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A statistical model for atoms in a very strong magnetic field (10"—10" 6) may be built, starting

from the assumption that the Coulomb motion of the atomic electrons is adiabatically slow with respect

to their magnetic motion. Within this framework, the binding energies and radii, as well as the

ionization energies of singly and doubly ionized atoms, are computed for atomic numbers 5 & Z & 100
in the Thomas-Fermi case, and for 5 & Z & 70 in the Thomas-Fermi-Dirac case. Possible astrophysical

implications may concern the emission of electrons and ions from the surface of pulsars, the

abundances of the elements in the cosmic radiation, and the properties of the condensed matter forming

the outer crust of magnetic neutron stars,

I. INTRODUCTION

The standard models for pulsars (rotating mag-
netic neutron stars) and the commonly accepted
scenarios describing their formation (contraction
during a supernova event, with conservation of
the magnetic flux) point to magnetic fields of the
order of 10"-10"0 at their surface. If this is
indeed the case, the properties of matter at the
surface of a pulsar' are very different from those
of ordinary matter, due to the fact that the ener-
gies associated with the magnetic motion of elec-
trons become much larger than their Coulomb
energies.

Of the oscillatorlike energy levels corresponding
to the motion of an electron perpendicularly to
such an enormous magnetic field, practically only
the lowest-lying one plays a significant role in
the description of the properties of matter'. As
the spacing of the magnetic levels is of the order
of the electron's rest mass and temperatures' are
lower than 10"K, the excitation of higher levels
is negligibly small. The states corresponding to
this ground level' are conveniently chosen to be
the eigenstates of the angular momentum along
the magnetic field, with nonpositive eigenvalues
—g (p, = 0, 1, 2, . . . ); they have spin antiparallel to
the field, and zero excitation of the radial motion.
The density of probability in such a p. state is
sharply peaked at a value of the radial coordinate
equal to the cyclotron radius'

p„= [(2g+1)/eB]"'.

A relatively simple model for an &-electron ion

of atomic number Z can be built if one sepa. rates
the transverse and longitudinal (with respect to the
direction of the magnetic field) motions of the
electrons. In this scheme, the transverse motion
is determined by the magnetic field alone, the
electrons having at their disposal the p, states
described above. The Coulomb field of the nucleus
determines only the longitudinal motion; the cor-
responding available states' consist of a very deep
ground level and of excited parity doublets situated
very close to the normal Coulomb levels. This
separation is a good assumption only if the cyclo-
tron radius of the outermost electron is much
smaller than its Bohr radius in an atom of atomic
number Z:

p„«a,/Z."max (2)

It then represents the mell-known adiabatic ap-
proximation.

The distribution of the electrons among the
transverse and longitudinal states, in the ground
state of such an atom, is determined by the re-
quirement that the energy be minimum, and de-
pends upon Z, ~", and the magnetic field. The
following two situations represent opposite limiting
cases of this distribution" (the intermediate re-
gion has not been explored quantitatively):

|'i) SuPersfrong magnet'ic field. If the condition
(2) is satisfied for p. „,„~N, the electrons will
fill the successive p, states, all of them being in
the deep ground longitudinal state (and therefore
having nodeless longitudinal wave functions, highly
peaked near the nucleus}. A Hartree calculation' "
shows that in this case atoms have very el.ongated
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cylindrical shapes, small dimensions, and enor-
mous binding energies. Their ionization energies
change slowly and monotonically with the atomic
number.

(ii) Medium -strong magnetic f&e~d. If inequality
(2) holds only for 0» g «N, practically all the
electrons are in excited longitudinal states. The
corresponding wave functions have nodes, the
density of charge along the magnetic field is no
longer maximum near the nucleus, which makes
possible a description in terms of a statistical
model. Such a model has been discussed in Refs.
6 and 7: Atoms are found to have spherical
shapes, and their dimensions and energies to
depend more strongly on the magnetic field than
in the superstrong case. In these calculations
the exchange interaction has been neglected;
therefore they cannot be used to evaluate the ion-
ization energies, which are very sensitive to ex-
change effects.

The purpose of the present work is precisely
to incorporate exchange into the statistical model,
in order to obtain a reliable estimate not only of
the atomic dimensions and binding energies in
the medium-strong range, but also of the ioniza-
tion energies. To prepare the ground for the main
calculation, we examine first the statistical model
without exchange (Sec. II), and obtain a more
complete and accurate solution of the Thomas-
Fermi differential equation, compared with Refs.
6 and 7. The principal part of the paper is rep-
resented by Sec. III; here we compute the exchange
contribution to the energy, then solve the corre-
sponding Thomas-Fermi-Dirae equation and dis-
cuss the results in detail. A few concluding re-
marks are made in Sec. IV.

Natural units (R=c = 1) are used throughout.
The mass and the charge of the electron are de-
noted by m and e, respectively. Lengths are mea-
sured in Bohr units a, =1/mn, and energies in
Hydberg units mn'/2, where n=e' is the fine-
structure constant. %e use as a natural unit of
magnetic field 8, = m'/e=4. 4x10" G, and express
the field strength in terms of the dimensionless
parameter

6=8/8, = eB/m'.

Cylindrical coordinates r =(p, z) with the z axis
directed along the magnetic field are used in some
intermediate calculations.

II. STATISTICAL MODEL WITHOUT EXCHANGE

A. Kinetic energy

In expressing the kinetic energy of the atom in
terms of the volume density of electrons, we make
explicit use of the adiabatic hypothesis.

First, to relate the electron density to the Fermi
momentum, we count the number of states inside
a small volume which is conveniently taken to have
the shape of a thin cylindrical shell of radius p,
thickness &p, and height 4~. The transverse
states correspond (in the adiabatic approximation)
to cyclotron orbits having radii given by Eq. (1};
hence, the number of transverse states inside
b p is &&, = &p. = eBp&p. The longitudinal motion
is treated statistically: As the electron density
along ~ is a smooth function, the motion may be
described, inside the small interval 4~, by a
superposition of plane waves

f, (z) =(~z) "'exp(iqz), (4)

n(r) =,q~(r).
eB

(5)

Second, in the expression of the kinetic energy
we keep only the contribution of the longitudinal
motion. Indeed, the energy of the atom is, by
definition, the energy of all the electrons bound
together by the Coulomb field of the nucleus,
minus their energy when they are free but still
in the magnetic field, and this latter quantity
cancels (in the adiabatic approximation) the kinetic
energy of their transverse motion inside the atom.
Thus, the kinetic energy of the electrons in our
cell is simply

AzsK=sN, —'2m

eB gp
{2m)' 3m

The density of kinetic energy is therefore, from
Eq. (5),

k(r}=,n'(r).
Sm eB)'

B. Thomas-Fermi equation

Having obtained a relationship between the kinet-
ic energy density and the electron density, one
can write the energy of a (~, &) atomic ion as'

with ~q~ «q~(r), where q~(r) is the Fermi momen-
tum. The number of longitudinal states inside
~z is then ~N~~=(q~/z)~z. Therefore, our cell
of volume &V = 2n p&pb z can accommodate, accord-
ing to the Pauli principle, a number 4+ = ++(~++,
=(eBq~/2v')~V of electrons, i.e., the density of
electrons is
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TABLE l. Solution of the TF equation: initial slope and
position of the zero.

c' &0} @' (0)

5 -0.942 017 69 2.114384 60
6 -0.94093216 2.18523499
7 -0,94033134 2.23981244
8 -0.939 966 38 2.283 565 84
9 -0.939 72835 2.31981224

10 -0.939 565 34 2.350 442 31

11 -0.939448 74 2.376 873 31
12 -0.939 362 74 2.399 964 54
13 -0.939 297 65 2.420 353 47
14 -0.939 247 06 2.438 61343
15 -0.939 207 13 2.455 037 36

16 -0.939 174 94 2.470 000 00
17 -0.939 148 7S 2.483 619 38
18 -0.939 127 20 2.496 124 85
19 -0.93910911 2.507 713 68
20 -0.939 093 92 2.518 418 94

25 -0.93904466 2.56240952
30 -0.939 01903 2.595 406 34
35 -0.939 004 06 2.621 432 56
40 -0.938 994 59 2.642 711 92
45 -0.938 S88 23 2.660 531 54
50 -0.938 98376 2.675 808 37

55 -0.938 980 50 2.689 037 06
60 -0.93S 978 05 2.700 758 03
65 -0.938 97617 2.711129 95
70 -0.93897469 2,72049805
75 -0.938 973 50 2.729 000 00

80 -0.938 972 55 2.736 703 43
85 -0.938 971 76 2.743 792 75
90 -0.938 S7110 2.750 288 35
95 -0.938 970 55 2.756 337 55

100 -0.93897008 2.76200000

-0.957 547 13
-0.950 19357
-0.946 438 05
-0.944 275 68
-0.942 91959
-0.942 017 69

-0.941 388 06
-0.940 932 16
-0.940 591 94
-0.940 33134
-0.940127 96

—0.939 966 38
-0.939 83 5 53
—0.939 728 35
-0.939 639 62
-0.939 565 34

-0.939328 09
-0,939 207 13
-0.939 13749
-0.939 093 92
-0.939 064 92
-0.939 044 66

-0 ~ 939 029 97
-0.939 01903
—0.939 010 64
-0.939 004 06
-0.938 998 83

-0.93S 994 59
-0.938 99111
-0.938 988 23
-0.938 985 81
-0.938 983 76

1.754 521 79
1.867 209 58
1.950 967 02
2.016 530 37
2.069 883 27
2.114384 60

2.152 341 68
2.185 234 99
2.214 125 48
2.239 812 44
2.262 81331

2.283 565 84
2.302 488 04
2.319812 24
2.335 733 46
2.350 442 31

2.410 445 33
2.455 037 36
2.490 000 00
2.518 418 94
2.542 149 57
2.562 409 52

2.580 000 00
2.595 406 34
2.609 11411
2.621 432 56
2.632 569 15

2.642 71192
2.652 000 00
2.660 531 54
2.668 435 27
2.675 808 37

E=K+ V++

2"'
( )2

n (r)dr

6(E —eyoN) = 0,
which yields the Thomas-Fermi (TF) integro-dif-
ferential equation"

e' n(r)n(r ') ~~,

the meaning of the various terms being evident.
To find the ground state of the atom, this expres-
tion is minimized as a functional of n(r), subject
to the condition that the total electronic charge be
the right one:

n(r)dr .

Introducing a I.agrange multiplier -eq~ we re-
quire therefore that

,n'(r) +e[&p(r) —y, ]=0;
m eB)'

Ze n(r')
y( )= ——,,

i

d '.
~r —r'

Following closely the procedure used in the con-
ventional statistical model (zero magnetic field)"
we replace Eq. (11) by a differential equation by
remarking that cp(r) is the Coulomb potential due

to the nucleus and the distribution of electronic
charge around it, and therefore obeys the Poisson
equation

d,(p(r) = -4m en(r),
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and the boundary condition 4(0}=1. (18)

2 -3/5~2/5~4/ 5Z1/5I -2/5~
0

and a new function

(15}

(16)

Then, from Eqs. (11) and (13) we obtain the TF
differential equation

(x@}1/2. (17)

Now Eqs. (11) and (13) are combined to eliminate
one of the functions n(r) and cp(r). As the boundary
conditions are easier formulated in terms of the
potential, we choose the customary way of elim-
inating n(r). A considerable simplification is
brought in by the theorem' stating that the density
n(r) which minimizes the energy is spherically
symmetric; then we are Left with only one vari-
able, r= ~r~. It is convenient to introduce a di-
mensionless variable x given by

The family of solutions of Eqs. (17) and (18),
corresponding to the various values of the initial
slope 4'(0), has qualitative properties similar
to the analogous functions of the conventional TF
model. All the solutions start from the origin with
the value unity, and a positive curvature. Their
behavior at large x depends upon 4'(0); here one
may distinguish three cases.

(i) lf 4'(0) is sufficiently negative, 4(x) van-
ishes at a finite distance x„ the corresponding rp
is the atomic radius, where n(r) vanishes. For
x ~ xp the TF equation no longer holds, since this
would imply a negative density of electrons.

(ii} For a less negative 4'(0) there is one solu-
tion asymptotic to the x axis (x, = ~).

(iii} For still higher initial slopes the solutions
never vanish, but diverge as x- ~.

To select the unique solution corresponding to
a given type of ion, we must add the requirement
that the atom contains, inside the radius r„de-
fined by Eq. (15) and

the boundary condition (14) becomes simply 4(x,) =0, (19)

2.0 2.5
0.10

the right charge. Using successively Eqs. (9),
(13), and (16), one has

1.00
200

0.75
150

0.50

0.25
50

I

0.5
I

1.0 1.5

FIG. 1. Solution of the TF equation for Z = 10 and
N = 9 (solid curve), and the corresponding MRS solution
(dashed curve).

FIG. 2. Radial distributions of charge (divided by I ~5),
for Z = 10 and N= 8, 9, 10 (TF calculation).
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l 0
n(r)~'dr

1 ny(r}r'dr
o

= Z —[x4 '(x) —4 (x) j&»,
o 43

4x
(20)

correspond to atoms under pressure (e.g. , atoms
squeezed together to form condensed rnatter),
which we do not discuss here.

Once the solution of the TF equation is known,
the atomic radius is given by Eq. (15). The
electron density is obtained by combining Eqs.
(11) and (16) to get

n(r) =a '2 "'v '"'o. '-"Z"'L"'[C(x)~'xj"-'(22)
x.e.,

N
e(x,) —xp'(x, ) =1 —Z. (21)

2QQ

One notes that Eq. (17), the boundary conditions
(18) and (21}, and the definition of the atomic
radius, Eq. (19), are all independent of the mag-
netic field, which appears only as a scaling factor
for lengths, in Eq. (15): When L increases, all
ions contract at the same rate. If N = Z the equa-
tions are also independent of Z, so that there
exists one universal solution for all neutral atoms,
which is precisely the solution described above
as case (ii); indeed, for neutral atoms Eqs. (19)
and (21) imply x, =~. For positive iona (N & Z},
the same equations are satisfied by a finite x~
and one is in case (i). Negative iona cannot be
handled in this model, since the boundary condi-
tions cannot be satisfied for» Z. For free ions,
case (iii) does not occur: Solutions of this type

j.@'(0}+ —1 ——
Xo Z

(24)

Then, one can compute the binding energy of the
last electron (ionization energy}:

I(Z, K) = E(Z, K —1) —E(Z, K) . (25)

We mention here two additional relations be-
tween the various contributions to the energy:

~'', and 5", One is the virial theorem'

6K+ V+ 8 =O, (26)

which may be checked directly. The other one
tells that the entropy of the electron gas is zero
(we have assumed zero temperature); it is ob-

Substituting this into Eq. (8), and after some ma-
nipulations (involving partial integrations and the
use of the TF equation and the boundary condi-
tions), the energy may be written in the form

I:.= -~e'2"'m -'5n "'Z"'L-"»
2

where

150

0—

0

]QQ

la

a

FIG. 3. Radial distributions of charge (divided by L2 ~},
for Z = 10 and N = 8, 9, 10 (MRS calculation).

FIG. 4. Range covered by the TFD calculation; along
the strip the virial theorem is obeyed exactly.
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tained by multiplying Eq. (11)by n(r) and then
integrating:

3E+ V+2@'=epoN. (27)

of the magnetic levels:

I ev(~ }I=Ze

go
(30)

The value of the multiplier ego results from Eq.
(11}for r=ro.

To evaluate this limit we set roughly xo= 1; then
Eqs. (29) and (30}yield a range

(Z N)e-
V'o= V(~o}=-

Po
(28) 5 x 10 'Z'i' « l. «10 Z' . (31}

These are simple consequences of the TF equa-
tion, but it is worth mentioning them, because
their analogs for the statistical model with ex-
change offer the possibility of checking the accu-
racy of the approximation used there (see Sec. III).

The range of validity of the model has an upper
limit given by the condition lace Eq. (I)]

C. Numerical results

The TF equation was solved numerically in the
range 5- Z ~ 20 (steps of 1), 20 & Z ~ 100 (steps
of 5), and Z —2 ~ & ~ Z.

The universal solution corresponding to neutral
atoms (&= Z) was found to have

pz)) g,jZ, (29)
4 '(0) = -0.938 965 94, Xo = ™; (32)

which ensures that practically all the electrons
stay in excited states of the longitudinal motion.
A lower limit comes from the requirement that
the Coulomb energy of an electron at the periphery
of the atom be small with respect to the spacing

the value of the initial slope and the position of
the zero for once- and twice-ionized atoms are
given in Table I. This is all the information need-
ed for calculating the atomic sizes and energies,
as well as the ionization energies for the Zth and
(Z —1)th electrons, using Eqs. (15) and (23)-(25).

Z-1~ ~

/ Z-2~
/

/
/] J'

I I

&.00

1.5 2.0
I

2.5 0.15

0.10

0.05

Xo

2.2
0.75

2.0

0.50 -0.05

Q.25

lO 20 30 40 50 60 70

FIG. 5. Graphs of xo vs Z along the virial strip, for
N = Z -2, Z —1, Z {TFD calculation, solid curves);
graphs of xo vs Z, for A = Z -2, Z —1 {TFcalculation,
dashed curves).

I

0.5
I

1.0

FIG. 6. Solution of the TFD equation for Z = 10, A'= 9,
and 3 = -2.
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D(r) =4m'n(r), (33)

which gives the radial distribution of charge. In
Fig. 3 the function D(r)/L"' is plotted against
x, for Z =10 and N=8, 9, 10. Vfe see that the main
contribution to the energy comes from the inter-
mediate region around x= 1.5, where the function
C (x) is already small; although 4k(x) is maximum
at the origin, where the volume density of elec-
trons becomes singular, the contribution of this
interval is removed by the factor ~'. I.ooking at
Fig. 1 one realizes that an infinite x, for neutral
atoms does not mean that in the TF model neutral
atoms have infinite radius: Unlike in the conven-
tional case, our distribution of charge does not
have a long tail. "

It is instructive to compare these results with
those yielded by the approximate solution of
Mueller, Rau, and Spruch' (MRS). Instead of
solving the TF equation, these authors use a vari-
ational approach based on the following two
AnsiiIze. First, as the distribution of charge is
spherically-symmetric, the problem contains one
length, which gives the size of this sphere of
electronic charge. Calling R this unknown length,
MRS satisfy Eq. (9) by setting

An inspection of Table I reveals that near the
origin the solutions for all Z's and &'s are almost
equal, and they begin to differ significantly only
very close to x,." To give a quantitative idea
about the behavior of these solutions, Fig. 1 shows
the function 4 (x) corresponding to Z = 10, N =9.

More interesting than the solution 4 (x) itself is
the distribution of the electronic charge inside the
atom, viz. the quantity

Obviously, a charge density given by Eqs. (34}-
(36} satisfies neither the TF equation nor the
correct boundary conditions. This is shown in
Fig. 1, where the function C(x) corresponding to
the MRS solution for Z=10, &=9 is compared with
the exact 4(x) given by the TF equation. However,
we have seen that the relevant quantity is not 4 jx),
but the radial distribution D(r). Figure 3 shows
the function D(r}/ L"', as given by MRS, for Z =10
and~=8, 9, 10; a comparison with Fig. 2 tells us
that the MRS solution should yield accurate values
for the energy, and indeed they differ from the
exact ones by less than 17(}. Atomic radii are too
small by a factor of about 2, but this is a, matter
of definition: As in the MRS picture the charge
density vanishes only at infinity, the "radius" R
is defined by the half-width of the Gaussian-type
distribution of Eq. (36). Ionization energies in the
MRS model are higher than the TF ones by 10-30~jp
(the error increases with Z).

Incidentally, we remark that the TF model,
ignoring exchange, cannot yield reliable values
of the ionization energies. Indeed, exchange ef-

250

200

(34)

With this parametrization the energy, Eq. (6), be-
comes a function of R, and the requirement that
it be minimum yields the solution

~O
0

ill

L

100

g ~ -'1 / 5Z 6/ 5+3/ 5I 2/ 5,

the values of the constants k, v, and M} depend on
the choice of the function p($). Second, p(() is
chosen in such a way as to satisfy approximately
the boundary conditions for n(r), i.e., have the
right singularity at the origin, and a fast decrease
at large distances. MRS assume

p($}= ct e (36)

and obtain 4n'4 =7.12, v=1.35, I) =0.33m.

50

10

FIG. 7. Radial distributions of charge (divided hy L~ ),
for Z= 10, N= 8, S, 10, and 4= -2 (TFD calculation).
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fects are important at the periphery of the atom,
and they may modify considerably the binding
energies of the outermost electrons, although they
cannot affect much the total binding energy of a
high-Z atom.

(44 )Q(p, q) =
p2 +q2

The elementary but tedious momentum integra-
tions in Eq. (41) yield the final result

III. STATISTICAL MODEL WITH EXCHANGE

e'
hW' = — ~Pp'1 (qz/Pr)dV, (45)

A, Exchange energy

In order to incorporate the exchange int
in the model w

e zn eraction

both t
e mo e, we must give a statistical treat tmen

Thus
o the longitudinal and transver t'se mo sons.

us, we shall assume that locally, inside a
small cell ofce o volume 4V, the motion of an electron
may be described by a superpos't' f
waves of the form

where

f(q) =-~zP In@+-,'(I —In2}7}'+O(ri') .

Collecting all the terms, we find the exchange
energy density

2Few'(r) = n'(r)[lnv(r)+C+0(v)],

where

(O'I }

(37)u-„,(j, z}= (d V) "'exp(ip j+ fqz)

with Ipl-Pv, lql«q~(r}. In the spirit of the
adiabatic approximation, the longitudinal and
transverse Fermi momenta are taken to be inde-
pendent; in fact, P~ should be determined by the

inde e
magnetic field alone, and therefore be a t t,
in ependent of the position of the cell. Th'

confirmed by a direct calculation: Counting the
states inside 4V we obtain a density of electrons

n(r)v(r}=
( ~)3/2i C =2.329 18;

the terms of order q~/Pz and higher have been
neglected, by virtue of Eq. (40}."

0.60

(48)

1
&(r) =

(2 )~P~'qr(r),

and comparison with Eq. (5} yield '4

Pp'=2eB.

(38)

(39)

0.58

Moreover, we remark that 'th' th, wx xn e range of
validity of the model, we have

qr(r. ) «P»; (40)

thxs is nothing else than Eq. (30), expressed in
terms of the Fermi momenta.

Now, the exchange energy corresponding to our
cell may be written as

0.56

z 0.54—

I Z-2

(2„)8 pÃ2 dqidq2fl(pi p2~ qi —qa) ~

where

f)(p -p., q, -q, )

I

qual,

I q21- qv (41}

dr, r,u,*(1)u2 (2) u, (2)u, (1)
2

r„r, ~ hV; (42)

for simplicity, we have used the shorthand nota-
tion

u (J3}=u-, (r~).

The integrations in Eq. (41) give

0.52
Z

/
I /

Z-1 g

I
I

0.50—
I
I

l

Z 2l

048
10 20

I

30
I

40
i I

60 '70

FIG. 8. GGraphs of ~ vs Z along the virial stri f
N=Z —2, Z-1 Z

s rap, or
(TFD calculation, solid curves);

graphs of e vs Z, for N=Z-2 Z —1 Z (TF calculation,
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B. Thomas-Fermi-Dirac equation

Including the exchange term, the energy of the
atom becomes

which replaces Eq. (22). Written in terms of this
parametrization, Eq. (13) becomes the TFD dif-
ferential equation

E=E+V+5'+g ', (49)

where the exchange energy is [neglecting contribu-
tions of order O(v)]

4 "=(x4)"'

the two functions being related by

4+21/5x 4/5+2/5Z--2/5L-1/5(x4)1/2

(53)

2 2
W' = n'(r) [lnv(r) + C]dr .eB (50)

x [ln(4'/x} —1+in(2»/~„-2/5o/6/5Z4/'L 3")],

(54)
Minimization with respect to n(r) yields, instead
of Eq. (11), the Thomas-Fermi-Dirac (TFD}
integro-differential equation

4

,n'(r) + e[C/(r) —/p, ]

2 2

+ n(r) [2 lnv(r) + 2C + 1]= 0. (51)eB

Again, we assume spherical symmetry and, in
order to obtain a differential equation, combine
Eqs. (13) and (51). The definitions Eqs. (15) and
(16) are maintained, but Eq. (22) no longer holds,
because the exchange term in Eq. (51) has mod-
ified the relation between the potential and the
electron density. Moreover, Eq. (51) cannot be
solved explicitly for the electron density, and we
have to introduce, in addition to 4(x), a second
function, 4'(x), defined by the relation

n(r) s 32 1/5~ -11/5~ 12/5Z2/5LS/5[4(x)/x]1/2 (52)

which is a transcription of Eq. (51).
The boundary conditions (18) and (21) remain

unchanged, but the atomic radius is no longer de-
fined by Eq. (19}. The position of the atomic
boundary is found from the requirement that the
pressure of the electron gas vanishes, "which
yields the following equation for x,:

4(x }=--'4(x ) —2"'s "'a"'Z "'L "'[x 4(x )]"'
(55)

The exchange term has mixed all the parame-
ters, making the equations too complicated for a
qualitative discussion. The solution of the TFD
equation depends in an intricate manner upon
Z, ~, and I.; lengths and energies have no more
a simple scaling behavior with respect to l.. In
particular, the energy, Eq. (49), may be written
as in Eq. (23), where now

4' 0) ——4 x ) — I - — 1- — —3 4 "4'dx —2'/'m /'a'/'Z "'I '/' Cxdx
x, ' Z Z (56)

The virial theorem reads

QK + V+ 5'+ 5 ' = 0, (57)

28/5 -2/5~ -4/5Z9/5L 2/5e~o 2

and in our model it is satisfied only approximate-
ly, because we have neglected higher-order terms
in the expression of W'. Equation (27) is replaced
by

3K+ V+ 2W+ 2W' = eyoN — n'(r)dr,2x8

(58)

where y, is determined from Eq. (50}, setting
pe

x —4(x,) 1
xp Z Z

(59)

Using the virial theorem one can check the re-
liability of the approximation which consists in
neglecting higher-order contributions in Eq. (50),
in the following way. Assuming Eq. (57) to hold

exactly, one has E=-5K; then, Eqs. (57} and (58)
may be combined, eliminating 8'+ W', to yield
a relation between & and V, and therefore an ex-
pression of E in terms of V and the quantities
appearing in the right-hand side of Eq. (58). One
obtains as a result of these manipulations

e =-& 4'(0) ——4(x ) — 1- — 1-— -2'»~ '/'e/"'Z-"'L "' 4-Wx-
9 x 0 Z Z

(6o)
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When exchange is neglected, both Eqs. (56) and
(60} reduce to Eq. (24); however, they are not
equal, and their difference tells us the degree of
violation of the virial theorem, and therefore the
accuracy of the expression (50) for the exchange
energy.

C. Numerical results

Equations (53) and (54), with the boundary con-
ditions (18) and (21), and x, defined by Eq. (55),
were solved numerically inside the region shown,
in a logZ-logL diagram, in Fig. 4. This region
corresponds to the following ranges for the input
variables.

(i) Atomic number 5~ Z «. 20 (steps of 1) and
20 ~ Z ~ 'l0 (steps of 5)."

(ii) Number of electrons: Z —2 ~N ~ g.
(iii) Magnetic field: 10 '- L- 10', with the

restriction imposed by Eq. (31), in which the in-
equality signs were taken to mean "greater (smal-
ler} or equal, " and not "much greater (smaller)";
in other words, the calculation was pushed to the

extreme limits of validity of the model. In this
range the magnetic field was given values equally
spaced in logarithmic scale: L=10~, -3 & 4& 1
(steps of 0.25).

Total atomic energies were calculated using
both Eqs. (56) and (60), and the difference was
found to be always less than 19~. Moreover, this
difference vanishes along a curve contained inside
the narrow strip in Fig. 4, showing that the virial
theorem is obeyed exactly. This test confirms the
accuracy of the approximation used for the ex-
change energy.

The exchange interaction reduces the electron
repulsion, so that a given charge may be packed
inside a smaller radius than predicted by the TF
model. Indeed, for any given Z and &, and for
all values of L inside the range of the model, x,
is smaller than the corresponding TF value;
moreover, as in the conventional TFD model, x,
is finite even for neutral atoms. Its dependence
on the magnetic field is practically negligible:
Over the whole region shown in Fig. 4 it leads to
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variations less than 4%, so that the I. dependence
of the atomic radii is given essentially by the
factor f. "' in Eq. (15). Therefore, it is sufficient
to report the values of x, along the "virial strip. "
In Fig. 5 these are plotted against Z, for &=8 —2,
Z —1, ~; for comparison, the corresponding TF
curves for &= Z —2, Z —1 are also shown. %ith
respect to the TF calculation, the radii are seen
to be reduced by 10-15%, depending on the atomic
number and the degree of ionization.

The solutions of the TFD equation for free ions
are always of the type (i) discussed in Sec. II B.
An example is given in Fig. 6, which shows the
solution corresponding to Z = 10, N = 9, and 4 = -2;
to get a feeling of the modifications introduced
by exchange, this should be compared with Fig. 1.
Much more sensitive to these modifications is the
physically relevant quantity D(r), the radial dis-
tribution of charge. Figure '7 shows a plot of the
function D(r)jf,"' against x, for Z = 10, %= 6, S, 10,
and 4= -2. A comparison with Fig. 2 reveals
that near the nucleus the charge distribution is
practically undisturbed by the exchange inter-
action, the contraction of the atom being achieved
by squeezing the outer electrons. Two character-
istic consequences of this fact are the discontinu-
ous drop to zero of the density of charge at the
boundary of the atom, and the sudden increase of
D(r) which precedes it, if the degree of ionization
I -&/Z is small enough. "'

Like x~ the quantity e—given by Eq. (56) or
(60)—is practically independent of the magnetic
field (variations with f. amount to less than 1%,
over the whole explored range), and energies in-
crease essentially as I."'. The variation of 6

with the atomic number, along the virial strip,
is shown in Fig. 8, for N = Z —2, Z —1, Z, together
with the corresponding TF curves. %'hen exchange
interactions are taken into account, & becomes a
decreasing function of ~, instead of an increasing
one. The "anomalous" behavior of twice-ionized
atoms with small Z has the same explanation as
the absence of an increase of D(r) near the atomic
boundary, for X = Z —2, in Fig. 7: The degree of
ionization being too high, Coulomb forces are
very strong, and some of the typical effects of
exchange do not show up. From Fig. 8 we learn
that the contribution of the exchange to the binding
energies of atoms decreases from 12% at Z = 5
to less than 2% at Z= 70.

The binding energies of the individual electrons
at the periphery of the atom are extremely sen-
sitive to the exchange terms, and for them the
mixing of the magnetic and Coulomb effects intro-
duced by exchange becomes significant. Figures
9 and 10 show the binding energies of the 2th and
(Z —1)th atomic electrons, divided by L"', as

functions of the atomic number, for different
values of the magnetic field; the corresponding
TF curves are also given. The exchange contribu-
tion to the TFD ionization energies is of the order
of 30-60%, depending on Z, &, and I; its relative
importance decreases with the increase of the
magnetic field.

Qualitatively, exchange corrections decrease
atomic radii and increase total binding energies,
without affecting appreciably their dependence on
the magnetic field, and smooth their dependence on
the atomic number, at high Z. Ionization energies
are increased by a quantity which depends on the
magnetic field and tends to become independent of
the atomic number, at high Z. The results pre-
sented in Figs. 5 and 8-10 may be extrapolated to
higher atomic numbers, if the magnetic field is
high enough for such an extrapolation to be mean-
ingful.

IV. CONCLUSIONS

It is known that the conventional (zero magnetic
field) statistical model of atoms cannot predict
the oscillations of the ionization energies with the
atomic number, which explain the periodicities in
the chemical properties of elements. As for the
question w'hether a similar situation might possibly
occur also in a very strong magnetic field, the
answer is, most probably, negative. In the super-
strong range' "the shell structure leading to
such oscillations is completely destroyed by the
magnetic field; in the medium-strong range ex-
amined here the situation should be similar,
even if the states at the disposal of the electrons
are not the same. In the frame of the adabatic ap-
proximation, which was used to define the term
"very strong magnetic field" there is no room for
a shell structure; only very small deviations from
the smooth dependence of the ionization energies
on the atomic number are conceivable, due to
the details of the electronic configuration.

It has been pointed out" that, by extrapolating
the results of the Hartree calculation for the
superstrong range and of the statistical model
for the medium-strong range to the intermediate
region, a good agreement is found for the atomic
sizes and binding energies. Now, we find that
such an agreement exists also for the ionization
energies, within a factor of 2; this is a positive
test for both the calculations.

Temperature effects have been neglected here;
if temperatures are indeed of the order of 10' 'K

or less, such effects should be small, but they
may still modify the ionization energies at low
field intensities. Various other corrections and

possible refinements of the model" are probably
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of no great importance, and seem premature at
this moment.

The emission of electrons and ions from the
surface of a pulsar, and therefore the properties
of its magnetosphere, depend in a crucial manner
on the ionization energies calculated here. Also,
if the speculation that pulsars are sources of
cosmic rays" proves to be correct, the knowledge
of the ionization energies may help to provide a
clue to the understanding of the distribution of
the elements on the surface of a pulsar, fromthe
knowledge of their abundances in the cosmic ra-
diation. Other results of our work, e.g. , the
atomic sizes and binding energies, might be use-
ful in the investigation of the properties of con-

densed matter on the surface of magnetic neutron
stars ""
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