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We discuss single-fermion-loop vacuum-polarization processes in massless quantum electrodynamics in

the one-photon-mode approximation, in which the fermion self-interacts {to all orders in perturbation
theory) by the exchange of virtual photons in a single virtual-photon eigenmode. The isolation of one
photon mode is made possible by using the O{5)-covariant formulation of massless @ED introduced in

two earlier papers, in which the photon wave operator has a discrete, rather than a continuous,
spectrum. The amplitude integral formalism introduced previously expresses the one-mode
radiative-corrected vacuum polarization in terms of the uncorrected vacuum amplitude in the presence
of a one-mode external field. By exploiting the residual SO(3) X O{2) symmetry of the one-mode
external-field problem, which permits separation of variables, we reduce the external-field problem to a
set of two coupled ordinary first-order differential equations. We show that when the two independent
solutions to these equations are suitably standardized, their %ronskian gives (up to a constant factor)
the external-field-problem Fredholm determinant. We study the distribution of zeros and asymptotic
behavior of the Fredholm determinant, relate these properties to the coupling-constant analyticity of the
one-mode vacuum polarization, and conclude by giving a brief list of unresolved questions.

I. INTRODUCTION

D(,) ( )
Fn~(r), )I'.~~(r)2)

(i) {i)

( +1)( +2)

by the simple, factorizable form

Dab (11 ~ 92) 6 F l)ro(71) F 1)/b(92) i (1.2)

which results when the sum in Eq. (1.1) is trun-
cated to contain only one of the 10 modes in the
smallest (n = 1) photon representation of O(5).
Specifically, the one mode which we retain has
the form

j./2

&,)r,(rl) =
2 (v„r) v2 —v~rl v, ), (1.3)

where v, and v, are arbitrary, orthogonal five-
dimensional unit vectors,

2 2
vi =v2 = 1

y
vi' v2=0) (1.4)

We begin in this paper the analysis of a simple,
nonperturbative approximation to single -fermion-
loop vacuum-polarization processes in massless
quantum electrodynamics. In our approximation,
the virtual fermion in the vacuum-polarization
loop self-interacts to all orders of perturbation
theory only by the exchange of virtual photons in
a single virtual-photon eigenmode. The isolation
of one photon mode is made possible by using the
O(5)-covariant formulation of massless @ED in-
troduced in two earlier papers, "in which the
photon wave operator has a discrete, rather than
a continuous, spectrum. Specifically, our approx-
imation is obtained by replacing the full effective
photon propagator

&& W"' [(a+a') I",„) ], (1.5)

where W '[A] is the single-fermion-loop vacuum
functional in the presence of an external electro-
magnetic potential A, with no internal-virtual-
photon radiative corrections (and with the depen-
dence on the electric charge e eliminated by a re-
scaling of the electromagnetic potential). For-
mally, W "[A] is given by the expression

W ' [A) = ~ Tr lnh r
k~=2-L ~ S —in ~ qa A,

with the anticommuting matrices a and the O(5)
angular momentum and spin I and ~ defined as in
Ref. 2. If we introduce the eigenvalues p, of h~
(which, as we shall see, occur in quadruples p,

—)),) and define the external-field-problem
Fredholm determinant

&)&l =( II
all eigenvalues

then S' " can be written as

(l.7)

W"'[A] =21n~[A]. (1.8)
As is evident from Eqs. (1.5)-(1.8) and as was
developed in detail in Ref. 2, the analyticity prop-
erties of S', as a function of coupling e are deter-

and where g is the five-dimensional coordinate.
As was shown in Ref. 2, the radiative-corrected

single-fermion-loop vacuum functional in the one-
mode approximation (denoted by W, [A']) is given
by the amplitude integral formula

1V[ 'Y,'„'/ ]-f da(2, , ) exp(, )
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mined by the asymptotic behavior of W"'[g Y,'„j
for large external-field amplitude a, or, what is
essentially equivalent, by the distribution of zeros
of the Fredholm determinant 6 in the complex a
plane.

Let us now spell out more specifically the con-
nection between the e' analyticity of +', and the
rz dependence of Wio'. In order to make Eq. (1.5)
unambiguous, we must specify the integration
contour to be used in evaluating the a integral. In
Ref. 2 we argued that this contour should be taken
to be along the real a axis, or possibly (and very
conjecturally) along the imaginary a axis. Equa-
tion (1.5) with real integration contour will be well
defined if A has no zeros (and hence W' no sin-
gularities) for a real. If W" is asymptotically
weaker than an increasing Gaussian in a as a
becomes infinite along the real axis, then Eq. (1.5)
defines an analytic function of e' in the right-hand
e' half plane. If, moreover, 6 has no singularities
in the wedge-shaped sectors [ Rea )

&
( Ima ) and the

vacuum amplitude W " is asymptotically weaker
than a Gaussian in these sectors, the integration
contour can be freely deformed within these sec-
tors from its original position along the real axis,
implying that &, is an analytic function of e' in the
entire e' plane, apart from a branch cut along the
negative real axis from e' = 0 to e'= —~. Thus,
for real integration contour the questions at stake
are:

(i) Is 6 zero-free for a real?
(ii) Is Wi' asymptotically weaker than a Gaus-

sian as n-+~ along the real axis'P
(iii) Is L zero-free in the sectors ~Rea & )Ima~?
(iv) Is W"' asymptotically weaker than a Gaus-

sian as
~
a

~

-~ within the sectors'

In the following sections we present analytic argu-
ments which answer questions (i), (ii), and (iv) in
the affirmative, and we present numerical results
(but no proofs) which also suggest an affirmative
a.newer for question (iii). Next let us consider the
speculative possibility of an imaginary integration
contour. Such a contour is allowed only if theo

conditions are satisfied: b, must have no zeros
for purely imaginary a, and ~' "must vanish as a
decreasing Gaussian (or faster) as a-~ along the
imaginary axis. As shown in Ref. 2, if & ' oscil-
lates along the imaginary axis with a decreasing
Gaussian envelope, then the imaginary contour
yields a strong-coupling electrodynamics in which
&; exists for large enough e' and can develop an
infinite-order zero as e' approaches a positive e,'
from above. Thus, the questions at issue for a
possible imaginary integration contour are:

(v) Is a zero-free for a imaginary' ?
(») What is the asymptotic behavior of W" as

~a~-~ along the imaginary axis'?

The analytic arguments which follow answer ques-
tion (v) affirmatively. With respect to question
(vi) we can only give limited numerical results,
these show no signs of decreasing asymptotic be-
havior, but, because the asymptotic region may
not have been reached, do not conclusively resolve
question (vi) ~

The material which follows is organized so that
a knowledge of the O(5) formalism is needed only
to read Sec. II, in which we consider the wave
equation determining the eigenvalues p. of h~,

I
2 -I S —i a neo. Y ' (q)jP= pP (I 9)

and show that separation of variables with respect
to the SO(3) &:O(2) subgroup of O(5) reduces Eq.
(1.9} to a pair of coupled ordinary first-order dif-
ferential equations within each separable subspace.
In the remaining sections, which can be read in-
dependently of Sec. II, we study the properties of
this differential-equation system. In Sec. III
we recapitulate the results of Sec. II and argue
directly from the differential equations that 6 has
no zeros for a in strips containing the real and
imaginary axes. In Sec. IV we construct the
Green's function of the one-dimensional system,
and use it to establish a connection between the
Wronskian of the two independent solutions of the
differential equations (suitably standardized) and
the Fredholm determinant A. In Sec. V we use
this connection, combined with WKB estimates, to
determine the order of growth of b, for large

~
a ~.

In Sec. VI we construct series solutions for the
two independent solutions of the differential equa-
tion, and use them to study A(a) numerically.
Finally, in Sec. VII we briefly summarize the
many remaining unresolved questions. In Appendix
A we explicitly calculate the Green's function in
the free case, and in Appendix B we give the de-
tails of the %KB calculation used in See. V.

II. REDUCTION OF THE ONE-MODE PROBLEM

In this section we carry out the separation of
variables which reduces the partial differential
equation (1.9) to a pair of coupled ordinary first-
order differential equations. In Sec. II A we de-
termine the conserved quantum numbers of Eq.
(1.9), and show that the eigenvalue problem diag-
onalizes with respect to an SO(3) &0(2) subgroup
of O(5). In Sec. II 8 we introduce a representation
of the 0(5) generators which facilitates reduction
of the eigenvalue problem with respect to the con-
served subgroup. The reduction itself is carried
Gut in Sec. II C. In Sec. II D, w'e perform a check
by solving the free (a =0) case and verifying the
eigenvalue degeneracies found in Ref. 2. We also
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work out the boundary conditions appropriate to
the separated equations in both the free and the
interacting cases. Finally, in See. IIE we make a
transformation which simplifies the equations in
the interacting case, and construct the external
field problem Fredholm determinant introduced
in Sec. I.

PgP P2=1

we see immediately that

there are also two discrete invariances of h~.
Defining a coordinate inversion generator P,

(2 8)

(2.9)

hq=h~ +V,(0)

2 Lre S V' —sg~eq(Qq ~q )

X = —a(15/16m')'" .

Introducing the O(5) generators

{2.1'I

A. Conserved quantum numbers

To analyze the conserved quantum numbers of
Eq. (1.9) we choose axes in the five-dimensional
space so that the 1 and 2 axes lie, respectively,
along v, and v, . The Hamiltonian in Eq. (1.9) then
takes the form

Finally, letting e, be the Q. matrix which anticom-
mutes with n„. . . , a„we have

(2.10)

This last invariance permits us to split the eight-
component spinor eigenvalue problem of Eq. (1.9)
into two identical decoupled four-component prob-
lems. Diagonalizing the four-component spinor
with respect to the conserved quantum numbers,
we write

(8„'+4„'+4„')g~,-- —j( j+ 1}/~a,

Jab ~ah+ ~eh

we obviously have

h(o)]

(2.2}

(2.3)

4 5~j%gf ~ply@

J120Jmgf ~ $0pltgE v

(2.11)

since the free Hamiltonian hz' is rotationally in-
variant. Furthermore, since

(2.4)

As we will see in detail below, the separation
constants take the values

~ 1
2) 2)

we find, as expected, that e ~
q is also rotationally

invariant,

(2.5)

I
+Z) +&& ~ ~ ~ )

E =+1.

(2. 12)

Hence the generators J„which commute with h~
will be just the ones which commute with the factor
n,q, —a,q, in the potential term. From Eq. (2.4)
we find trivially that

Our task in the succeeding sections will be to find
the form taken by the eigenvalue problem of Eq.
(1.9) when restricted to the subspace of Eq. (2.11).

B. Explicit representation of the O(5}generators

=0 (2 5)

indicating that hr is invariant under the SO(3) sub-
group generated by J,4 cJQ5 and c745 In addition,
we have

[~i2~ +82 nihil = +B2 &Bi+ o'&RAN+ &4'02

We introduce now an explicit representation of
the O(5) generators which facilitates the reduction
of the eigenvalue problem with respect to the
SO(3)&&O(2) subgroup. We begin with the spin
operator S„=~ [n„a~]. Letting o, , „~,», and

p. 2 .be three commuting sets of 2&&2 Pauli spin
matrices, we represent the 8&8 matrices e„.. . ,

a., in the form

so that hr is also invariant under the O(2) sub-
group generated by J„. The other generators J„
do not commute with hr. In addition to the SO(3)
XO(2) invariance group which we have just found,

+I +1T2 t +2 ~2~2 s +3 P3372 )

&4 =@1&3'T2 ~ &5 =&2&37'2 ~ &6 = TS ~

so that the spin matrices become

(2.13}
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1 ~

S,2
—zgg3,

1
14 Z Pl+2 y

a a
M, =-sing -cot8 cosy1 1 a8 1 la@

1

24 ZZP1+1 S

1 ~

~s3 = zzp1

1
S34 —zzP2 ~ ~13 — zzP30'2 ~

1 1
S23 = zZP30» &4s = zZP3.

1 ~ 1
S15 ZzP202 & ~25 ZzP2+1 r

a a
M, = cosQ, —cot8, sing,

1

a
3

a a
N = —sin@2 —cot8 cosya8 2 2 ay

Since the Hamiltonian h~ is even in the o. matrices
Q5 it is a unit matrix in the space of the

7 Pauli matrices. As noted above, this immediate-
ly reduces Eq. (1.9) to two identical decoupled
four -component eigenvalue problems.

To represent the orbital angular momentum L„,
we pararnetrize the coordinates q„.. . , q, in the
form

g, = sin8, cosp, , g2 = sin8, sine, ,

a p3

X2 = cosp2 —cot8, sin/2

aP, = cos8, cos&2 —cse8, siny, —

2a8 2 2ap

a aP, = cos8, sinp2 + csc8, cosp2-
a82

(2. 17}

q, = cos8, cos8, , q, = cos8, sin8, cosQ

q, = cos8, sin8, sin@» (2. 15)

aP, = —ssn82 a8
These satisfy the commutation relations and iden-
tities

0» 8, » -,7T, 0» p, » 2m,

0 «» 82 «» s, 0 «» @2 «» 2g
& i,j, A cyclic

corresponding to an O(2) (angle P,) and an SO(3)
(angles 8„$,} combined with mixing angle 8,. In
terms of these angular parameters, the coordinate
inversion operation is

1 a . a I a'N=P= sin8, +
sin82 a 8, .

'a 8, sin'8, ap2'
'

(2.15')
In terms of the auxiliary operators, the orbital
angular momentum operators take the form

The hyperspherical surface element becomes L,2
—M3, L,3

—N, ,

91 a /1 a 01 01
a8, a$, a8 a@

L34 =.V2, L45
——N3,

L„=—sin8, cosQ M, +tan8, cos@,P, ,

d8, dy, d82d@2 L„=—sin8, sinp2M2+ tan8, cosdl P2,

L „=—cos8,M, + tan8, cos@,P, ,

(2. 19)

05 ~ ~ ~' a8,

= cos'8, sin8, d8, (dg, )(sin8, d8, dP, ), (2.16}

which, not surprisingly, has a mixing-angle fac-
tor, an O(2) factor (dP, ), and an SO(3) 'actor
(sin8, d8, d{tt)2). By dint of considerable algebra
one can express the orbital angular momenta in
terms of derivatives with respect to the angles of
Eq. (2.15). To write the results in a compact
form, we introduce auxiliary operators M&, N&,

P, , j=1, . . . , 3, as foj.lows:

L„=sin8, cos /2M, + tan81 sin(I) 1P1,

L„=sin8, sin~t) M, + tan8, sin@,P, ,

L23 cos 82M + tan8, sing, P3

and by using Eqs. (2.17}and (2.18) it is straight-
forward to verify that the expressions in Eq. (2. 19)
satisfy the O(5) commutation relations

(2.20)
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Using Eqs. (2.14) and (2.19), it is a simple matter to express the Hamiltonian hr and the conserved gen-
erators J,2 cf53 in terms of the angular parameters. %e find

hr' = 2 —i [M,a, + N, p, + iV, p, + X,p, + (M, o, + M,o,)( p, sin8, cosy&, + p, sing, sin@, + p, cosg, )

+i tang, a, (a, cosP, +a, sin4/, )(P, p, +P, p, +P, p, )],
V = A sing, [a, sing, —cos8, (a, cosg, +a, sin j&,)( p, sing, cosP, + p, sing, sin/I/, + p, cosg, )],

(2.21)

and

U3= —s J,2
——sM3+ 2cr3,

—iJ,, = —iN, + 1

1T2—= -i 434= —i%2+ 2 p, ,

(2.22)

T'v, =j(j +1)v, , T,v, =mv, ,

p { ]}/+2m+//2

(j —m+1)Pm "'(cosg, )e'&m ' '&~'

Pm+1/ (cosg )el m+ z/2
J+ 1/2 2

(2.25)

1
T3 = —i J'45 = —i N3+ 2 P3 .

C. Reduction of the eigenvalue problem

The first step in the reduction of the eigenvalue
problem with respect to the SO{3)&&O(2) subgroup
is to find the eigenvalues and eigenfunctions of the
conserved generators in Eg. (2.22). This is, of
course, just a standard angular momentum prob-
lem. For the O(2) subgroup we find two eigen-
functions with opposite inversion parity for each
eigenvalue $ of U„

U3N~ = Eu, ,

(j+ m)P '" (cosg )e'

pm+ i/2 (cosg ) e i( m+ 1/2)42
J —1/I'2 2

m= -j, -j+1, . . . ,j, (2.26)

and the subscript p indicates that the spinors are
acted on by the Pauli matrices p&. In terms of
the O(2) and SO(3) eigenfunctions which we have

just found, the general decomposition of (]|, ~& is

with Pf(z) the usual associated Legendre poly-
nomial. The allowed values of j, m are the usual
ones for spin-& coupled to an orbital angular mo-
mentum,

~ 1 3
2 5

Pu, =(-1) '"'u, ,

(2.23)

P/ „=A,(8,)v, u, +C, (8,)v u

, =A (8,)v, u +C (8,)v u, ,

( 1)~+/+ am- i

(2.27)

g + 0

e f(C+ 1/2)41 0
1

The next step is to substitute Eq. (2.27) into
Eq. (1.9), using the expression of Eq. (2.21) for hr.
To find the action of the various terms of h~ on

u, and v, we use the following identities, which

may be verified by straightforward calculation:

The subscript cr on the spinors indicates that they
are acted on by the Pauli matrices 0,. Because
the orbital angular momentum —iM3 must have
integral eigenvalues, the eigenvalues of U, must
be half-integral; hence the allowed values of ( are

g3Q~ =+111,

(a, cos4/, +a, sing, ) u, =u, ,

(2 —iM, o,}u, = {2+t') u, ,

—i(M, a, +M, a,)u, =su,
8 +(2+$}cotg, ; (2.28)

1

1
~ ~ ~ ~ (2.24) {p, sin82 cos{II]2+p, sin&2 sin/2+ p, cosa, )v, = v, ,

3 ]—iN pv, = —(j+ ~)v, ., —iN ~ pv = (j —2}v
For the SO(3) subgroup we again find two eigen-
functions with opposite inversion parity for each
pair of T eigenvalues j, m,

P. pv = {j+2)v, P pv = —{j —2)v

Hence we get
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hz4jjgu (2+ $)A, v,u, +(~ —&)C,v u —(j+~)A,v, u, +(j ——,'}C,v u

+ +(-, —$)cot8, A, v u — +(-, +$) cot8,
~

C,v, u,
d

1 1

—tan8(j+-', )A, v u —tan8, (j —~)C,v, u, +Rein'8, A, v, u, —csin'8, C, v u

—A. sin8, cos8,A, v u —A. sin8, cos8, C+ v+u+

= P4p gc

= pA+v, u, + pC, v u

hag. ~-.=(~ —~)A-v+u-+(-,'+t)C v u, —(j+~)A v, u +(j —2)C v u,

d +(2+$)cot8i A v u++ +(2 —$)cot8i C v+u
1 1

+tan8, (j+—,')A v u, +tan8, (j-~)C v, u -csin'8, A v, u +csin'8, C v u,
—A. sin8, cos8, A v u —Xsin8, cos8, C v+u

=~ v, u +pC v u, .

(2.29)

Equating coefficients of like terms then gives us the following two sets of coupled first-order differential
equations for A, (8,) and C, (8,}:

((-j)A, — +(2+$)cot8, +(j —2)tan8, C, +Xsin8, (A, sin8, —C, cos8,)=~, ,d8,

(j+1 —$)C, + +(~ —$) cot8, —(j+-,) tsn8, A, —~sin8, (C, sin8, +A, cos8, ) = pC, ;
d

1

—($+j)A + +(; —$)cot8, +(j-~)tan8, C -P isn8( is8n, A +cos8,C )=pA
1

(j+1+()C — +(-,'+ g) cot8, —(j+2)tan8, A +Xsin8, (sin8, C -cos8A ) =uC
1

(2.3Ob}

n. qh~= -hz u. g . (2.31)

These two sets of equations can be further re-
duced to just one set of coupled differential equa-
tions by exploiting the fact that

Since a q has odd inversion parity, Eq. (2.31)
tells us that if P~», is an eigenfunction of h~ with
eigenvalue g, then cy ~ q(Ij~, is an eigenfunction of
h~ with eigenvalue —g, quantum numbers j, m,
unaltered, but (reversed) inversion parity+a.
Specifically, writing'

n. qg~-, = [(a,cosP, +g, sing, ) sin8, +g,(p, sin8, cos&p, +p, sin8, sing, + p, cos8, ) cos8, ]

X[A (8,)v, u +C (8,)v u, ]

=A, (8,)v, u, +C, (8,)v u (2.32)

we find from the relations of Eq. {2.28) that

A, =A sin8, + C cos8

C, = -A cos8, +C sin8, .
(2.33)

From the differential equations [Eqs. (2.30b)] sat-
isfied by A and C, we find that A, and C, satis-
fy the coupled differential equations

{(—j}A — + {-+(}cote + {j ——}tail&
Ld8,

+Xsin8, (A+ sin8, —C, cos8„)= —uA, ,

(2.34)
1 3(j+1—()C, + +(-,' —t) cot8, —(j+z) tan8, A,

1

—X sin8, {C,sin8, +A, cos81} p. C, .
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As expected, these are identical to Eqs. (2.30a),
apart from the reversal in sign of the eigenvalue.
Thus, we need only study the one set of equations
in Eq. (2.30a).

To find the measure with respect to which two
eigensolutions of Eqs. (2.30a) with different eigen-
values p, , p.

' are orthogonal, we start from the
hyper spherical orthonormality condition

The differential equations which we must study
thus are

($ —j)a — —+ (-,'+ f) cot8+ (j ——,') tan8 c

+ A sin8(a sin8 —c cos8) = pa,

~q4~g~ 4j g
= 0 ~ (2.35) (2.39)

Using the expression for dQ„ in Eq. (2.16), and the
fact that

u u =u, (o, cos@,+o, sing, }u,2

(j+ 1 —$)c+ —+ (2 —$) cot8 —(j+ &) tan8 a
d ~ 3

d8

—A sin8(c sin8+a cos8) = pc,

= Q~Q+ )

vtv = v, (p, sin8, cos@,+ p, sin8, sing,

+ pp cos82) v~

(2.36) with the measure for orthogonality

J
fl/2

cos 8 sin8 d8(a*a'+ c~c') = 0,
0

(2.40)

Eq. (2.35) reduces to

fl'/2

cos'8, sin8, d8, (A*,A', + C*,C', ) = 0,
0

(2.37)

which identifies the measure for Eqs. (2.30a).
Now that the eigenvalue problem has been re-

duced to a single set of coupled first-order differ-
ential equations, the subscripts used in the above
analysis are no longer needed. To expedite the
subsequent discussion, let us change notation as
follows:

0,- (9,

D. Solution of the free (X=O) case

and check on eigenvalue counting

Let us now check the reduction leading to Eq.
(2.39) by solving the differential equations in the
case of vanishing interaction and comparing the
energy spectrum with the free-particle spectrum
calculated in Ref. 2. When A, =o, the differential
equations simplify to

($-j)a- —+(-,'+$)cot6+ (j --,')tan6 c = pa,
(2.41)

(j+1-$)c+ +(2-$)cot6-(j+-, )tan8 a=pc.3

d(9

A (8,)—a(8),

C.(8,)-c(8).

(2.38)
Changing the independent variable to I = cos'8 and
eliminating either c or a, we find that a satisfies
a second-order differential equation of standard
Riemann type, 4

(j+k)(i+5) 1 (5--'}' 1 (j+ ')(j +k)+((--k)'+2+v(1 p)-
du' 2 u u-1 du - 4 u' 4 (u-1)' 4 I{I-1)

(2.42)

and c satisfies a similar equation obtained from
Eq. (2.42) by the replacements j-j -1, $- $ +1.
The characteristic exponents of Eq. (2.42} at the
regular singular points at u=O and I= 1 are given

in Table 1. Equation (2.42} can be solved in terms
of Jacobi polynomials, giving the following four
series of eigenfunctions and eigenvalues.

5- 2'
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a =f (cos8)""'(sing)'

x P """')(1-2cos'8},

c=(cosg}' "'(sing)""'
x P /'~" ' (1-2 cos'8}

h

For each eigenfunction with eigenvalue p. and in-
version parity e obtained from Eqs. (2.43) and
(2.44), there is another eigenfunction with eigen-
value -p, and opposite inversion parity obtained
by inverting the transformation of Eq. (2.33) to
give

Series 1.

p. =2n+2+ j+$, m=0, 1, 2, . . .

f=-(n+f. +l)l(n+ j+1).
Series 2.

p =-(2n+1+ j+$), n=0, 1, 2, . . .

(2.43) A =a sin0-c cos6,

C =a cosL9+ c sin&.

Hence the positive eigenvalues of h& are

twice each
2n+1+ j+ ( g [

(2.47)

n=0, 1, 2, . . . ,
1 3
20 2)

(2.48)

u =f (c()sg) /+ ~/2 (sing) /

PR g ) ~ ~ ~

and the degeneracy of the eigenvalue k + 2 is

x P(/+ lyl/2-t)(1 2 cos~g)

c=(cosg)' "'(sing} '" t

x P(/, -1/2-5)(1 2 cos2g)

deg(k+2) =2
&e) ~ kl

~ff+j+ l 4 l=f)

(2j+1)

Series 3.

p, =2~+3+ j-E, n=-1, 0, 1, . . .
(2.44)

Series 4.

p=-(2n+2+j $), n=-0, 1, 2, . . .

f=("j-& -')/("1).
These solutions can be verified by direct sub-
stitution into Eq. (2.41), using the following four
identities satisfied by the Jacobi polynomial
P(n, 8)(x)5.

(1-x)—P" 8'(x) =aP' )(x)-(n+a)P ~ ' ~ ~'"(x)d
5 fl

(1+x)—P'" "(x)=(n+p)P'" ~ ' "(x)-pP'" "(x-}

(2.45)
P(1-x)P ' '(x)-(n+a)(1+x)P' ' '"(x)

=-2(n+1)P '~ '(x)

2 ~ P(„,'P(x) =(n+a+P+2)P( ''~'')(x).

Let us now count the total degeneracy with which
the eigenvalue p, =4+2 occurs. Remembering
that we have reduced our problem to a four-
component spinor, the expected degeneracy of the
eigenvalue p, =4+2 is

n, g, l c l

2n+y+l (1=@+1

(2j+1) . (2.4S)

(2.50a)

satisfies the finiteness boundary condition

TABLE I. Characteristic exponents of the differential
equations for a and c at u =cos28=0, 1. [See the dis-
cussion following Eq. (2.50).]

Singular point: u =0, 0=21m

u az = (cos6))2aa

C -u c = {COS6) O&

Singular point: u =1, t)}=0

a - (1 —u)}(a = (sin8) (~

c- (1 —u)&c =(sino) ~c

Characteristic exponents Characteristic exponents

Solution 1 Solution 2 Solution 1 Solution 2

The right-hand side of Eq. (2.49} is obviously a
cubic polynomial in k, which by direct enumer-
ation of the two sums, takes the values 4, 16, 40, 80
for 0=0, 1, 2, 3, respectively. Hence it is equal to
~(k+1)(k+2)(k+3), and the eigenvalue-counting
checks. In group-theoretic language, what we
have done is to exhibit the decomposition of the
(k+-,', &) representation of O(5) in terms of states
labeled by the quantum numbers of the SO(3)xO(2)
subgroup.

From Eqs. (2.43) and (2.44), we see that in the
free case the two-component wave function

deg(k +2}= dim(k +-,', —,')
=-'. (k+1)(k+2)(k+3),

k=O, 1, 2, . . . . (2.46)

l(~+1)

1() 1)

—.'(j+8) x. 2(f —-')

1()pl) ~ 1((+1)

—-'(( —-')

1(~ + 1)
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g-finite at 8=0, 8=2m, (2.50b) or equivalently

1r/2

cos'gsingdg{ia['+ ic)')(~. (2.50c)

Since the interaction term in Eq. (2.39) is non-
singular at 6) = 0, 6) = -2' m, the characteristic ex-
ponents of the differential equation system at 6)=0,
0 =-,' m are the same in the interacting case as in
the noninteracting case. Hence the boundary con-
dition in Eq. (2.50), which we inferred from the
free solution, is appropriate to the interacting
case as well.

E. Reduction of the interacting case and construction
of the Fredholm determinant

It is convenient, for the work which follows, to
reduce the coupled differential equations of Eq.
(2.39) to a somewhat simpler form. We work with
the two-component spinor notation of Eq. (2.50a),
and write Eq. (2.39) in the matrix form

(2.51)

and an examination of the characteristic exponents
in Table 1 shows that Eq. (2.50b} is equivalent to
the square-integrability boundary condition

r
fr/2

0
(2.56b)

0 =Pgf(~) & (2.57)

so that the Fredholm determinant within the sep-
arable subspace takes the form

z„(~)= II „.(a)
in subspace

=det[H„] . (2.58)

Remembering that for each eigenvalue i1,~(A)
there is an eigenvalue -p, ~ f (X) coming from eigen-
functions with opposite inversion parity [see the
discussion following Eq. (2.31)], and that there is
an additional duplication of eigenvalues when we
reconstruct back to eight-component spinors, we
find that

II .=, II rr
all eigenvalues f = &I 2a 3/2 ~ ~ ~ ( = & &/2i & 3/2. . . ,

To construct the external-field-problem Fredholm
determinant, we display the parameter dependence
of the eigenvalue p. by writing

Introducing Pauli matrices 7'„r„~3which act on
the spinor P, it is easy to see that 0 may be
written as

x II [&„(&)']""
ail ejN, envalues

in subspace

(2.59)

H =& —(j —
&

—A. sin'8+-,')r,
—[g cot8 + (j + ~ }tang + X sing cosg]v,

Thus, comparing with Eq. (1.7), we see that the
full external-f ield-problem Fredholm determinant
is given by

-i —+-cot8-tan8 7
d

d8 2 (2.52)
f=l./2s3/2i ~ o g ~l/2, %3/2, ~, ,

(g)2j+ I

%e now make a similarity transformation on Eqs.
(2.51) and (2.52), writing One further transformation of this formula proves

to be useful. From Eq. (2.54), we see that if

a =sa,s-',
S = (cosy 8 —tt2stna 8)[(sing) cosg]

The transformed eigenvalue problem is

(2.53) HRN I 1 j(~4

Ha 1--1'i& &1~(~&-A-.

(2.61)

(2.62)

Hs = -[$(sing) '+X sing]r,

—() +-, ){cose)-v3-i—7-, .~ 1

d8

The measure for orthogonality is now

J
fr/2

d|9 $~$g =0,

and the boundary condition is

g„- (sing)~'cosgx finite at 8 =0, 8 =-,'s,

(2.54)

(2.55)

(2.56a)

Since v', ' =1, we conclude that the sets of numbers
(-i1&~(X)},(i1,~(-X)}are identical. Hence

II ~ „(~)= II (-)~„(-~), (2.63)
all eigenvalues all eigenvalues

in subspace in sub space

permitting us to eliminate the negative -$ factors
in Eq. (2.60). Dividing out n, [0] to eliminate an
irrelevant (and infinite) constant factor, we get
finally

a[A] II II -a„(a.)n, „.(-x)
i= U2. ~~/2. . . . 1=V2.SI2, . . .

(2.64)
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Equation (2.64) is still a formal expression, in that
renormalizations have not yet been made. In Sec.
V below we discuss the modification of Eq. (2.64)
which is made necessary by renormalization sub-
tractions, and which guarantees convergence of
the infinite product.

III. ZERO-FREE STRIPS

~m/2

[((sine) '+A, sine]g +8+iR, =0,
0

71/2

R, =(j+-,') (cose) 'gtr2pde

7)./2

-i —gd{9 .
d8

(3.6)

For the benefit of the reader who has skipped
Sec. II, we briefly recapitulate the principal re-
sults derived there. In terms of the effective ex-
ternal-f ield amplitude

l/2
A. =-a

16m
(3.1)

Hg = I2(/(X)g,

H = -[g(sine)

'+cosine]3.

,
(3.2)

—(j+-,')(cose) 'r3 -i —r2,

with the measure for orthogonality

we found that the external-field problem could be
reduced to the two-component eigenvalue problem

(r, 2 3=Pauli matrices)

Using the boundary condition of Eq. (3.4) to inte-
grate by parts, we readily see that R, is pure
real. Hence taking the real part of Eq. (3.8) gives
the relation

f (sin8) 'qtqde
(3.9)

f sine g /de

We learn from this relation that a[A] has no zeros
for X in the strip ~Rek~ ~ 2, and in particular no

zeros on the imaginary axis. To get a second re-
striction on the locations of zeros, we multiply
Eq. (3.7) by g 23 and integrate, giving

7f/2

X sin8 q~r, qdg

II/2
—(j+-,') (cose) 'qtqde+iR, =0,

J
m/2

d&gtf' =0, p c p.
'

and the boundary condition

(3.3)
(3.10)

g/o 71/2

R, = -(
,
'(sin8) 'ptr2gde — gt3. , i —-)de .

40 0

g- (sine)~'cose x finite at 8 =0, 2m . (3.4)

(3.5)

we found that the full external-field-problem
Fredholm determinant introduced in Eq. (1.7) is
given (up to renormalization subtractions) by

Defining the Fredholm determinant corresponding
to Eq. (3.2) by

n, „.(x) = rr i2„(x},
all eigenvalues

Again, the boundary condition of Eq. (3.4) implies
that A, is real, so taking the real part of Eq.
(3.10) gives the second relation

Imh. f (cose) 'g /de
1

& +2 J sin84tT2gde
(3.11)

Since ~, has eigenvalues +1, we have the inequality
and so Eq. (3.11) implies the in-

equality

rr rr+[ ] /=1/2, 3/2. . . , )=1/2, 3/2, . . .
~„(&)n,, (-&) &

""
(3.6)

[Imx( f3' (cos } 'q qd
/

2 +2 f sinep&gde
0

(3.12)

The reminder of this paper is devoted to a study
of the mathematical properties of Eqs. (3.2)-(3.6).

We begin by showing that g, /(X) cannot vanish in

strips in the A. plane containing the real and imag-
inary axes. From Eq. (3.5) we see that zeros of

g&, (X) occur at va.lues of X where Eq. (3.2) has a
vanishing eigenvalue, that is, where

(3.7)

for nonvanishing, normalizable g. To get our first
restriction on the locations of zeros, we multiply
Eq. (3.7) by gtr, and integrate, giving

&(/(~)* = &(,(~*) (3.13)

Hence for each zero A. of S&&(X), there is a corre-
sponding zero at the complex-conjugate point X*.

Thus a[A] can have no zeros for X in the strip
~1m'~ & 1, and in particular no zeros on the real
axis. Combining the restrictions of Eqs. (3.9) and
(3.12), we get the regions in the X plane where n, /(A }
is allowed to have zeros, as illustrated in Fig. 1.
Note that the absolute value sign in Eq. (3.12) can-
not be removed. In fact, since the Hamiltonian H
is Hermitian for real A, a&&(A} is a real analytic
function of A. and satisfies the reflection principle
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IV. 'KRONSKIAN FORMULA FOR THE

FREDHOLM DETERMINANT

We proceed next to derive a connection between
the Fredholm determinant in each separable sub-
space and the Wronskian of two suitably standard-
ized independent solutions of Eq. (3.V). In Sec. IV A

we construct the Green's function for 0, introduce
the standard solutions, and discuss their analyti-
city and rate of growth in A, . In Sec. IV 8 we prove
the connection between the Wronskian and the
Fredholm determinant.

A. Green's function and standard solutions

I et H =H (8) be the Hamiltonian of Eq. (3.2), and
let 8 =0 ' be the Green's function satisfying

Hq, =Hq, =0,

- (sin8)~'x finite at 8 =0,
I

(4.2)

02 ~ ~ 1- cos8 x finite at 8 =-, m .
C2

We also need the Wronskian of the two solutions,
defined by (the superscript T denotes transpose)

with 1 the 2X 2 unit matrix. To construct an ex-
plicit expression for 8, we introduce the solutions

g„g, of Eq. (3.V} which are regular at 8 =0, 8 =-,'s,
respectively:

H(8, )S(8„8,) =5(8, —82}l,

0 ~ 8„8,--,'~, (4.&)

w(X) =g, fv,q, =a, (8)c, (8) -a, (8)c,(8) .
Since

(4 3)

~K g . d . d

=-q2r[[$(sin8) '+A sin8]v, +(j+-,')(cos8} 'v)q, +q r([F2(sin8} '+Xsin8]v, +(j +-,')(cos8) 'v]rg, =0, {4 4}

S8 8 = -'x I~'( '~'(') '
'[y, (8,)q,'(8.),

To verify Eq. (4.5}, we note that

8, &82

8, & 8~
(4.5)

the Wronskian is 8-independent. Applying the
method of variation of parameters, ' we then find
the following expression for S:

conditions which, as we shall see explicitly be-
low, can be satisfied by taking the leading terms
in the series developments of g, (g, ) about 8 =0
(8 =~ w) to be A. -independent constants. ' Equation
(4.7) uniquely specifies the A dependence of g„g„

H(8, )S(8„8,)=O, 8,&8„8,&8, ;
~8 +e

d&,H(8, )S(8,„8,) ~ fv~-
(4.6)

I

I

l

)

Im), = j+~yp

as required. In Appendix A, as an illustration of
this construction, we give a formula for 8 in the
noninteracting (A. =0) case.

Up to this point the normalization of tI), and g,
has not been specified, and it is obviously im-
material for the construction of Eq. (4.5). How-
ever, for future use we now standardize the nor-
malization by requiring that

Im X = -( j+&/2)

'
{P~vq, } ~'- 0 as 8- 0,

(tt}2tq, ) ~'-0 as 8--,'m,
(4.7) FIG. l. Regions in which 6&,. (A) can have zeros ac-

cording to the inequalities of Eqs. (3.9) and (3.12). We
assume g &0.
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and u, leaving arbitrary only a A. -independent
normalization factor. It is now possible, by
straightforward majorization arguments, to prove
the following result: The standardized solutions

g, , are entire functions of A, bounded for large A.

by e'~ ~t, with c an appropriate constant.

8. Proof of the connection

To connect the Fredholm determinant n, ,~(X}
with the Wronskian, we start from the formal re-
lation8

inn&&(X) = Tr lnH

= Tr ln -[$(sin8) '+A. sin8]r,

-(j+-,')(cos8) 'r, -i—
(4.8)

from which we get by differentiation

dw (A.)
iV g +giT (4.11)

Letting 8-—,'w and using Eq. (4.7), only the second
term on the right-hand side of Eq. (4.11) survives,
glvlng

(4.12)

To proceed we consider the integral appearing in
the numerator of Eq. (4.10),

J
fl/2 yH

0 ei o e
e2~ ~/2

d8 y2r —g, . (4.13)q8H

We next show that the numerator on the right-hand
side of Eq. (4.10) is just equal to dw (A. )/dX when

g, and g, are taken to be the standard solutions.
To see this, we start from Eq. (4.3) for w, which

yields

(4.9) By differentiating the equation Hg, =0 with respect
to A. we get

Substituting Eq. (4.5) for 8=H and evaluating
the trace, we find 0H

aX ez (4.14)

(4.10)
and substituting this into Eq. (4.13), using the ex-
plicit form of H and integrating by parts, we find

l fr/2 ay,
d6) $z

—
Q~

= lim — d8 $2H—
0 e-0 e

e,- ff/2 1

lim — d8 y2r i —r, -—[g(sin8) '+A sin8Jr, —(j + ,')( cos)-8'T, "

d6) 8X
e,- ~/2

e2 I

llm i/2 T2 — d8(H$2)
e,-o &" e, e,

e, '- ~/2

e-~/2

du((A ) (4.15)

giving the desired result. Substituting Eq. (4.15)
into Eq. (4.10) we get, finally,

(, dd. „(Z)
( ), dw(X)

=so A. (4.16)

which on integration gives the connection between
the Fredholm determinant and the Wronskian,

that g„(X}is also entire, as expected for a
Fredholm determinant. Obviously, 6 &, (X }will
also have exponentially bounded growth at infinity;
the precise asymptotic form of n&,.(X) will be
given below. Equation (4.17) will be of great utility
in the subsequent sections, where it will allow us
to study n, „(X)by applying WEB and series ex-
pansion methods to the solutions of Eq. (3.'7).

(4.17)

Since g„g, are entire functions of A, , we conclude

V. ORDER OF GROWTH OF Aj,g(X ) AND 6 fA (

In this section we give more precise results
concerning the large-A. asymptotic behavior of
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a&&g) and of the full external-field-problem
Fredhoim determinant A[A]. In Sec. VA we pre-
sent a WEB formula (derived in Appendix B) giving
the asymptotic behavior of d, &„(X). Using this
formula, we determine the asymptotic distribution
of zeros of h&/(X). In Sec. VB we discuss the re-
normalization subtractions needed to make the
infinite product for d, [A] convergent. Using our
knowledge of the distribution of zeros of 6, com-
bined with results from the theory of entire func-
tions, we determine the order of growth of the re-
normalized determinant K[A] for large external-
field amplitude A. . Combining this estimate with
the absence of zeros in a strip containing the real
axis, we show that the real amplitude integral
contour discussed in Sec. I yields a function of e'
analytic in the right-hand e' half plane.

A. Asymptotic behavior of AgI(X)

= —&( 1= j (5.1)

are satisfied, we can apply %KB methods to cal-
culate approximate solutions of the differential
equations, and hence to get the asymptotic form
of n&&(X). The calculation, which is outlined inAp-
pendix B, gives the result (valid for $ &0)

As we have seen above, n&&(X} is given by the
%ronskian of two suitably standardized indepen-
dent solutions of the differential equation Hg =0.
In the limit when ~A~ is large, or more specifically,
when the inequalities

lI

A„,(A) I'(2(j + I)) I'(-,') I (j+)+ I) 2,(,,g, ) (,„/, )

At, (0),,„, I"{j+-'.) I'0+1) I'(5+-.')
2«l

x [e'+ e '(-I )"' "2-'& '""(j + 2)1(t' + -,')z -& ' "/')
] (5.2)

showing that the entire function d, „(X)is of expo-
nential type. One special case of Eq. (5.2) is
worth noting. When j - --,', Eq. (5.2) reduces to

& g, (&) (5.3)
6(/(0) J 1/2 &g«1

2«l

we will show in Sec. VIA below that this is an
exact, and not just an asymptotic, result. From
Eq. (5.2), we can calculate the asymptotic distribu-
tion of zeros of h), (X) by solving the equation

»$, we see that Re%. is asymptotically negative,
as required by the inequality of Eq. (3.9). The
occurrence of zeros in complex-conjugate pairs
is also apparent from Eq. (5.5).

For application in Sec. V 8, it is convenient to
give the zeros of S„(A) an index k which arranges
them in order of increasing magnitude:

A., =general zero of ~&&(A),
(5.6)

0 ). -k( I)/+ (+12-2( 5 1+/)2( 2)

x I (t+-,')) -« "/')

which we rewrite in the form

2X,
( ) )cg &2

(5.4a)

For large k the index defined this way can be iden-
tified (up to a factor of two, since the zeros occur
in complex-conjugate pairs) with the positive in-
teger ~n~ appearing in Eq. (5.5). Since the effective
expansion parameters in the %KB procedure are
thus

c =)+ ~-,

c, = -2($ + —,'}ln2+ ln(j + —,') (5.4b) j j
I)

' (5.7)

+ lni" ($ + —,.') —iv(j + —,') .

Neglecting terms which vanish for large A. , the
solution is

I, = STREE + g c2 —
p clln (-KPlz)

I
ex=Hi(F ~ nfl ( ~' Ot(, z|

i~ =)/n+ O($,j) .

In the region of validity of Eq. (5.5), where ~n~

(5.5)

we expect the following bounds on ))).,')~ to hold
uniformly in $ and j:

( *&'+-'($ +-')'[b)[(t' + l )i&])')"'
/ o-t, =e(j'+~')~' (5.8a)

(j'+]')/'«)X"~ «A (j'+t')' ' 0 «k, (5.8b)

for suitable constants A», and C. [Equation
(5.8b) also incorporates the lower bounds of Eqs.
(3.9) and (3.12).] We have not constructed a proof
of Eq. (5.8}, so these inequalities should be
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considered a conjecture, suggested by the %KB
analysis, on which some of the arguments of Sec.
V B are based.

B. Order of growth of

Ajar

I

%e are now ready to examine the asymptotic be-
havior of the full external-field-problem Fredholm
determinant n, [A], given by the product formula
Eq. (3.6). First we must deal with the question of
renormalization subtractions alluded to above. By

{

dividing out a&/(0}k in Eq. (3.6), we have eliminated
the most divergent vacuum diagram illustrated in
Fig. 2(a). However, the second-order diagram
shown in Fig. 2(b) is also divergent, and must be
eliminated by a further subtraction. To do this,
we write the small-X expansion

and then define the renormalized Fredholm deter-
minant Zi, [A] by writing

e{)(~)
/=1/k, k/2, . . . (=1/2, 3/k, . . . !sgJ(0) J

In this expression

q(~) =q, +q, ){' (5.11)
(5.i3)

is a polynomial which expresses the fact that the
renormalization counterterms always have an un-
determined finite part. To see that Eq. (5.10) is
the correct recipe, we note that the renormalized
vacuum amplitude, which according to Eq. (1.8) is
proportional to

ink[A] = q(P. ) +inn. [A] —1n/!,[0] -){.', inn, [A]
dA, X2=o ~

(5.12)

now receives contributions only from the conver-
gent vacuum diagrams illustrated in Fig. 3.

Let us next rewrite Eq. (5.10) in an alternative
useful form. Since /!k&/(X) is an entire function of
exponential type, we can use the Hadamard factor-
ization theorem' to write it as an infinite product
in terms of its zeros Ak~~,

giving

~„(&)~„{-&)
a{/(0) k (X, )

From Eq. (5.14) we identify A. „,. as

1
C/ ~ ( C/)2

Let us define an additional constant 8&,. by

1
M (g~&)4

k k

(5.15)

and combine Eqs. (5.13)-(5.16) to rewrite Eq.
(5.10) as

g[A] e e{) ) &
-Bx !'2Ik (){}

A. , ){ k k/+'
f 0)= II II

/=1 2/, 9/, k. . {=1/2~ k/2, . . . k (- ( k ) k

= II
all zeros

X. pof A[A]
(

1
exp —+ — — + — — +—

2 ){„3){„4

f=u'a, a/2, . . . (=&2,3//a, . . .
(2j+1)B{,

The constant B is the contribution of the fourth-
order graph which appears as the first term in
the series of Fig. 3, and hence is finite. The sec-
ond expression for P(){) in Eq. (5.17) has the form
called a canonl, 'ca/ product in the theory of entire
functions'; Eq. (5.1V) thus expresses /{k[A] as a
canonical product multiplied by the exponential of
a fourth-degree polynomial in A. .

FIG. 2. (a) Divergent vacuum diagram vrhich is re-
moved by division by b, &, (0)" in Eq. (3.6). (b) Divergent
vacuum diagram which is removed by the factor
exp(-A &,

X2) in Eq. (5.10).
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Let us now introduce some further concepts from
the theory of entire functions. ' Let f(X) be an en-
tire function of the complex variable X. Its maxi-
mum modulus M(r) and minimum modulus m(r)
are defined by

FIG. 3. Convergent diagrams which contribute to
Eq. (5.10).

M(r) = max
~
f(re'e)~,

m(r} = min
~
f(re' }~

(5.18)

&e 4C i' 4cf 2 a-4

( '+&')' "~' (o. —3)(o. —4)

(5.24)

The o~der p of f(A, ) is defined to be

ln InM(r )
p = llm sup lnr

(5.19a)

as claimed. Next we show that Eq. (5.21) diverges
when n-4. Since (lnx)/x «1/e for x «1, the upper
bounds in Eq. (5.8) take the form

if f is of order p it is asymptotically bounded by

)f(~)~ Ae'~~t' (5.19b)

1
(1

(5.25)

for suitable positive constants A and B. Finally,
let(r„= (A.„~] be the sequence of moduli of the zeros
&„off(&), arranged in increasing order. The
smallest number o for which

1
for all a&0

u= 1 +II
(5.20)

g= 1./2, 3/2, . . .
(2j+1) Q Q „~ ~

)=1/223/2, . . . k ~ k

(5.21)

In estimating the convergence properties of S it
obviously suffices to replace the sums in Eq.
(5.21) by integrals. We first show that Eq. (5.21}
is convergent for a&4. Using the lower bounds
obtained from Eq. (5.8),

vt2A, - ~~,"~, a -u,
(j'+~2)'i2 ~~,'~~, u - I,

we get the estimate

(5.22)

C (j2 + t2)1/2 dk

CI
„2)i„,)I2, (5.23)

(g +C,

so that

is called the exponent of convergence of the se-
quence. According to the theory of entire func-
tions, the order of an entire function is closely
related to the exponent of convergence of its zeros.

To determine the order of 5[A], we wish then
to calculate the exponent of convergence of the
zeros A., appearing in Eq. (5.17). Remembering
that all zeros A.k~~ occur with multiplicity 2j+1,
we consider the sum

A, ~j'+(')i', I -I,
giving, by a procedure identical to that in Eqs.
(5.23) and (5.24), the estimate

C"
II )S «( ), C &0. (5.26)

Ne conclude that S„diverges for n =4, and that
the exponent of convergence of the zeros of

A[A] is o =4.
From the fact that a =4 we can immediately con-

clude that the order of the canonical product P(A)
is 4, and hence that the order of /[A] is less than.
or equal to 4.' If the order of X[A] were actually
less than 4, then the sum in Eq. (5.21) would con-
verge' for exponents n smaller than 4, which we
have seen is not the case. So we conclude that the
order of r3, [A] is precisely 4.

Let us now use these results to determine the
convergence properties of the amplitude integral
when taken along the real contour. Since z&,. (X)
cannot change sign on the real axis, all of the
factors in Eq. (5.10), and hence K[A] itself, are
positive for A real, and so Inn, [A] is real. Since
the maximum modulus of L[A] is bounded as in
Eq. (5.19b) with p =4, we have

Inz[A] & a)X(' (5.27)

for an appropriate positive constant B. In order
to restrict Inh[A] from below, it is necessary to
have a lower bound on the minimum modulus of
5[A] . We get this by using the following theo-
rem'. "Let &{A.) be a canonical product of order
p. About each zero X, (~X„~ &1) we draw a, circle of
radius I/~A. „j", n& p. Then in the region outside
these excluded circles, ~P(A)~ & exp(-r2") for e & 0
and for r & r2(e, o.)." To apply this theorem, we
note that the sum of the radii of all the circles is
just S~ and can be made smaller than 1 by choos-
ing of large enough. Since A[A] has no zeros in
the strip ~1m'.

~
«I, the entire real axis then lies
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in the region outside the excluded circles, and so
we learn

(5.28)

for r, appropriately large. Taking Eqs. (5.27) and
(5.28) together, we see that ~Ink[A]~ is poly-
nomial-bounded on the A. -real axis. The Gaussian
factor in Eq. (1.5) then guarantees that the ampli-
tude integral converges when taken along the real
axis, provided that Bee'&0, and thus defines a
function of e' analytic in the right-hand e' half
plane. Note that this conclusion does not depend
on the fact that 5[A] is of order 4, but only re-
quires the weaker statement that the order of
5[A] is finite, which is known to be true' indepen-
dent of the validity of the inequalities in Eq. (5.6).

a, =(tan-'8)'f(x},

c, =tan8(tang 8}'g(x),

1x=1-
cos8 '

(6.3)

In terms of the new variables the coupled equa-
tions become

df Af—+,—(j+ ~)g =0,
dx (1 —x)'

(6.4)

x(2-x) ——,+(2(+I-x)g+(j+2}f=0.dg Ag 1

dx (1 —x)~

We now look for a power-series solution in the
form

Vl. NUMERICAL RESULTS

Substituting

A. Power-series solutions

We turn next to numerical studies of &&~(P.) and
&[AJ. In Sec. VIA we derive power-series expan-
sions for the standardized solutions g, and t},. The
circles of convergence of the two series which we
obtain overlap, allowing one to compute the Wron-
skian, and hence n&, (X), by picking 8 to have any
value in the overlap region. In Sec. VIS we nu-
merically study the location of low-lying zeros of
& „(A), and find that there are no zeros in the sec-
tors (Rea I& }Im&(. Consequences of this fact for
the coupling-constant analyticity properties of S',
are discussed. Finally, in Sec. VIC we give nu-
merical results for the behavior of the vacuum
amplitude as A. increases along the imaginary axis.

(6.5)

+ (j+ —.)(g. —2g. , +g;, ) J

1g„„=
2 2

[(5n+4(+3+2k.)g„

(6.6)

—(4n+2) —1+z)g„,+ (n -1)g„,
—(j+~)(f„„—2f„+f„,}J, n-O.

(2) Solution g~ regular around 8= ~ m. In this
case we make the substitution

cos8
a, =

I . [h(y)+cos8 I(y)J,

We find that Eqs. (6.4) are satisfied if we take

f„=g„=0 (n&0), f0=-2(t+2}, g, =(j+2),

f.+i= [(2n-~)fn —(n —I)fn i
1

(6.1)

into Eq. (3.7) and writing out the coupled differ-
ential equations for the two components, we get

cos8
c2= . h y) —cot& l y),

1
1

sin8

(6.7}

da 1——[t(sin8) '+ A sin8] a+ (j + a)(cos8} ' c = 0, The coupled differential equations now become

(6 2)

d8
—+[((sin8) '+A. sin8]c+(j+ &)(cos8} 'a=O.

To construct power-series solutions regular
around 8 =0 and 8 = ~ m we make the following
changes of variable, motivated by the form of the
noninteractlng (A. =O) solutions presented in Ap-
pendix A.

(2) Solution g, regular around & =0. We substi-
tute

Assuming power-series solutions in the form

h=g h„y",
n=o

l=g l„y",
rt =O

(6.9)

we find the solutions

dh—-)E— 2 E=O,
dy (I -y)'

(6.8)
dl 1

y(2 y) + [2(j+I)-y] I + 5 +
dy (1 —y)'

I
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h„=L„=O (n&0), h, = —2(j+1), L, =)+Z,

her+i= [2nhn —(s-1)hn i+(4+~)Ln+t(Ln 2-2L. i)f~
1

{6.10)

1
L„+,—— . [(5n +4j +5) I„—(4g+2j) I„,+(n —1) L„,—(X+ ))h„„+t(2h„h„-,)J, n-0."+~

A number of observations about the above solu-
tions are now in order. First, we note that since

Eq. (6.16) corresponds to singular points in the
x variable at

ago
az 8X ex (6.11)

-1/2
x=1+ 1+— (6.16)

and since L in Eq. (6.V) appears multiplied by the
factor cot6}, which vanishes at 6= 2m, the standard-
ization conditions of Eg. (4.'I) are satisfied. Sec-
ond, we consider the greatly simplified form of
the above equations when j-- ~. Working directly
from Eq. (6.2) we find in this special limit the de-
coupled equations

dQ —[g (sin8) '+ X sin8] a = 0,

which did not appear in the x form of the equation.
Hence the singularities in Eg. (6.16) must be re-
movable, and a direct calculation shows this to be
the case. Ne conclude, then, that the power-
series solutions for g, and g, have the following
regions of convergence:

g, converges for ~x(& 1~1&cos8& 2~0& 8&-,' m,

(6.19)

dc
d

+[F(sin8) '+asin8]c=0,

which can be immediately integrated, giving

a, = —2(tan~ 8) t($+ a) e~L' "'"'e',

c, =0,

a, = —(tang8)' e-'"'"",

c, = —(tan-.'8)-' e'""'.

Hence the %ronskian is

w(X} =a, c, —a, c,
=-2(t+ 2) e~,

(6.12)

(6.13)

(6.14)

y, converges for ~y~&1~1&sin8& 2~, m& 8&2m.

Thus, in the angular range +m& 0&-,' m both power
series are convergent, and so we can calculate
the Wronskian from Etl. (4.3) by taking 8 to be
any value in this interval. Since the %'ronskian
is 8-independent, a powerful check on both the
programming and the absence of serious round-
off and truncation errors is obtained by calculat-
ing W for two different values of 8 in the allowed
range and then checking that the same answer is
obtained. In practice, using double precision on
an IBM 360/91, we found we were able to explore
the region (&60, j &60, ~A. (&20 in good detail,
but for

~
A

~
values between 20 and 24, serious

roundoff errors started to set in.
giving for the j-—

& limit of the Fredholm deter-
minant the result

(6.15}

{6.16)

Since x and y are related by

1 1
(I -xP (1-y)' (6.1'L }

as was stated in Sec. VA above.
Finally, we discuss the convergence properties of

the power-series solutions. Rewriting Eq. (6.4)
as a single second-order differential equation we
find singular points at x =1, 2, and ~. Rewriting
Eq. (6.8) as a single second-order equation we
find singular points at y =1, 2, and ~, and addi-
tionally at

B. Low-lying zeros of Dgj{X}

Numerical results for the low-lying zeros of
4&,(X) in the upper half plane are given in Tables
II and III. In Table II we give the locations of the
lowest zero (the zero of smallest magnitude [xj)
for a range of values oi $ and j. In Table III we
give the locations of the lowest four zeros for
$ =j = &. For all of the zeros tabulated, the ratio

( Imk)/[Reh, j is larger than 1. As t increases for
fixed j, the ratio appears to be approaching 1
from above; as j increases for fixed E, the ratio
grows, as might be expected from the inequality
of Eg. (3.12). For a given t, j, the successive
higher zeros move up in the imaginary direction
with a spacing -

m between the imaginary parts,
as is expected from the WKB estimate of Eq. (5.5).
The pattern of the numerical results strongly
suggests that Iim&I/[Rea. ~& 1 for all zeros of
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h&, (a). If this property were true, the zero-free
regions of & [Aj would be as indicated in Fig. 4,
and a contour of integration in Eq. (1.5) initially
along the real axis could be freely deformed to
the positions indicated as "& 1" and "& 2." The
first (second) contour allows analytic continuation
of W, into the entire upper (lower} e' half plane.
Hence, for the distribution of zeros of ~ [A] shown
in Fig. 4 one gets a radiative-corrected vacuum
amplitude W, which is analytic in the entire e'
plane except for a branch cut running along the
negative real axis from 0 to —~.

C. Behavior of vacuum amplitude for X imaginary

As we have stressed repeatedly above, the pos-
sibility of taking the contour in Eq. (1.5) to lie
along the imaginary axis can be realized only if
W'0' decreases as a Gaussian (or faster) as X be-
comes infinite along the imaginary axis. Actually,
when subtractions are taken into account, the
relevant question becomes whether (d/dA. ')' In& [AJ
decreases along the imaginary axis. The differ-
entiations just eliminate the arbitrary subtraction
polynomial Q(X) which appears in Eq. (5.10); this
polynomial is not relevant to the physics, and
specifically is not present if we consider (in the
one-mode approximation for virtual photons) the
set of single-fermion-loop vacuum polarization

diagrams shown in Fig. 5. In order to obtain good
convergence of the sum over separation parame-
ters E,j, we found it necessary to differentiate
once more with respect to A.'. Multiplying (for con-
venience) by A.', we get, finally, as the quantity
being studied

(6.20)

Results for 8'~o~ versus —7, A. are shown in Fig. 6.
In calculating the points for this curve, we
summed on g from ~ to 2~ and on j from 2 to 39~,
doubling both summation ranges for a subset of
the points produced a 6% change for —i A. =1 and
negligible (&1%) change for —ih. &5. In fact, near-
ly all of the sum for —iA. ~5 came from &&,'s
with (= 2, most likely a result of the fact that
this is the value of ( which gives zeros of ~„, ly-
ing closest to the imaginary axis (see Table II).
The curve plotted shows no sign of a rapid de-
crease, but unfortunately the distortions in both
the envelope of the oscillations and the wave form
suggest that the asymptotic region has not been
reached, and so the results are inconclusive. We
did not attempt to extend the computations further,
because of the roundoff error problem mentioned
above.

VII. OPEN QUESTIONS

) Imw, ) /j Rex, /

1
2

1

2

1
Y
1

2

1r

-1.67

—3.47

-6.46

-9,87

13 Q 2

8.50

12.57

16.65

4.26

2.12

1.32

1.27

1.26

3
2

—1.67

—1 43

—1.14

-1.10

—1.08

—1.17

—1.14

8.93

7.73

9.71

11.70

16.60

18.59

6.24

6.78

8.83

10.83

14.19

16.31

TABLE II. Lowest-lying zero mth ImA, & 0 for various
p,j values.

We conclude by giving a brief recapitulation of
the remaining unresolved questions. Within the
framework of the one-mode approximation dis-
cussed at great length above, some key problems
are:

(i} determining the asymptotic behavior of W~'~(A)

along the imaginary axis (ruling out a Gaussian
decrease would rule out the imaginary contour
possibility and hence, as discussed in Ref. 2,
would rule out the possibility of obtaining a cou-
pling-constant eigenvalue when only a finite num-
ber of photon modes are included),

(ii) proving (or disproving) the distribution of
zeros illustrated in Fig. 4,

(iii) if Fig. 4 is correct, finding a simple for-
mula or interpretation for the discontinuity of W,

TABLE III. First four zeros for g =-j = ~ with Im~& 0.
(For each there is a corresponding complex-conjugate
zero in the lower half plane. )

Zero number 0 Reh~ Imp ~lm&, ~ IIRe&I im&, —imp 1

7
Y
11
2

1
Y
3
2

7

2

11

—1.67

—2.94

—6.13

-9.86

7.12

6.27

10.98

18.67

1.79

1.89

—1.67

—1.86 10.23

—1.99 13.:19

—2.1 0 16.52

1.26

5.50

6. (3 ;3.16
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across its cut in the e' plane, and
(iv} finding a compact expression for &„(X) in

which the parameter 8 in the Wronskian has been
explicitly eliminated.

Going beyond the one-mode problem to the case
when a finite number of photon modes are present,
one can ask whether the zero-free regions shown
in Fig. 4 persist. "~' If so, then the real contour
would give cut-plane analyticity in e' for any finite
number of modes, and the important (and un-
doubtedly difficult) question of what happens when

the limit to an infinite number of modes is taken
would be brought to the fore.
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I (v+Q+ 1)
I'(v+ 1) I'(o + 1}

XE( v, -v+n+P+1; a+ I; 2 —2z), (Al)

where E(a, b; c; z} is the usual hypergeometric
function. [The ordinary Jacobi polynomials cor-
respond to the case where v in Eq. (Al) is a non-
negative integer. We will also use the case where
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]&0}

(ao, )
kx =/

(co j
a'=(tan-, 8)'-S ~'-'" -'-"'&1 1

P+ I./2 cos8
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c' = —~ tan8(tan~8) ~ I"~"~'
1 j-I/2 cos8 '

(so )
4=

( 0~»

(A2)

APPENDIX A: FREE GREEN'S FUNCTION

We give here a closed-form expression for the
Green's function of Eq. (4.5) in the free (A. =O}
case. The result is most compactly expressed
in terms of the Jacobi functions

a,'= 1+1+sin& E d8 ~ sin8

/+1/2

1+sin8 d8 sin8

The Wronskian of the two solutions is easily cal-
culated by taking either the limit 8-0 or the limit
8- 2 m, giving

=Q C —Q, C22

—I'(j+ $+1)
r(-,') I'(t+1) I'(i+;*) (A3)

2 2

The free Green s function then immediately fol-
lows from the recipe of Eq. (4.5),

~2 ~I ~2 ~I ~2

FIG. 4. Conjectured zero-free regions suggested by
the numerical results of Sec. VI 8 and Tables II and III.
The dashed lines show permissible deformations of the
real-axis contour of integration in Eq. (1.5).

FIG. 5. Single-fermion-loop vacuum-polarization dia-
grams. This set of diagrams is finite for g& & q&, and

requires no subtractions. However, if we contract with

YlM (q() Yi~f, ~ Q2~ and integrate over q& and F2, the short-
distance singularity as q& q2 leads to a divergence,
corresponding to the A&, counterterm in Eq. (5.10) and
the finite remainder Q2A, in Eq. (5.11). This divergence
is of no physical significance, and so we differentiate
to eliminate Q2.
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go(6 g ) = (u ')
~o(6 ) yo (6,), gi 2

(A4)
~

l that the solutions 0 tn Eq (A2)gee note fina y
th ~-0 limit ofdiffer by constant factotors from e

given in Sec.the power-seri- eries solutions for g„y, given in
VI.

t''
(82)

t.ons satisf ied by c by aallowing us to obtain equa lo
und the corsi mple substi«t~on

F liminatinglons satisfied byresponding equa
cosg we find ther&able g =cosc and defining

. t l quatlon sat- ader differen &a efollowing second-olde
isfied b)' a (a

APPENDIX 8: WK: %KB EXPRESSION FOR 2 gj(X}

os6 'c =0,—-j$(sin—-j '
6) '+asing]a+(j+-, )(cos )

d&

1—+ [)~sin +[ (
'

6) '+X sing] c+(j+-,')(cosg) a =O.
d0

(81}

A endix the VfKB asymptotic
VA 0'on for A& (X) quoted in Sec.pp

star xngt g point is the set of couple
c ofequations orf the components a, c o

a +Pa +@a=0,

1-2x'
~(1-2) '

(j +a)'
~(1-") ' (1-~)

A,(1-2x')
x(1-2}2 x(1-2)

(82}

evidently invariant under theThese equations are evi en y
'

interchange

nchan ed by the substitution of
Eq. (82), we introduce new dependent vnria
b and d by writing

&.50—

I I I I I I I I I

X

).25—

i.00-

.25—

-(0)0

—.25-

—.50-

—.75—

-l.00—

-).25—

-i.50—
—l.75

0
I I I I I ii I i i I I

35 i6 &7 &8 )9 202 3 4 5 6 7 8 9

um ints denoted byd oints. Maximum and minimum pohe dots denote computed points. ax
ted oints.

f 8' 0~ versus —iA,. The o
the neighboring compu pl ed fa ol omial interpo a zo)& were determl~ed by a po yn
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a=I)exp --', Pdu~

= I x-"'(I-6)-"',

'N =Q2Cj-Q~C2

1

(I „.)in (f)2di-f)id ). (B7)

c=dexp -~ Pdu]

'/2(1 «)

We now proceed to construct approximate, WEB
solutions to the above equations when l)(l is treated
as a large parameter. We begin with the equation
for b. We have

These satisfy the differential equations

b" +0 'b=O, d" +0 'd=O
b d

&y —t, +~2,
and hence

" -2E 1-2x'
( ~) + O(1),

1+2x' 2EX
4x'(1-x')' 1-x'

(B5)

dpi, /dx
u,

(B9)

for all x except very near the end points at x=0,1.
Near the end points we find

«'(I-2) (I-«')'

X(1-2«')
x(1-x')' x(1-x')

It is also useful to have the first-order differen-
tial equations coupling b and d, which from Eqs.
(Bl) and (B4) are found to be

2(+1
4(1- )'l)(l' '

and so except in the intervals

(B10)

~1 2x'-1 g (j+—,')
«(I «2) 1 2 x(I g)i/2

(B6)
1 2x'-1 E (j+ ~)
2 x(1-x') 1-x' x(1-x')"'

Finally, in terms of 5 and d the Wronskian is
given by

we can use a WEB solution for b and d. Applying
the standard lowest-order WEB recipe' to the
second-order differential equations for b and d,
and then imposing the linear equations in Eqs. (B6)
which relate b and d, we find the WEB-region
solutions

e ~ ~«-1/2(1 +x)(K-1/R)/$1 «}-((+i/2)h ~ He-~*xi/2 (I ~x)-(K-1/2)/~ (I «)((+ I/~)/2
%KB )

( j 2 e x x«-1/2 (I ~ }-(g+i/2)/2(1 «)((-1/2)/2 ~ e )L x«1/2 (I px)()+ i/2)/2(1 x)-((-1/2}/2-( '+ ')B- RA
%KB j+2

(B12)

In the end-point regions x-0, 1 we must join Eq. (B12) on to more accurate approximate solutions. In
the vicinity of the end points we find

p
+ ()i+~) + -j(j+1)+Ha«+ O(«), Ho=-)(+2~-j(j+1} A. + $

--." (h ')(5+2)--() +-') -k5 '((+' )(h~+ ~)+-'j(i+ I)
(I-x)' 1-x

—~5[j(j+1)-f ] -[X+ 4 (g- 25 )]2—8i ((—~)2- 8 + H, (l-x) + O((1-x) ),
H, = ——", j(j+I)+$- —,

' ($+ &)(g- &)+ —', )(- —,
' $). , x= l.

For x=j/l Xl, the x ', x ', x' terms near x=0
are of order

l
)i l', whereas the term Hax is of

order jt', down by a factor (j/l)il)($/l)(l) from
the leading terms. Similarly, for 1-x= (/lb. l, the
(1-x) ', (1-x) ', (1—x)' terms near x = 1 are of
order l)(l', with the term H, (l-x) of order $', , =a/I) I, e, =j/l~l (814)

down by a factor of ($/l X l
)' from the leading

terms. The terms O(x') and O((1-x)') can be
shown to be as small as the linear terms which
we have just evaluated. Hence we identify
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as the effective smallness parameters in the %KB
solution, and proceed to solve the differential
equations at the endpoints neglecting the linear
and higher terms in x and 1-x in Eqs. (B13). Both
at x = 0 and x = 1, the differential equations can
then be reduced to %'hittaker's equation

d 5 I K -P,+,+ + —,P bo (B15)dz' ' z 2'

with the regular solution

b =e '~'z"''"4 (-,'+ p, -K, I+2p, ; z), (815)

where 4 is the confluent hypergeometric function

a z a(a+1) z'
4(a, c;z}=1+——+ + ~ 0 ~

c I! c(c+1) 2!
=e'e(c-a, c; -z) .

Carrying out the solutions explicitly, we find to
the required accuracy the following end-point
solutions:

0=0, x=1:

b, (*)= W(-I&+-'ti=. )]*i*" &~'(~ —: —t, lI*, & l;Rf& '((-'*ll*),
1

d, (z)= », ', exp]-[A+4((+-', )]z)z "' '4'()+z, $+—'„'2[&+-,'(]+-',}]z), z =1-x;
+2

0=—'w, x=0:

b, (x}=e '" *x"'C(j+2,2(j+1);2(A.+E)x), ,

d, (x}=e ' i'x"'C(j+-' 2(j+1) 2(X+))x)

Joining the %KB-region solution onto the asymp-
totic form" of the x= 0 end-point solution, we de-
termine the constants A, J3 in Eq. (812) to be

This is most easily done by a comparison with
the explicit free solutions given in Appendix A.
%riting

2A I'(2(j+1))
( ) („„,)

j+-,' 1(j+-,')
I'(2( j+1)) -1

r(j+-,') 2~

(819)
(B21)

This permits us to extend the solution g, to the
region near 8 = 0, x = 1, which is the asymptotic
region for the x= 1 end-point solution g, . Substi-
tuting the WKB extension of P, and the asymptotic
expansion of P, into Eq. (87), we get for the
%'ronskian

gg(g) — ( ~j }) 2(E-lf2)l2(2g)-0+1/2)
I'(j+z)

x [e x +e-k{ 1) j+ F 12-2+(t+„I/2)

2(K-&I2)hI (g y '}I(j y3)
I'(j+) +1)

2""' I'(j+1)1'((+1)
r(~+ g+1)

Combining with Eq. (A3) we then get

(822)

and letting 6-0, ~ w to determine K„K„respec-
tiveiy, we find from Eqs. (84) and (818) that

x (j+ z)1 ((+ z)g- ' ' '] . (820)
I'(j+(+1) (823)

To complete the calculation, we must determine
the value w(0) corresponding to the normalization
of the solutions P„P, used in the above analysis.

Dividing Eq. (820) by Eq. (822) to get ur(X)/w(0),
and then using Eq. (4.17), gives the final WKB
formula quoted in Eq. (5.2) of the text.

~S. L. Adler, Phys. Hev. 0 6, 3445 (1972); 7, 3821(E)
(1973).

2S. L. Adler, Phys. Hev. 0 8, 2400 (1973).
We can omit the matrix T2 in Eq. (2.32) because the
spinors which appear have already been reduced to
four-component form.

There is, of course, a third regular singular point at

u = ~. For a discussion of the Hiemann equation and
its solution see G. Birkhoff and G. C. Rota, Ordinary
Differential Equations (Blaisdell-Ginn, Waltham,
Mass. , 1969), p. 272 ff.

SThese may be derived from the identities on pp. 274-276
of Y. L. Luke, The Specia/ Functions and Their Approx-
imations (Academic, New York, 1969), Vol. 1.
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6See, for example, G. Birkhoff and G. C. Rota, Ordinary
Differential Equations {Ref.4), p. 47.

~It is always possible to find solutions satisfying the
standardization conditions because, as stressed in
Sec. II0, the boundary conditions at 0 = 0, —,'x are A.-
independent.

Let tr denote the Pauli matrix trace; then Tr denotes
the complete trace TrA = fo"tdg(8(trA [&).

A. S. B. Holland, Introduction to the Theory of Entire
Functions (Academic, New York, 1973). See especially
Sec. 1.4, Chap. 4, and Sec. 6.2.

t S. Coleman (unpublished) has conjectured this to be the
case. Coleman argues that at the 45 sector boundaries
in Fig. 4, ReP } changes sign from positive to negative,

corresponding to a transition from '"magnetic-field-
like" to "electric-field-like" behavior of the external-
field problem, and suggesting very different analyticity
properties on the two sides of the boundary.

iiA S Wightman (unpubli, shed) has proved, in the Minkow-
ski metric case, that the Fredholm determinant can
have no zeros for arbitrary purely real external fields.
See, for example L. I. Schiff, Quantum Mechanics
{McGraw-Hill, New York, 1968), third edition, pp. 270-
271.
Higher Transcendental Functi ons (Bateman Manuscript
Project}, edited by A. Erdelyi p4cGraw-Hill, Near
York, 1953), Vol. 1, p. 278.
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The Hamiltonian of a Dirac particle in an arbitrary electromagnetic field is exactly diagonalized by a
unitary transformation generalizing previous work which was restricted to time-dependent fields. A very

simple form is found for the covariant Heisenberg equations which manifestly exhibits the classical
correspondence. These results are obtained in a manifestly covariant form using a previously proposed
proper-time quantum mechanics with subsequent specialization to a mass eigenstate resulting in the
usual theory. The simple theorem used for this diagonalization is also applied to other transformations
for helicity and the free-particle Hamiltonian. The source of difficulty in obtaining these results without

an intermediate use of proper-time theory is shown.

I. INTRODUCTION

Several interpretational aspects of the free Dirac
equation were clarified in the classic paper by
Foldy and Wouthuysen' in which a unitary trans-
formation was found which diagonalized the Dirac
Hamiltonian with respect to positive and negative
energies. The application of this transformation
to the basic operators of position, momenta,
orbital angular momenta, and spin exhibited a
separation in the new representation into classical
and nonclassical portions. The classical terms
obeyed Heisenberg equations formally resembling
the equations of classical mechanics, while the
nonclassical terms exhibited a rapid oscillatory
motion about the classical values (zi tterbeavegung).
When electromagnetic interactions were included,
the transformation could not be obtained in closed
form. Thus the classical separation could not be
effected and the Heisenberg equations were not
studied. Furthermore, the general approach was
noncovariant. Subsequent work by Eriksen' has
shown a closed form for the transformation when
the electromagnetic field is time-independent and
is free of a scalar potential. Chakrabarti' has

studied a covariant diagonalization, but dealt only
with free particles. A general review of these
and associated problems can be found in the work
of de Vries. 4

This paper addresses three problems: First,
is there a manifestly covariant generalization of
the Foldy-Wouthuysen transformation'P Second,
can this procedure be extended covariantly to
include arbitrary electromagnetic interactions in
closed form? Third, can a covariant form of the
Heisenberg equations be found which explicitly
shows the classical form even with an interaction
presents An affirmative answer to these questions
can be given in the context of a proper-time quan-
tum mechanics which as been previously proposed
by one of the authors. ' Although w'e utilize the
proper-time approach to maintain covariance, the
results can be immediately specialized to the usual
theory by using mass eigenstates.

We find that the cova, riance appears mandatory
for the diagonalization in arbitrary fields. If one
uses the noncovariant Hamiltonian I"=Pm+ n p
and performs the replacement P'- I'" -eA" one
encounters the difficulty pointed out by Sucher'
that the resulting square-root Klein-Gordon equa-


