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Diagonal coherent-state representation for polarized light
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We consider the transformation properties of the density operator as well as its diagonal coherent-state
representation when a plane monochromatic light is passed through a compensator followed by a
rotator. Special cases of Unpolarized and polarized light are considered and the general form of the
density operator and its coherent-state representation is determined.

In studying the state of polarization of a, beam of
light, one usually passes the beam through a com-
pensator followed by a polarizer and notes the
variations in the intensity of the emerging light.
In general the intensity of the emergent light de-
pends on the coherency matrix of the light and is
given by

f(5, 8) = J„„cos'8+J„,sin'8

+(g„e '~+&„e' ) sin8cos8,

where 5 is the phase difference introduced by the
compensator between the two orthogonal x and y
components of the wave field and 6t is the angle
which the polaroid axis makes with the x axis. J,,
is the coherency matrix. Ne say that the light is
unpolarized if one finds that there is no intensity
variation when an arbitrary phase change is intro-
duced between the two mutually orthogonal polar-
ization components and the polaroid is then rotated
through an arbitrary angle, i.e. , when f(5, 8) is a
constant and does not depend on 8 or 5. Similarly
we say that the light is completely polarized if one
finds that I((i, 8) is zero for some values of 5 and
6). This corresponds to the case when the deter-
minant of J vanishes,

In place of intensity variations, Prakash and
Chandra' generalized the concept and defined the
unpolarized radiation as one when the statistical.
properties remain unchanged when light is passed
through a compensator followed by a rotator. In
the present paper, we consider an analogous def-
inition for a completely polarized radiation and
study its consequences in terms of the density op-
erator of the radiation field.

Let us consider a plane monochromatic beam of
light with two orthogonal polarization modes. Let
Qy a, and a„a, be the corresponding pairs of an-
nihilation and creation operators and p be the
density operator. The action of a compensator can
be thought of as a unitary transformation on the
density operator

p, = U, p?J, ,

where

U~ = exp(E 8ga| a| + s 8~ap a2).

The unitary transformation (4) corresponds to a
phase change of 8, in the first polarization mode
and a phase change of (9, in the second polarization
mode. For a stationary field p commutes with the
total number operator a, a, + a, a, and hence p, will
depend only on the phase retardation

(6}

so that we may effectively write

(g) e -thole cy

In a similar manner the action of a rotator may be
represented by a unitary transformation

p„= U„' pU„

where

U, =exp[8(a, a, —a.,a, )] .
If the density operator p commutes with both U,
and U„we say that light is unpolarized. ' By taking
the matrix elements between the number states,
one may readily show that in this case p must be
of the form4

p= P g p, „~m, n)(m, ni .

%Ye may also write

p„,„~ m, n) = p(a, a, + a, a, ) ~
m, n),

and since the number states form a complete set,

mn mn =-1

we find that the necessary and sufficient condition
for a density operator to represent unpolarized
radiation is that it is a function of the total number
operator, '
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p=p(a, a, +a, g, ) .
We now consider the case of completely polarized

light. We define completely polarized light as that
in which one of the modes can be brought to the

ground state by a suitable phase change between
the two orthogonal polarization components fol-
lowed by a certain rotation. This implies that it is
possible to shut off light completely by passing it
through a suitable compensator followed by a suit-
ably oriented polaroid. Thus, for a light to be

completely polarized, there exists some 5 and 8

such that

U, (&)U. (6)PU, (6)U, (&) = p, (&, , &,}p, ,

where p„denotes the density operator for the

ground state of the second mode,

P,.= lo&(ol

~ Cg Op,
~ Cr ~ ~

The colons on the right-hand side of (14) denote
the normal-ordering operation. Further, since
the density operator must commute with the total
number operator a, a, +a, a„we find that the func-
tional dependence on a, and Qy must be through
ay a, . We may therefore write

U„(8}U,(6)pU, (6)U, (8) = p, (a, a,):e '2'2:, (15)

p = (t)' z» z2) z» z2) z» z2 d'z&d'z2 . 17)

From Eqs. (5) and (8) we then find that

p„= g(z„z,)U„U, lz„z,&(z„z~lU, U, d z,d'z2 ~

We now write

Iz,z, ) (z,z, I =D,(z,)D,(z, ) lo, o&(o, o I D,"(z,)D,'(z, ),

where

D (z) =e(a, z g„s )

and note that

(2o)

Equation (16} represents the general form of the
density operator for a completely polarized radi-
ation.

Before we consider the general form of the diag-
onal coherent-state representation of a certain
state of polarization, let us consider how the diag-
onal representation varies when light is passed
through a compensator followed by a rotator. Let
@(z„z2)be the initial representation:

or

P=U. (6)U, (.&)P (,'n~, ): e"":U. (&)U.'(6) . (15)

U„'U,'lo, o)(o, olU, U„=lo, o&(o, ol,
whereas

(21)

=f (e '"(a, cos & ~ a, sin &), e' (a, cos 8+ a, sin&), (-a, sin &+ a, cos &), (-a, sin &+ a, cos&)) . (22)

On using (21}and (22) in (lt)) and simplifying we then obtain

P = e Zy COS~+ Zo Sin 6 Zy Sin~+ Z2 eOSI9)) Zy Z2 Z/Z2 ~ Z) & Z2 ~ (23)

From (15}and (23} we may now readily determine
the most general form of diagonal representation
for a comp1. etely polarized radiation. Since the

diagonal representation of the right-hand side of
(15}is of the form

4,(I z, l')6(z, ),
we must have

P(e ' (z, cos 8+ z, sin &), (-z, sin 8+ z, cos &))

=4,(l z, l')6(z, ), (24)

or on making a change of variables, we find that
the most general form of the diagonal representa-
tion for a completely polarized radiation is given

by

4'(z» .) =4(lz, l'sec'&}6(z,e"!~e+z,cos&} .

The nature of polarization will of course depend on
the values of 8 and 5. Thus for example if we are
considering Cartesian polarization modes and if
6=0 (or v} light is linearly polarized. On the other
hand, if 6 =z/2 and &=a/4 we have circularly po-
larized radiation, etc.

For thermal radiation the diagonal coherent-
state representation is a bivariate complex Gaus-
sian distribution. Noting that the 6 function is a
limiting case of a Gaussian distribution we find
that thermal light is completely polarized if P is
of the form
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, (z„z,) = —exp(-A~ z, ~

' sec'8)

x 6(z,e' sin 6+ z, cos 6) . (26)

On the other hand, completely unpolarized thermal
light must be of the form (cf. Ref. 6)

One may readily verify that the coherency matrix
obtained by using (26) or (27) satisfies the proper-
ties of completely polarized or completely unpo-
larized radiation, respectively.
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It is worth noting here that if an operator commutes with

&gag as well as aga2-e2ag, it must also commute with

afo&, since one has

atQ 8m(a& a2 ~2a&)/28~6 8-n'(aj~2-a2a&)/2
2 2 1

"Prakash and Chandra {Ref. 2) have obtained this result
after rather laborious calculations.

5It is equivalent to saying that the corresponding diagonal
coherent-state representation is a function of ( z&~

+~z&~~ only [cf. G. S. Agrawal, Nuovo Ctmento Lett. I,
53 (1971)j:

s= J(J tel* I' 'l* l')I* .') ( .*,I&'*d'* .


