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The statistical mechanics of the nonrelativistic Zachariasen model is studied for the purpose of
clarifying a mechanism proposed some years ago by Omnés to effect a phase transition in hot, dense
matter with zero net baryon number from a homogeneous thermodynamic state to one with local
inhomogenities in the baryon number density. The model contains B and B particles, which play the
role of baryons and antibaryons, respectively, and A particles, which play the role of mesons. The 4
particles are coupled in the Hamiltonian to B B pairs through virtual annihilation and creation. The
Helmholtz free energy is calculated in a virial expansion for the cases in which real B B pair
annihilation and creation is (1) important enough to achieve full thermodynamic equilibrium, and (2)
unimportant enough so that over an appropriate time scale the A particles and B B pairs are
independent of one another. To analyze case (2) a unitary transformation is made on the original
Hamiltonian which completely renormalizes the A -particle rest energy and transforms the original
interaction into an infinite sum of potentials that act within groups containing increasing numbers of
particles. We then study case (2) by dropping potentials that involve real creation and annihilation.
Within the context of the virial expansion we conclude that no Omnés transition occurs for case (1).

while such a transition is possible for case (2).

I. INTRODUCTION

Several years ago Omnés'*? proposed a cosmol-
ogy with the attractive feature that there is macro-
scopic symmetry between matter and antimatter,
i.e., the universe as a whole contains equal
amounts of matter and antimatter. The present
universe is assumed to have evolved from a singu-
larity in a manner analogous to the usual asym-
metric “big bang” cosmology, although the details
of the expansion entail new physical considerations
due to the presence of both matter and antimatter.
In the early (¢ <107° sec) stage of expansion, mat-
ter (including leptons and hadrons) and antimatter
(including antileptons and antihadrons) will be in
equilibrium with radiation. Specifically, the ex-
cess of baryons over antibaryons in a macroscopic
but small region will vanish. The difficulty with
such a model is that as the universe expands, the
matter and antimatter annihilate with such great
efficiency that the present observed matter density
of the universe could not have survived.?** Omnes
has suggested the possibility that the statistical
mechanics of strongly interacting particles pre-

sents a mechanism by which matter and antimatter
effectively repel each other at short distances. At
a sufficiently high temperature this repulsion then
leads to a phase separation of the matter from the
antimatter which, according to Omnés,?'®> can be
amplified by coalescence during later stages of
expansion. In this way the evolved universe con-
sists of islands (of galactic size or larger) of mat-
ter and similar islands of antimatter. Such a cos-
mology, while extremely interesting and appealing,
has been criticized® for reasons which involve the
post-separation aspects of the theory.

The essential paint of the separation mechanism
proposed by Omnes is that mesons are bound
states of baryon-antibaryon systems. A virial ex-
pansion of the Helmholtz free energy then involves
a term related to the baryon-antibaryon interaction
which, according to the Beth-Uhlenbeck formula,
consists of two parts: (1) a bound-state contribu-
tion related to mesons and (2) a continuum contri-
bution related to scattering in the appropriate bar-
yon-antibaryon channel. Omneés hypothesizes that
the bound states enter into the Helmholtz free en-
ergy as an independent entity and that the free-nu-
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cleon-free-antinucleon part of the Helmholtz free
energy involves the strong interactions only
through the continuum contribution (2) referred to
above. The justification for this hypothesis is
founded in the work of Dashen, Ma, and Bernstein’
(DMB) on the S-matrix formulation of statistical
mechanics. In point of fact, the DMB work refers
to the structure of the thermodynamic potential in

which the system’s volume, temperature, and
certain chemical potentials are the appropriate
thermodynamic variables. For the discussion of
the possibility of a phase transition, the Helmholtz
free energy is more useful and, although not stated
so explicitly, this is the reason for Omneés’s em-
phasis on the Helmholtz free energy. Omnés
shows that the retained continuum part of the bar-
yon-antibaryon virial coefficient has, due to Levin-
son’s theorem,® the same sign as would be pro-
duced by a repulsive interaction. Subsequent anal-
ysis then suggests that the minimum of the modi-
fied Helmholtz free energy will occur for local
(but macroscopic) inhomogeneities in baryon num-
ber. One difficulty with the Omnés hypothesis con-
cerning the nature of the Helmholtz free energy is
that it is never clearly spelled out how this free
energy is extracted from the underlying thermo-
dynamic potential which is the basis of the DMB
work.

The purpose of the present work is to examine
systematically the role of bound states in statisti-
cal mechanics within the context of a well-defined
model field theory which contains those ingredients
of the physical world which seem essential to the
Omnes theory: baryons, antibaryons, and mesons
which are in some general sense bound states of
baryon-antibaryon pairs. The model is referred
to as the nonrelativistic Zachariasen model be-
cause of its similarity to a relativistic model pro-
posed some years ago by Zachariasen® as an ex-
ample of a soluble relativistic field theory. Unlike
the present model, however, the original Zachari-
asen model did not possess a canonical formalism
and was described in terms of dispersion relations.
In Sec. II we introduce the model and determine
some of the low-lying states. In Sec. III we deter-
mine the thermodynamic potential and subsequently
the Helmholtz free energy (which is more useful
for the discussion of phase transitions) under the
assumption of complete thermodynamic equilibri-
um consistent with the totality of quantities that
are additively conserved with respect to the mod-
el Hamiltonian. In this case it is found that the
Helmholtz free energy, which is a function of the
system volume, temperature, and eigenvalues of
the conserved quantities referred to above, does
not suggest the possibility of an Omnés transition.
In Sec. IV a unitary transformation is performed

on the model Hamiltonian which separates real
from virtual pair creation and annihilation effects.
The transformed Hamiltonian contains a modified
kinetic energy with renormalized A -particle rest
energy and a modified interaction part made up of
an infinite number of “potentials.” Of particular
importance is the appearance of a repulsive BB
interaction in the form of a finite sum of separable
potentials and a dissociation potential which cou-
ples BB pairs to the renormalized A particle
through real BB-pair production and annihilation.
When the dissociation part of the transformed
Hamiltonian is neglected, the resulting reduced
Hamiltonian possesses an additional constant of
the motion. The Helmholtz free energy for this
reduced Hamiltonian then has a negative second
virial coefficient (related to the BB interaction) as
is necessary for the Omnés transition. In this
simple model the reduced Hamiltonian is unable,
however, to give adequate BB repulsion to satisfy
the necessary condition for the Omnes transition.
In an appendix we give the generalization of the
model to include internal degrees of freedom for
the various particles. The reduced Hamiltonian
for this generalized model then contains sufficient
repulsion to give the Omnes transition. A sum-
mary of the present analysis is given in Sec. V.

II. THE NONRELATIVISTIC ZACHARIASEN MODEL

The nonrelativistic Zachariasen model is defined
by the Hamiltonian H =H,+ H,, where

Hy=) (afa,w)+bjb,E,+b,b,E,) (2.1)
I
and

- & Z + ot t P
H, = V172 Folapbpn.qbpraqt@pbpn.abp/2-0),
ba

(2.2)

where V is the volume of the system. In Egs. (2.1)
and (2.2) a,, b,, and b, are the destruction opera-
tors for the relevant species, which for simplicity
we take as spinless bosons since the type of quan-
tum statistics plays no essential role in the ensu-
ing theory. In Eq. (2.1) the single-particle ener-
gies are taken as quadratic in momentum, with
2
wg =Wy A,

p2

Ep=WB+m, (2.3)
while in Eq. (2.2) the quantity g is a coupling con-
stant which sets the strength of the basic interac-
tion and F, is an arbitrary form factor which
equals unity for ¢ =0 and vanishes sufficiently rap-
idly for g—«. The model described by the above
Hamiltonian is actually a variant of the (nonrela-
tivistic) Lee model in which all recoil effects are
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included. Since the A-particle’s inertial mass is
twice that of a B or B, inertial mass is conserved
in the elementary virtual transformation described
by H,,

B+B— A, (2.4)
and the interaction H, will modify the A-particle
energy-momentum relation wy simply by renor-
malizing the rest energy W9. The B and B rest
energies, on the other hand, are not renormalized
by the interaction. In the following we will assume
that the coupling constant g and the unrenormalized
rest energy W9 are such that the renormalized
rest energy W, <2W . This constraint will ensure
that the renormalized A particle is stable. A suf-
ficient (but not necessary) condition for this con-
straint to hold is that W4 <2W, since the interac-
tion lowers the rest energy. It should be noted
that the model is not to be thought of as a low-ve-
locity limit of a relativistic model since in that
case W9 =2Mc® and W = Mc®. Since we want to ex-
amine the case in which both g and W9 become in-
finite (for fixed W, and W) we purposely retain
more flexibility in the choice for the bare A -parti-
cle rest energy.

The Hamiltonian in Egs. (2.1) and (2.2) has the
property that it is left invariant under the inter-
change of b, and b,. We shall refer to this ex-
change invariance as “charge conjugation” sym-
metry. Formally, we can construct a charge-con-
jugation operator C which has the property that

Ccb,C"'=b,, Cb,C~'=b, (2.5)
and which commutes with the Hamiltonian. We

further note that there are two additional constants
of the motion given by

v,=N+N +2N,, v_=N-N, (2.8)

where N=3,b}b,, N=2,,b)b,, and Ny=23,a}a,.
We will sometimes refer to v_ as the baryon num-
ber operator. It is also useful to consider linear
combinations of these two constants of the motion
in the form of

v=3(v, +v_)=N+N,4,

— (2.7)
v=L(v, =v.)= N +N,.

We now determine some of the eigenstates of H
with low values of the eigenvalues of v and V.
(i) States of v=0, v=0. There is only one such
state, which is the bare vacuum with
H|0)=0]0). (2.8)
(ii) States of v=1, v=0. These are bare single
B-particle states with
Hb]|0)=E,b]|0). (2.9)
(iii) States of v=0, v=1. These states are bare
single B-particle states with

HB]|0)=E,5]0). (2.10)

(iv) States of v=1, v=1 (E<2Wyz+p2/4M). For
a given total momentum P there is one such state,
which can be written as a linear combination of a
bare A state and a bare BB-pair state:

[€5) =D Gabpnrabya-al0)+22af |0).  (2.11)
q

It then follows from the Schrédinger equation
H|®,)=E|®, that

0, (2W, +p?/4M+q?/M~E)+ 2 —8= F =0,

vz
(2.12)
Vi Z Fy¢p+(wy=E)ZV? =0,
3

from which we obtain in the infinite-volume limit
(with units in which 77 =1)

E=w,=W, +p2/4M,

d3q F,?

W,=W+g? f . .

ATWaATE | Gny W,=2Wy=-q2/M
We note that as previously stated we assume g and
WS are such that W, <2W,. Hence, the integral in
Eq. (2.13) is negative, and we conclude W, <W?9;
the interaction lowers the rest energy of the bare
A particle. The normalized eigenstate components
for the value of E given in Eq. (2.13) can be deter-
mined from Eq. (2.12) together with the normaliza-
tion condition Z+2,¢,2=1 to give

- dq F,*
zZ 1 :1 + 2[ q
&) @rr W=2w, - /M7

and (2.14)

VA 1/2
005 (Z)" FuWa=2Wu- g2,

(v) States of v=1, =1 (E>2Wy+p2/4M). These
states are scattering states and rather than follow
the analysis that was carried out for E<2W+p3/
4M, it is more instructive to deal directly with the
scattering T matrix which satisfies the Lippmann-
Schwinger equation

(2.13)

T(E)=H,+H T(E), n-0*. (2.15)

YE+in-H,
By iterating Eq. (2.15) once and then taking matrix
elements between plane-wave BB-pair states, we

obtain

_g_i F.F,
Tu'a(p;E)_ v E+in—wg
V E+in-wj
F
XZ . kaq(P,zE) . ,
- E+in=2Wg—p2/aM-E*/M

(2.16)
where

Ta’a(p’ E) =< 0 lb»/2+a’5p/2—a' T(E)b:/zw B:/z-q IO) .
(2.17)
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Equation (2.16) can be readily solved to obtain

ngqu'/V

Ta'q(p, E):

d°k F,?

, (2.18)

o — 0_ 2
E+in=w,=g f(21r)3 E+in=2Wy-p*/4M-k*/M

which possesses a pole at E =w,, where w, is defined in Eq. (2.13). It will be convenient for future pur-
poses to rewrite Eq. (2.18) in terms of the renormalized rest energy W, rather than the bare rest energy

W9%. From Eq. (2.13) we then obtain

g:F  F [V

Tq’q(p’ E) =

d3k Fp?

(2.19)

(E +in= w,)(l +g?

When the T-matrix element T,.,(p, E) is put com-
pletely on-shell, with g=¢’ and E =2W 3 +p%/4M
+q%/M, we obtain the scattering phase shift (S
wave only in the present case) from the corre-
spondence

T(@)=T, (b 2W g +p2/4M +q*/M)

41 s
= - i 5 2.20
vMq e sind(q), ( )
from which we deduce
_ Mg? qF,*® -1
tanole)= = o aw, - gt D @)

(2.21)

1
(277)3 (WA_ZWB ‘kz/M) (E +in=2W, -P2/4M"k2/M)>

d3k Fi*M
- 2
D(Q)—1+g f (2,”,)3 (’WA—ZWB—kz/‘W)(qZ—kZ)’

where the slash on the integral sign indicates that
a principal value is to be taken.

Of particular interest is the case in which g2
- o for fixed W,. This limit implies, of course,
that

d3q FqE
21 W, =2Wy—-q2/M

W = WA—g"’f ( (2.22)

also approaches +w. In this limit we obtain from
Eq. (2.19) the T-matrix element

1 F,F, a3k
Ty olp, E)= 5 s U

and from Eq. (2.21) the scattering phase shift

tand(q)-

: % T (2.23)
(E+in-w,) L) @17 (W, =2W, —k?/M)E +in-2W, - p*/4M—~K*/M)

a Fy? d’k Fy? - 2.24

47 (WA—2WB—q2/M)[ @2r)P (W, =-2W, -kz/M)(qz—kz)jl ’ (2.24)

It is of interest to note that such a T matrix and
phase shift would result from an attractive sepa-
rable potential

Verg==AF F,./V, (2.25)
where the potential strength A is given by
3 2
e [k Fy (2.26)

T) @R 2w+ M-,
Thus, in the limit of infinite coupling constant
(fixed W ,) the Zachariasen model is equivalent to
an attractive separable BB-potential model in
which the renormalized A particle appears as a
bound state of the attractive potential. In field-
theoretic language this composite nature of the A
particle is signaled by the vanishing of the quantity
Z given in Eq. (2.14), which is the probability of
finding a bare A particle in the renormalized A
particle. Finally, the composite nature of the re-
normalized A particle in the infinite-coupling limit

-

can be seen from the behavior of the phase shift as
a function of ¢q. In Fig. 1 we have indicated the
qualitative behavior of 6(¢q) for various strengths of
coupling. For finite g the phase shift is zero at ¢
=0, goes negative for ¢>0 and reaches a minimum
before returning to zero as g- «. For infinite g
the phase shift also vanishes at ¢ =0 and goes nega-
tive for ¢>0, but approaches -7 as g—«. This
difference in behavior can be summarized by

5(0)=6(=)=0 (finite g),

8(0)=5(w) =7 (infinite g).
In terms of Levinson’s theorem,® the renormalized
A particle is an elementary particle for finite cou-
pling constant, but is a composite bound state of
the BB system in the infinite coupling limit.
The off-shell T matrix is closely related to the
A particle vacuum propagator, which is defined by

Dy(t=t")==i6(t=t'X 0la,(t)af(t)]0), (2.28)

(2.27)



where 6(t—t')=1 for t>¢’ and vanishes for ¢<t’,

and a,(t) =e'#ta,e~*¥t, Since this propagator will
turn out to play an essential part in the approxi-
mate calculation of the thermodynamic potential,
we will now establish the relationship between it
and the T-matrix element. It is evident that

<zi -wﬁ)Dz(t-z')=5(t—t')—ie(t—t

ot VI/Z
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D (t = t’) can be calculated directly from the defi-
nition Eq. (2.28) by inserting a complete set of in-
termediate states with the quantum number v=v=1
and total momentum . We shall obtain D} (t —¢'),
however, by the standard equation-of-motion tech-
nique with

Z Fo{0[byp,q(t)by5-o(thas(t))[0), (2.29)

where we have used the equation of motion for the Heisenberg destruction operator a,(f). We may then
write an equation of motion for the term on the right-hand side of Eq. (2.29). Again using the Heisenberg

equation of motion for b, (¢) and b, (f) we obtain

<57—2W -p?/4M~- 2/M>[e(t—t')<0lb,,zw(t)l?,,z-q(t)a;(t')|0>] o(t=t") =57

With the aid of the Green’s function G(t - t¢'; E) de-
fined by

<1587-E>G(t—t E)=56(t—t")

(G-t E)=0, t<t'], (2.31)

Eq. (2.30) can be integrated and Eq. (2.29) con-
verted to an integral equation for D} (t - t’). By in-
troducing the Fourier transform

D;(w)=f di D (£)et* (2.32)
we obtain
1
V()= 2.33
Dy(@) w+in=-wi=14 (W)’ (2.33)
where
rh)=g* [ i
Te\WI=8" | 20y w+in=-2W = p2/a&M—-k2/M °
(2.34)
By comparison with Eq. (2.18) we then obtain
Ty (P, w)=g?F F D}y (w)/V. (2.35)

For future purposes it is convenient to write D} (w)
in spectral form. Because Dj (¢ - t') is a retarded
propagator, Dj}(w) is analytic in the upper-half
complex w plane and can be written as

Db (w) = f - w+:7§“’/l’, (w real),  (2.36)

where the real spectral weight A} (w) can be found
from Eq. (2.33) by

A} (w)==2ImDj(w)

Pp ()
[w=wl=a,(w)?

=217Z6(w — w,) +
(=) T, (@)

(2.317)

V1/2 =7z F <0|ap(t)ap(f )|0>

(2.30)

r
where w, and Z are given in Egs. (2.13) and (2.14),
respectively, and
d3k
Py (w) =g2f W%ﬁ(w -2Wg=-p2/4M-FK*/M) F,?,

(2.38)
() = f Fy?
W =g f Gy o= oW, = pi/AM - KE/M

-

FIG. 1. Qualitative dependence of the BB -scattering
phase shift 6 as a function of relative momentum ¢ for
the cases of (a) a typical finite value of coupling constant
and (b) infinite coupling constant but finite renormalized
A -particle rest energy.
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It is evident from Eq. (2.38) that p,(w)=0 for w
<2Wg+p2/4M.

In principle, we can determine states with quan-
tum numbers v and U other than those given above.
However, to go further would require the solution
of coupled integral equations which cannot be car-
ried out in closed form. In fact, the above explicit
content of the model is sufficient for a discussion
of the Omnes transition. We now turn to a discus-
sion of the statistical mechanics of the model.

III. STATISTICAL MECHANICS

We now consider a macroscopic subvolume V
containing B, B, and A particles at temperature 7.
This subvolume is assumed to be imbedded in a
much larger volume also containing B, B, and A
particles at temperature 7. This larger volume
serves as an energy and particle reservoir for the
subvolume. The thermodynamic state of the sub-
volume is thus described by a grand canonical en-
semble in which constraints due to conservation
laws for the additively conserved quantities v and
7 in Eq. (2.7) are taken into account with Lagrange
multipliers y and 1, which can be interpreted
physically as chemical potentials. The density
matrix for such a system is then given by

p:e—ﬂ(H-uu-Eg). (3.1)
We note here that a density matrix of the form
p:e-erﬁ-uzv-ﬁﬁ-pANA> (3.2)

does not describe an equilibrium ensemble since
[H, pl#0 (3.3)

unless j, = +&. We next assume that our sys-
tem, described by the density matrix of Eq. (3.1),
together with the surrounding reservoir contains
no net baryon number. For a uniform system we
will then have (v)=(7), where

(v)=Tr(pv)/Trp,
(V) =Tr(pv)/Trp.

Such a “charge-symmetric” system is described
by a density matrix which is invariant under
charge conjugation. Formally, we have

CpC~'=p (3.5)

(3.4)

from which it follows that =y, What we would
like to determine is whether a macroscopically
charge-conjugate-invariant density matrix allows
any thermodynamic states other than (v)=(7). In
particular, thermodynamic states for which (v)
#(7) can be interpreted as describing a nonuni-
form system in which the baryon number excess

in the system subvolume is balanced by a net bary-

on number of the opposite sign in the reservoir.?
Thus, the system develops an inhomogeneity in
baryon number.

The starting point for the thermodynamic analy-
sis of the system is the calculation, in some ap-
proximation, of the thermodynamic potential which
is related to the grand canonical density matrix of
Eq. (3.1) by

Q(g)==kTIn(Trp) , (3.6)

where we have indicated explicitly the dependence
on the coupling constant. Our ultimate aim is to
obtain a virial expansion of the Helmholtz free en-
ergy which is a function of the volume V, tempera-
ture 7, and quantities n and 7, which are conjugate
to the chemical potentials y and 4 in the sense that

U, —::ﬁ, (3-7)

where the Helmholtz free energy is obtained from
the thermodynamic potential by the Legendre
transformation

F=Q(g)+un+um. (3.8)

The quantities n and 7 are simply system eigen-
values of the operators v and . From Egs. (3.7)
and (3.8) together with the thermodynamic rela-
tions
(n)=-22, (-2 (3.9)

it follows that the conjugate variables n and 7 are
numerically equal to the grand-ensemble average
values (v) and (7), respectively. The symmetry
condition p =1 and Eq. (3.7) then give self-consis-
tent equations for (v) and (7V) as functions of V,
T, and u. The special (“blackbody”) case of u =0
is the physical condition under which Omnes car-
ries out his analysis. The value u =0 arises in
that work because mesons and pairs can be created
and destroyed in elementary processes, and there
is no analog of v, as a conserved quantity. The
analysis here is more general and contains the
blackbody condition as a special case.

The thermodynamic potential itself is calculated
by using the standard device!® of differentiation of
In(Trp) with respect to the coupling constant g,

0Q(g) _Tr(oH,/3g) _ /oM, \ (3.10)
°9g ~  Trp N\oeg /)’ ‘

followed by integration from g=0 to the full cou-
pling strength,

a) - 20)= [ K, 6.1

where ©(0) is the thermodynamic potential for the
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noninteracting system of bosons and is given by'°
- d’p Blu+T-wd)
2(0)=kTV f (2ﬂ)3[1n(1 p )

+In(1 - eB(H-Bp))
+1n(1 = eBH-Ep))], (3.12)

We note that the bare A-particle rest energy ap-
pears in ©(0). By inserting the explicit form of
H, into Eq. (3.11), we obtain

2(g)=2(0)

2 € -
+ Vl?zRef ngF¢<bp/2+abp/2-ca;> .
o ra
(3.13)

To evaluate the required ensemble average in Eq.
(3.13) we introduce the A-particle propagator!®
defined by

Dy(t=t")=6(t=t")D}(t-t")

+0( =O)D5(E=t"), (3.14)
where
Dy(t-t")==i{a,(a}(t")
==i 3 P,|(mla,|n)[?
mn
Xei(Em-E,,)(t-t') , (3'15)

Dj(t—t")==i(a, (t')a,(1))
= 'iZPan}apl”)Iz
X @t Em=En)(t=t") ,

and P, =e 2®wtvm=FVm) /Trp. In Eq. (3.15) the
states |m) are eigenstates of H, v, and ¥, with re-
spective eigenvalues E,, v,, and V,,. The func-
tions defined in Eq. (3.15) are not independent.
This can easily be seen by taking the Fourier
transforms defined by

D:(w)=if dt ¢t DS(1)

=2”2Pm6(Em _En+w)|<mlaPln>|2

(3.16)
and

Dyw)=i [ dte*D}(1)

=27 Z P5(E, - E,+w)| (m|a,|n)|?.
mn
(3.17)
Since E,~ E,=w, v,-V,=1, and ¥,-7,=1in the
above sums, it is evident that

D} (w)=e®“ ™ DS (w). (3.18)

If we define an A-particle spectral function A,(w)
by

D, (w) = Dy (w)=A,(w), (3.19)
then Eq. (3.18) enables us to write
Dj(w)=f(w)Ay(w), (3.20)

D} (w)=[1+f(w)]A,(w),

where f(w)=(e®(“ ¥ _1)71, As we will see
below, the thermodynamic potential can be ex-
pressed in a simple formal manner in terms of
the A-particle spectral function. As we will be
interested in the simplest of approximations for
A,(w) which will enable us to investigate the pos-
sibility of an Omnés transition, we will not go
into details of a general scheme by which A,(w)
can be determined. We simply note in passing
that the spectral function satisfies several sum
rules which can be easily proven and which take
the form

“dw

f-wﬁA,(w) -1,
(3.21)

“dw o B

N (w-wpA,(w)=0.

We now return to the expression for the thermo-
dynamic potential, Eq. (3.13), to determine how
it can be written in terms of the spectral function.

To see this, we write an equation of motion for
Dy(t—t'):

<i-§l; -wﬁ)D;(t-t')
=i 7?’,2-2 Folay (1')0y)310)Bp/5-q (1)) . (3.22)

The right-hand side of Eq. (3.22) with ¢’ =¢ ap-
pears in Q(g) - £(0), while the left-hand side can
be evaluated with the aid of Eq. (3.20) to give

Q(g)=9(0)+2f’%gz J”‘_;%(w_wg)f(wmﬂ(w),
0 I3 —w

(3.23)
which is the analog of a similar result in potential
scattering.

As a first approximation to Q(g) we now replace
A,(w) by its vacuum value. We note that the vacu-
um case can be obtained by setting u =T =0 and
letting B - . In this limit

Dy(t -ty ~ —i6(t —t'){0] a,(t)a; (t")|0)
=Dy(t-1t"), (3.24)

which has been determined in Sec. II. In this
approximation all dependence on the thermodynam-
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ic parameters T, i, and . is contained in the
Bose function f(w), while all the dynamical infor-
mation is contained in the vacuum spectral func-
tion A} (w). Fortunately, the dependence of A;(w)
on the coupling constant is sufficiently simple so
that the integration over coupling constant can be
carried out explicitly. The contribution from the
6-function part of A; (w) in Eq. (2.37) to the inter-
action part of the thermodynamic potential is
given by

| < @ [1_95(,@-%)}
int 1
(27 (&) e = VET | fyagaln i rr e A HCED)

When added to ©(0) this contribution simply re-
places the unrenormalized A-particle rest energy
in 2(0) by the renormalized A-particle rest ener-
gy. This renormalization of Q(0) is in agreement
with the general S-matrix formulation of statisti-
cal mechanics given by DMB. The contribution
from the continuum part of 4} (w) in Eq. (2.37) to
the interaction part of the thermodynamic poten-
tial can also be calculated explicitly and, when
compared with the expression for the scattering
phase shift in Eq. (2.21), we obtain

[Qint (g) ]C')nl

411 ap

==Var (2n?

j (2n)3f(2WB +p2/4M +R, M)

x6(k)/k . (3.26)

For temperatures such that Wy > 2T we may ap-
proximate the Bose distribution function in Eq.
(3.26) by its Maxwellian limit. We then obtain

the final approximate form for the thermodynamic
potential,

Qg)=02""(0) = Ve B (3.27)

where A, is the virial coefficient given by

A=sem¥ = [ %G(k(e))e'ae , (3.28)

0

with x, ~'=(MkET/m)"/2. By partial integration Eq.
(3.28) can be converted into the standard Beth-
Uhlenbeck'! formula for the second virial coeffi-
cient. In Eq. (3.27) the quantity £ *"(0) is the non-
interacting thermodynamic potential defined in
Eq. (3.12) but with the unrenormalized A -particle
rest energy Wj replaced by the renormalized rest
energy W,.

For purposes of discussing the possibility of an
Omnés transition we now use the above approxi-
mate thermodynamic potential as the basis for a
virial expansion of the Helmholtz free energy in
terms of the densities (v)/V and (¥)/V. As stated
previously, the Helmholtz free energy is obtained
from Eq. (3.8), while use of Eq. (3.9) is made in

the form

= (n=-pe 28 oy gz 28 (5 9)

where z=¢8% and Z=e8¥. The approximate ther-
modynamic potential in Eq. (3.27) is now regarded
as giving the first few terms in an infinite double
series in z and Z:

Q(g)==kTV[C (2 +7) +Cp2Z +- -], (3.30)
where

Ci=rpn3e ™ 3V2 , Co=r,%e a+A /kT.

(3.31)

In the standard manner the double series in z

and Z obtain for n and 77 from Eqgs. (3.29) and (3.30)
can be inverted, and the Helmholtz free energy
can be expressed as a double power series in
£=n/V and £=7/V, with the result

F=kTV[£In(¢/eC,) +EIn(E/eC,) = C,EE/C 2 ++++].
(3.32)

We emphasize that the Helmholtz free energy is a
function of the system eigenvalues of the additively
conserved quantities v and v. The condition of
macroscopic charge-conjugation invariance is now
set by imposing Eq. (3.7) with p=5. From these
relations we then obtain the basic equations for the
self-consistent determination of £ and Z,

£=C,exp(C,£/C,2)eBH
(3.33)
E=C exp(C,£/C2)e®" .

From an analysis similar to that used by Omnés''2
it can be seen that the solution £=% (and thus
(N=N)=0) is the only solution for C,>0. Rather
than use Eqgs. (3.28) and (3.31) as the definition

of C,, it is convenient at this point to go back

and write C, in the alternate form [from which
Eqs. (3.31) and (3.28) can be obtained]

C, f @y e'B“ [1+8x,(8)], (3.34)

where

< ©
(ﬁ)z_zj; ‘;_gL‘;_‘;’re-sw-wfn(w-wg)A:(w). (3.35)
From the second sum rule in Eq. (3.21) we con-
clude that x,(0) =0. Furthermore, from the ex-
plicit expressions for Aj(w) in Eqgs. (2.37) and
(2.38) it is clear that dx,(B)/dB>0 for all .
Hence, we conclude that x(8) =0 and thus C,>0.
Thus, within the context of the present approxima-
tions, the only possibility is the homogeneous
(symmetric) solution (N)=(N).

In the Omnés modification of the present anal-
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ysis, the bouad-state contribution to C, is
dropped. The additional assumptions needed to
justify this modification are a main concern of

the present work, and in Sec. IV we introduce a
method of analysis whereby the modification can
be introduced in a systematic manner. We note
here that if the bound-state contribution to C, is
dropped from Eq. (3.28), C, is simply given by
A,/kT defined in Eq. (3.28). Since A, is negative,
the possibility arises that Eq. (3.30) will possess
solutions for which £+ E, i.e., for which (N)#(N).
Such solutions break the macroscopic charge-con-
jugation symmetry noted prior to Eq. (3.2). These
solutions thus indicate the possibility of an inhomo-
geneity in the baryon number density.

1IV. THE UNITARY TRANSFORMATION

The interaction Hamiltonian of Eq. (2.2) ex-
plictly couples the A particle to a BB pair ina
virtual process. In Sec. III we have seen how a
density matrix, when parametrized with respect
to thermodynamic variables conjugate to each of
the conserved quantities dictated by the nature of
the Hamiltonian, does not lead (in the given ap-
proximation) to asymmetric solutions that indicate
a local baryon-number-density inhomogeneity.
The purpose of the present section is to make a
unitary transformation on the original Hamilton-
ian in order to separate the effects of the original
interaction into two parts. The first of these parts
is the renormalization of the A-particle rest en-
ergy, while the second part leads to scattering
among various of the system’s constituents. This
second part takes the form of an infinite sum of
potential-like interactions between various group-
ings of particles. The procedure is then to re-
tain only a certain portion of the transformed
Hamiltonian and, in particular, to neglect those
potentials which describe the »eal process of BB-
pair annihilation and creation. Physically, the
neglect of real-pair annihilation and creation al-
lows the renormalized A particles on the one hand
and B and B particles on the other hand to appear
as independent components of the system. Such a
situation then leads to the possibility of an Omnes
transition. Thus the state of incomplete thermo-
dynamic equilibrium’? brought about by the in-
efficiency of real-pair creation and annihilation
seems to be a necessary condition for an Omnés
transition.

We now consider the unitary transformation U
=e", where ¥ is chosen so that the transformed
Hamiltonian takes the form

H'=e¢%He~"

=H{+H' (4.1)

int

where

Hg= Z:(a; ayw,+0; prp*'E: b, E,) (4.2)
and

Hfm=V(”¢V(2’+V‘3‘+-°- ; (4.3)
with

1 —

7(1Y _ +

‘“ - V pZ:'b;;‘f/zw'b»/z-«‘b—p/z--a bp/2+a ngl'
2q

1 s
Ve - D af iy p(b]i by 5By VB

‘/PﬁIP”
(4.4)
1 ; -— —
VO o > @l (b byn+B7Bpn)
ppIp"q
b )
X bppmyza DipmpmyzeaVipra

+H.c.,

In Eq. (4.4) V), v®) and V® are potentials that
describe BB scattering, AB and AB scattering,
and BB-pair production and annihilation, respec-
tively. Additional potentials also arise which in-
volve ever-increasing numbers of particles. The
invariance of V{!) under charge conjugation fol-
lows from the invariance of the untransformed
Hamiltonian H, together with a charge-conjuga-
tion-invariant operator ¥. To yield the trans-
formed Hamiltonian indicated in Eqs. (4.1)-(4.4),
we take ¥ of the form

¥ = ’Z Vo (a, bﬂf/zw 5;/2-0 - a: by/2ea Eplz-o) s
q
(4.5)

with ¥, =¥ _,. The task now is to determine both
¥, and the various potentials. In particular, we
will determine only V{}) explicitly in the present
work since it exhibits the essential feature nec-
essary for the Omnés transition.

Since the operators v and ¥ commute with ¥,
the eigenstates of H' can be simultaneously labeled
by the eigenvalues of v and 7. In particular, a}|0)
is an eigenstate of H’ with eigenvalue w, and eigen-
values v=T7=1. We note that w, is the renormal-
ized A-particle energy. It then follows that

He"Val|O)=w,e"Ya]10) , (4.8)

from which we conclude by reference to Eq. (2.11)
that

F, - '
e_q’a;lo):Zl/z (a:]O)— ‘}gﬂz Z ';q' bz/zw b;/z-al(») ,
Q Q

(4.7)
where €,=2Wp+9%/M —W,. On the other hand, the
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potential V(” can be calculated by taking matrix
elements of H’ between bare pair states since

(01dp/z4q Bp/z-q’ e He" “'bp*/m Eg/z-ai 0)

2
= <4PM+-—-+2WB> Byrg+ V) . (4.8)

Thus, the determination of e“"a}lO} in terms of
the ¥, will enable a determination of that parame-
ter through Eq. (4.7), whereas the determination
of = Vb/5.085/,_010) in terms of the now known

¥, will enable a determination of V{}) through Eq.
(4.8). To this end we introduce two state vectors,

l@,(A)=e"*¥a]|0)
and (4.9)
lq’pa( » bp/zm b»/z -al 0) ’

which satisfy “equations of motion”
d |
Ei l Qp(k»: -Z ‘I’q\ ¢pa(A»
and (4.10)
d —
Ei lépq()\»‘“‘l’qiq’p(A» ’

as can be easily verified by direct differentiation
of Eq. (4.9) together with the definition of ¥ in Eq.
(4.5). These coupled first-order differential equa-
tions, together with the boundary condition at

A =0 obtained from Eq. (4.9), can be easily solved
to give

|®,(1)=e"¥a]10)

sz
=cosX a, l 0) - Z v bp/zw bﬁ/z -d O

and
I Q)M(].»E e” Wbpf/z-l-a 5;/2-41 O>

= b2/2+a 501-/2 -al 0)

cosX -1 —
+¥, < P 2 Werb e Bl

si
+ ——IXE—XaIIO)> , (4.11)

where X%=3 ¥,

then determine

From Eqs. (4.7) and (4.11) we

F (_z \"

It is evident that ¥, is independent of the total mo-
mentum p. Fmally, the potential V(.q, as com-
puted from Eqs. (4.8) and (4.11), is given by

2 F Fy 22

Vgt e Toam
21/2 ‘1
X [TZTIZ- (Wg—-WA)-)-6q+€q:_J s (4.13)

which is a sum of separable repulsive potentials.

In order to determine the incomplete thermo-
dynamic equilibrium state of a system of B, B,
and A particles in the absence of real BB-pair
creation and annihilation, we assume that this
equilibrium state is determined by that portion
of the Hamiltonian H’ given by

re=HL V) (4.14)

We note that H’,; possesses three conserved quanti
ties, N, N, and N,, rather than the previous two
conserved quantities N+N, and N +N,. The rea-
son for the enlarged number of conserved quanti-
ties is simply that by neglecting all interactions
except V'’ we are neglecting the real transforma-
tions between BB pairs and A particles. The vir-
tual transformations lead, of course, to the A-
particle rest-energy renormalization and have been
taken into account by the unitary transformation.
To construct a grand ensemble for the equilibrium
state of a system described by H.,, we use a den-
sity matrix defined by

Py =€ B L= kN TR =y Np) (4.15)

As in the case of the density matrix for full ther-
modynamic equilibrium discussed in Sec. III, ma-
croscopic charge-conjugation invariance implies
that p=. As before, the properties of the in-
complete equilibrium state can be determined by
a virial expansion of the effective Helmholtz free
energy in powers of the conjugate variables 7',

n’, and n, which are related to the grand canon-
ical ensemble averages of N, N, and N, by the
numerical equalities

=<N>e"’ ﬁ’:<N>eﬂ‘ s TIA=<NA)W, (4.16)
where
<X>cff:Tr<pcffX)/Trpcff (4.17)

The conditions for incomplete equilibrium are
then determined by

aF;ﬂ - 8Feff:
an’ an’
and (4.18)
oF
Cl -
_“' ’
M4 4

where the chemical potentials 4 and u 4 are pre-
sumed given. Explicitly, the free energy can be
obtained, as before, from the thermodynamic po-
tential and is given by
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F . =kTV[& In(t'/eC,) +E In(E'/eC))
+E4In(E,/eC)=CJ &’ E/ClP+re I,
(4.19)
where £'=1'/V, £ =0'/V, £4=14/V, and C, is
given, as before, in Eq. (3.31). The quantity C,
is given by
Ca=ry,2e 8%, (4.20)
while C; can be computed in a manner similar to
what was done in the case of full thermodynamic

equilibrium, or, alternatively, we may use the
Beth-Uhlenbeck formula, from which we obtain

J

2
T1(p, E) = & Eufe

Y(€q +€qr) +Y2(g2/V)kE(sz/eanp,k)[ekEp,k +(€p—€)(€p — Eq')J
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c/ o ’ 2,
Gt oo [T L0 a
(4]

where 6’(¢) is the scattering phase shift for the
potential V{}).

To obtain an expression for the phase shift 6'(q),
we must first calculate the 7' matrix for the BB
interaction V{}), which can be done by solving the
Lippmann-Schwinger equation for 7/(E) in Eq.
(2.15) and using V{}) as the potential. Since V{})
is a sum of separable potentials, the Lippmann-
Schwinger equation can be solved in closed form
to give

V. €€,

where y=2Y2/(1+2"2) and E, , =E +in = E, 5.,
—E,/;_r- This T’ matrix has no poles on the real
E axis which confirms the fact that there are now
no bound states arising from our approximate
Hamiltonian. When the 7’/ matrix is placed on the
energy shell, the expression in Eq. (4.22) and
thus the scattering phase shift 6’(q) reduce to the
expressions in Eqs. (2.20) and (2.21), respective-
ly. Hence, the expression for C; becomes equal
to that for A, /kT, defined by Eq. (3.28), as can
be seen by partial integration of Eq. (4.21). Since
6'(q) =6(q) is negative for all ¢ and since, by par-
tial integration, C, is proportional to f:dqqd(q)
xe™BM  then C} is less than zero.

We now apply the equilibrium condition (4.18)
and obtain

£'=C,exp(C,E'/C eP" |
(4.23)
E'=C,exp(Cj¢'/C 2)eP
and
Ea=2V2 CePra . (4.24)

There exist asymmetric solutions to these two
equations such that £'# £’ when

C ’
-2 Pse (4.25)
cl
In the model we have been considering we have
seen that C,<0 and that therefore the possibility
for B-B separation exists, but numerical calcula-
tions indicate condition (4.25) cannot be satisfied
at any temperature with this simple model. 1t is
shown in the Appendix, however, that if sufficient
degeneracy due to internal degrees of freedom is
added to the model, the condition for asymmetric
solutions (4.25) can be satisfied and such solutions

1-(g*/ VI  Fui*/ew By o :

(4.22)

r

arise above a certain critical temperature. As
Omnés has pointed out and as is true in this ap-
proximation in our model, these asymmetric sol-
utions correspond to a minimum in the Helmholtz
free energy, while the symmetric solutions cor-
respond to a maximum for temperatures above the
critical temperature. Thus we see how essential
the assumption of incomplete thermodynamic equil-
ibrium is to the possibility of an Omnés transition
in this model. This independence of the A parti-
cles and the B and B particles had its analog in
the realistic problem of mesons, nucleons, and
antinucleons in the original work of Omnés,! but
the connection between this independence and a
state of incomplete thermodynamic equilibrium

is not clear in subsequent work.**

V. SUMMARY AND CONCLUSION

In this paper we consider the implications of
both full and partial thermodynamic equilibrium
for the nonrelativistic Zachariasen model within
the approximation scheme of an appropriate virial
expansion of the Helmholtz free energy. For full
thermodynamic equilibrium we construct a grand
canonical ensemble which is parametrized by two
chemical potentials that are introduced to take
into account constraints on the two conserved num-
ber operators which exist in the model. The ther-
modynamic potential, which is the natural poten-
tial for the grand ensemble, is approximated by
retaining only two body dynamics and is then used
to compute the Helmholtz free energy, which is
more useful for the analysis of phase transitions.
The Helmholtz free energy is then a function of
volume, temperature, and the system eigenvalues
of the two conserved quantities. The imposition
of the condition for macroscopic charge-conjuga-
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tion invariance then results in two coupled equa-
tions which must be solved self-consistently for
the equilibrium system eigenvalues as a function
of temperature and a common chemical potential.
We find only thermodynamic states of zero baryon
number as solutions to these coupled equations
and thus there is no Omnés transition. We next
make a unitary transformation on the original
Hamiltonian which separates the virtual from

the real BB-pair creations and annihilations. If
we neglect all such real-pair creations and anni-
hilations and retain only the two-body BB inter-
action we are left with an approximate Hamilton-
ian for which there are now three conserved num-
ber operators. In this approximation the A par-
ticles decouple completely from the B and B par-
ticles, and the Helmholtz free energy takes on the
form assumed by Omnés in his analysis of the
realistic problem involving mesons, nucleons,
and antinucleons, and for which thermodynamic
states of nonzero baryon number are possible.
We conclude that within the context of a virial
expansion of the Helmholtz free energy, a state
of incomplete thermodynamic equilibrium is nec-
essary for an Omnés transition to be possible.
Thus the conditions under which the Omnés mech-
anism is operational require that the effects of
real-pair production and annihilation are negligi-
ble in the sense that the time scale over which
the thermodynamic state of the system is being
established is short compared to the relaxation
time for complete thermodynamic equilibrium.
We have not calculated the relaxation time for
approach to complete thermodynamic equilibrium
under the influence of real-pair creation and anni-
hilation in the nonrelativistic Zachariasen model.

attained at temperatures pertinent to the environ-
ment of the Omnés transition. Hence it seems
doubtful that matter-antimatter separation can
take place through the Omnés mechanism. This
doubt has been expressed qualitatively by Steig-
man.® In the present work we have explicitly ex-
amined the possibility of an Omnés transition in
the two cases of complete and partial thermody-
namic equilibrium for the purpose of clarification
of the mechanism.

APPENDIX A: THE ADDITION OF AN INTERNAL DEGREE
OF FREEDOM TO THE MODEL

We consider here the inclusion of an internal de-
gree of freedom which, for simplicity, we refer
to as isospin. It will be convenient to adopt the
following notation:

a,(I,M) is the destruction operator for A par-
ticles with total isospin I and z component M.
by(m) [ b,(m)] is the destruction operator for
B [B] particles with total isospin 7 and z compo-
nent 7 .

We constrain the total isospin of the B and B par-
ticles to some fixed value 7, but we allow the total
isospin of the A particles to range from 7 =0 to
I1=27.

We first construct the untransformed Hamilton-
ian for the model with isospin included. In order
that the untransformed Hamiltonian behave like
a scalar under isospin rotation, it must have the
form H=H,+H,, , where

Ho=;[bl(m)b,(m)+5,*(m)5,(m)JE,,

However, it has been indicated by Schatzman* + Z al(I,M)a,(I,M)wg (A1)
that for the realistic meson-nucleon-antinucleon pLM
problem full thermodynamic equilibrium is easily and
H, =—i; Fim, im,|iilm +m
int = 7 - ’-"'21:"'2 a( 1 2l 1 z>
X [a:(],ml +M3) byypqlmy) 5,/2_q(m2) +b:/2+q(nll) BI/Z-q(mz) ay(I,my +m,)] . (A2)

If the unitary transformation preserves the scalar behavior of the Hamiltonian under isospin rotation,
the transformed Hamiltonian H’' =e ¥ He~ ¥ must have the form

H'= [b]m)b,om)+b]m)bym)]E, + ,Z, al(I,M)a,(1,M)w,

p,m

1

fp,q,a' my my

vy Z Z b;/2+a(m1) E;/z-q(mz)b_v/z-a’(mz) bpzaarmy) Vg;) teet (A3)

In (A3) we have written explicitly only those terms that contribute to H.;.
In order that the unitary transformation preserve the scalar behavior of the Hamiltonian, ¥ must have

the form

v=32 3.
pa I, m;,m,

Y (imy im,| iilm, +m2>[b;/2+,,(ml) b_ple —my)a,(I,m +m,)= a:('[v My +M3) by, (M) 5»/2-a(m2)] .

(A4)
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The development proceeds straightforwardly in
the manner of Sec. IV with appropriate inclusions
of the Clebsch-Gordan coefficients. If we invoke
the orthogonality and the completeness properties
of the Clebsch-Gordan coefficients in the proper
places, we easily find that ¥, and V{}) are given
by the same expressions obtained in the isospin-
less model, Eqs. (4.12) and (4.13), respectively.
We have already seen in Sec. IV that V{!) leads to
the T matrix given in Eq. (4.22) and that, on-shell,
this T matrix yields the BB-scattering phase shift
of Eq. (2.21).

To obtain the condition for the occurrence of
the phase transition and to see how the inclusion
of isospin degeneracy alters this condition by ef-
fectively replacing C; with (27 +1)C; in Eq. (4.25),
we make a virial expansion of the Helmholtz free
energy. In making this expansion we make use of
the fact that in this model the average number of
B or B particles with isospin z-component m will
be independent of 7, and the average number of
A particles of isospin I and z-component M will
be independent of I/ and M. Thus, we can write

F y=Fo—kTC, V§'§'/C12, (A5)

where F, is the contribution to F from the free
particles of all species and is given by

F,=kTV iglm[zl(%ﬁﬁ} +F 1“[5172%,_:1—)]

3
““[m]} "o

The coefficients C, and C, have been previously
defined in Eq. (3.31) and (4.21), respectively. Ap-
plying the incomplete thermodynamic equilibrium
conditions

OF ¢ _ 0F o5

an’ an'
and
dF
——eff —
anA “A)
we obtain

§'=(27 +1)C,e ™ exp(CLE'/C2) ,
(A7)
£'=(2i +1)C,e® exp(Cy¢'/C,?) ,
and
E4=(2i+122V2 Ce™a, (A8)

From the coupled equation (A7), we find that the
condition for the occurrence of solutions asymme-
tric in £’ and ¥’ is

-(2i+1)eBCi/C,>e. (A9)

Thus, in the context of an assumption of incom-
plete thermodynamic equilibrium, the addition of
an internal degree of freedom to the model has so
weakened the condition for the existence of asym-
metric solutions that the condition can now be
satisfied at some temperature. Since C;<0, for
any product —~Cje® /C, we can choose i large
enough to satisfy the condition (A9).
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