu-
trino data" of 0.49+0.OV, and that the four-mo-
mentum of antipartons relative to that of all par-
tons is =0.125 compared to the experimental val-
ue from o"/o" (Ref. 16) of 0.1+ 0.03.

The above results seem sufficiently simple, so
that the proposed picture can, at least, be said to
be consistent.

CONCLUSION

W'e review the basic conclusions of this paper.
Referring to Eqs. (1) and (2) we have found that in

simple theories with no anomalous dimensions on
the quark level, the Pomeron contribution to the
quark distribution functions is expected to behave
as

s(x)[s'(x)]-(1-x)' as x-l.
The same power suppression applies to the non-
Pomeron Regge component as well. Assuming
specific forms with this behavior for the Pomeron
and Regge-behaved portion of the quark distribu-
tions, we extracted the remaining, simplest 3-quark
components of the proton's wave function, u(f and
u„. The u~ and u„so extracted have all the prop-
erties that simple, Bethe-Salpeter-type, wave-
function contributions should have. In particular,

(F, (t))', where q is required for this topology to
be an 5I quark] will be suppressed relative to the
st topology, with resultant (though minor) modifi-
cation of the predicted angular distribution. (iv)
The K p fixed-angle cross section (which requires
extraction of the 5i quark in the proton) will fall
more rapidly by a single power of 8 than the E'p
fixed-angle cross section; i.e.,

do~ ' 1
I@at

dt s" '

with n =9 at fixed angle, instead of the canonical
result which has n=8. A similar result
holds for such reactions as K~p -K, p (K~ and K,
contain only 5I, 51, A. , and K), where the power mea-
sured experimentally (n = 8.5 + 1.4) is inconclusive.

It will be interesting to see if any of these effects
can be observed. Of course, it may be that for x
very near 1, uu behaves like (1 —x)' just as does
u(p, but with a much reduced coefficient. If this is
the case, i.e. , if the [O'0I] pair behaves canonically
when probed at sufficiently short distances, all of
the standard interchange results will become valid.
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u~(x)/uQx) ~ (1-x)

for all x, the simplest possible result consistent
with E,"/E ~--,'2for &u-1.

This last result lends credence to the belief that
there is a tightly bound [O' R] pair within the proton
to which the remaining 6' quark is less strongly
bound. To the extent that this is the case, impor-
tant implications for high-transverse-momentum
phenomenology follow: (i) In exclusive pp scatter-
ing, there will be a strong component such that

do' ' " 1
dt fixed angle g

(as originally proposed ), instead of the naive di-
rnensional result

do 1
tV

dt s" '

which assumes the [O'5I] pair capable of being
broken apart. (ii) The contribution to the proton
form factor (by the Drell- Yan relation) from either
quark of the O'-8I pair should behave as I/t'~' in-
stead of the usual dipole result. (iii} The ut graph
in the interchange version of m -p fixed-angle
phenomenology [which essentially measures

APPENDIX A

In time-ordered perturbation theory the absolute
square of the diagram of Fig. 4 may be calculated
as follows:

(i) We presume that the initial quark-antiquark
pair couples with naive y, coupling to the pion.

(ii} We take, for simplicity„ the quark mass to
be —,

' the pion mass m„, as for the (easily relaxed)
weak-binding limit.

(iii) We associate momenta p = (p +ms'/2p, 0, p)
(p ~) with the pion and k =(xp+(m„'+k, ')/8xp,
—,'k~, xp) (x-1) with the upper outgoing quark
line (k = —,'m„m).

(iv) The particle energies in this frame are
(a) pion energy E~ =p+m„'/2p,

(b) gluon energy

E, =[-,'-(1- x)]p

+ -,'(ms'+ —,
' k,')/[-,' —(1 —x)]p,

(c) lower quark energy

Eq = (1—x)p+ (m„' +k, ')/8(1 —x)p .
The result, integrated over transverse momenta,
is then
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( ) d 21
~
i3

~

2 d 21 [(P 2mzh a(zk 2 ms) YB(zP 2 If) Y (J I 2mz)Y (2P 2mHb 5(2P + 2 ms)r' ]
(2Eq)2[(Ep —Eo Ep I, )] 2E1, 2Ep q[(Ep El, Ep g)]

(Al)

which in the limit of x 1 reduces to

4m„' Tr[ Jt'-,'p(P- P)-,'p]' p'[-(m„'+k ')'/8(1 —x)p]'4(1 —x)p'[-(m„'+k ')/8(1 —x)p]'

m 2

(1-x) d'e, , ",, =(1-x) . (A2)

The following general features of this calcula-
tion should be noted. The reduced trace factor
explicitly cancels the denominators involving the
gluon energy E~. A creation-annihilation factor
2E~, ~ 2(1 —x)p must be included for the lower
quark. The final answer is dimensionless as it
must be. These features are completely general,
barring peculiar cancellations and spin correla-
tions. In fact, such spin correlations could, how-
ever, be at the root of the difference between the
6'- and X-quark wave functions.

APPENDIX 8

This appendix presents general rules for the
threshold behavior of hadronic bremsstrahlung
probabilities. We define G„~„(z)to be the prob-
ability that hadron H can emit a hadron, H', car-
rying a fraction z of H's initial linear momentum.
Our results are for the behavior of G(z) as z -1.

The primary ingredient is Eq. (3). Suppose that
in order to emit H', H must be in a state of n

quarks (plus antiquarks). The threshold suppres-
sion of an n-quark state distribution function is

u(x) ~(1—x)'" ', (Bl)

corresponding to an n-quark state for m factors of
1/f ll-1

Quark emission from such a state may also be
viewed, according to Eq. (3), as proceeding in two

steps:
(i) emission of the secondary hadron H' accord-

ing to Gz ~z(z), which we suppose behaves as

2n 3 m+2pgl 3+1'

m =2(n p„-.) —1,
(B4)

the extra +1 arising from the limits of the integral
in Eq. (3).

Clearly the minimal quark-state number n for
H-H' depends upon how many constituents the
emitted hadron has in common with the initial had-
ron. The following cases occur:

(a) H=baryon (p„=3), H'=meson (pz. ——2). Two
possible cases occur: (i) The meson's quark is
common to the simple 3-quark valence part of H
in which case only the antiquark must be supplied
by the sea (qq) component of H. A five-quark
qqqqg H state is sufficient.

n=5 m=5,

G(z) ~ (1—z)'.

Example: p((P(P31) -v'((P31). (ii) The meson H' ' s
quark is not contained in the valence part of H. A

seven-quark qqqqqqg H state is needed.

n=V m=9,

G(z) ~(1—z)'.

Example: p(6'IPZ) K (PX).
(b) H=baryon (p„=3), H'=baryon (p„=3).

Three nontrivial cases are possible depending upon
whether H' has n, =2, 1, or 0 quarks in common
with the valence part of H. The minimal H state
required consists of

n =p„+2(p„.—n, )

quarks and antiquarks, so that

Gz'gz(z) ~ (1 —z), (B2) m =4(3 —n, ) —1.

as z-1,
(ii) followed by emission of the quark from the

valence (i.e., lowest quark number) state of H'.
Such emissions are characterized by

Examples:

P(d'6'31)-Z'(6'3fx), n, =2, m=3

p(6'6'30-Z (3131m)[

u(x) ~(1-x)'~z' ', (B3)
or

with p„.=2 for H'=meson, p~ =3 for H'=baryon.
Consistency of the two approaches requires, ac-
cording to Eq. (3), that

p(6'6'3() - fl (u.z)
bary on antib ary on c
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(c) H = meson (p„=2), H" = meson (p„=2). The
minimal 0 state required consists of

n =pw+ 2(pw - n. )

quarks and antiquarks (n, is again the number of
common constituents) so that

m =4(2 —n, }—1.

Examples:

w'(6'3+i-K'(iP2), n, =l, m =3

w'(d'3f) -w (XiF) I
Z'(~PX) -w-(3f&) I

'

(d) H=meson (p„= 2), H'= bary on(p„. =3).

n =p„+2(p„.—n, ),
m =4(p„.~n, )+2(p„p„)—1-

=4(3-n, )- 3.

Examples:

w'(6'%)-p((P6'X), n, =1, m=5

w"(iP3f)-a (yZZ), n, =o, m=9.

Thus, to summarize, if hadron B has p„quarks
(plus antiquarks) in its valence state, while H' has
p„. , and n, of these quarks are common to the
II, H' valence states, the minimal quark state of
II necessary to emit the II' valence state consists
of

n =p„+2(p„.—n, )

quarks plus antiquarks. The behavior of G(z) is
then given by

m =2(n- p„)—1

=4(pw -n. )+2(pw- pw )-1.
There are a number of possible processes in

which such bremsstrahlung behavior might be im-
portant (other than high-transverse-momentum
processes); for instance, in the fragmentation re-
gion of normal inclusive scattering, e.g. , p+p-H+ X. One proton might first emit H in a brems-
strahlung process, following which either H or the
stuff remaining after p emits H would then scatter
from the other proton. Evidence for such process-
es is being examined. "
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