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The total energy of asymptotically flat, nonsingular gravitational fields is discussed in terms of the
initial data on a spacelike hypersurface. The total energy is a surface integral which we relate to a
volume integral over "sources, " including the contributions of gravitational waves. This relationship
follows from a recent formulation of the initial-value equations of general relativity and is free of
coordinate conditions. We show that time-symmetric initial-data sets form minima of energy among all

initial-data sets on maximal hypersurfaces. Combining this result with a result of Brill, it follows that
every nonsingular, axisymmetric, asymptotically flat spacetime admitting at least one maximal slice has
non-negative total energy. Negative "interaction energy" contributions are described and a discussion of
nonmaximal initial data is given.

I. INTRODUCTION

It is well known that the total energy of an as-
ymptotically flat gravitational field defined on a
spacelike hypersurface has two distinctive fea-
tures: (I) It may always be calculated as an inte-
gral over a two-dimensional surface surrounding
the sources, including among these gravitational
waves; (II} There is, in general, no mell-defined
local expression for gravitational energy density.
These two features are closely related and show
that energy is a global rather than a local property
of a gravitational field. As a result of (I) the en-

ergy of spacetimes with closed spacelike slices
may be defined to vanish identically. %e shall
therefore confine our discussion to nonsingular
asymptotically flat spacetimes.

The initial-value data on a spacelike slice form
Cauchy data for a spacetime, i.e. , define it unique-
ly and completely for some finite time, and there-
fore the energy, which is a constant of the motion,
should be describable in a natural manner purely
in terms of the initial data. This means that we
can limit our attention to a given "state" of the
gravitational field, defined by the initial data on
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an asymptotically flat spacelike slice.
Despite the fact that the energy has been studied

repeatedly by many authors, a number of its most
important features remain unknown. A prime ex-
ample is whether or not the energy is a positive-
definite quantity. Several results exist which

strongly suggest that the energy is positive, but a
complete proof has yet to be constructed. In this
paper we prove a number of results related to the

positive-energy question, but we are not able to
prove positivity here. We are able, however, to
provide in Sec. VI a simple, purely geometrical
criterion that suffices for the existence of initial-
data sets with negative total energy.

We begin by reviewing in Sec. II the definition
of energy given by Arnowitt, Deser, and Misner. '
Their integral involves explicitly only the intrinsic
geometry of the spacelike slice, roughly "half" of
the initial data on the slice, but it is assumed that
the initial-value equations are satisfied. Viewing
this expression in the light of recent work on the
initial-value problem' leads to the fact that the
energy has remarkably simple properties under
conformal transformations of the initial data.
This leads us to propose a very simple definition
of total energy in terms of the asymptotic behavior
of the conformal structure of space. We show that
this definition is physically natural and general.
The basic definition turns out to agree with that
proposed by Brill' in his work on time-symmetric
initial-data sets, but we extend this definition to
the general case. ' Moreover, in the approach

presented here, the possibility that "coordinate
waves" can affect the energy is manifestly elimi-
nated. This result relies on a certain decomposi-
tion of symmetric tensors, ' by means of which we
can also show that every three-metric correspond-
ing to a system with finite mass is conformally
related to a metric which becomes asymptotically
flat faster than 1/r, and so contributes nothing to
the mass. The results in this paper follow directly
and simply from our characterization of the con-
formal structure of initial-data. sets and the Brill-
ADM definition of energy.

Using the basic ideas on conforrnal structure and

energy presented in Sec. II, we show in Sec. III
that time-symmetric initial-data sets form minima
of energy among all data sets defined on maximal
spacelike hypersurfaces. (We assume, of course,
that the constraints are satisfied. ) Combining this
result with those of Brill, ' we obtain the result
that every axisymmetric, asymptotically flat
spacetime admitting at least one maximal slice
has non-negative total energy. The treatment of
nonmaximal slices is described in Sec. VI.

The method used in Sec. III is to add momentum
to a time-symmetric configuration (vanishing mo-

mentum) and to show rigorously that the energy
must increase. The "adding" we propose is a
mathematical experiment, not a. physical one
occurring in time, because the total energy is
conserved in time. What we are doing is com-
paring two closely related physical situations,
one with momentum and one without, as we ex-
plain in the text. In simplistic terms, this result
is expected, of course. However, the nonlinearity
of gravity suggests that the addition of momentum
to an otherwise fixed gravitational configuration
can lead to negative as well as positive contribu-
tions to the total energy by virtue of the mutual
gravitational attraction of the added "parts. " One
might then wonder whether it might not be possible
for these negative contributions to overwhelm the
positive ones and lead to a negative total contribu-
tion to the energy in some extreme situation. The
results of Sec. III show that this cannot happen, at
least while we restrict our attention to maximal
slices. Of course, we explicitly exclude from con-
sideration any slice which contains a singularity. '

In Sec. IV, we derive simple formulas showing
precisely how the negative (interaction energy)
contributions arise. We show that the total energy
is a monotonically increasing function of the
"strength" of the momentum. In Sec. V, we give
a similar treatment of the increase of energy as
nongravitational, locally positive matter/field
energy density is "added" to a vacuum configura-
tion. In nearly flat spaces, one then finds a close
comparison with Newtonian gravity (in terms of
Poisson's equation) together with the added cor-
rections resulting from the nonlinearity of the
gravitational field. Section V also contains a
treatment of the change of total energy under a
constant scaling of the sources.

In Sec. VI, we give a sufficient condition for the
existence of negative-energy maximal initial-data
sets in terms of a simply stated geometrical cri-
terion. We also discuss properties of the initial-
value equations for nonmaximal slices.

II. CONFORMAL PROPERTIES OF ENERGY

Energy and the Hamiltonian

Any gravitational field is fully described by its
initial data on a spacelike slice. The initial data
are the intrinsic geometry of the slice, i.e. , the
three-dimensional Riemannian metric g;, of the
slice, and a three-dimensional tensor density n",
which is related to the extrinsic curvature K;& of
the slice by

These data cannot be given independently, but must
obey four constraints, which in empty space take
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the form

v&m" = 0, momentum constraint

vg ft = (v"v, , ——,v'),

Hamiltonian constraint (3)

where B is the scalar curvature of g;, .
These variables are especially suitable for the

construe'ion of Lagrangian and Hamiltonian formu-
lations for general relativity. Starting from the
Hilbert action

v'- «~g ~"ad'x,

and rewriting it in terms of the three-dimensional
variables, after removing two irrelevant total
divergences, ' one can express the Lagrangian as

where E= (- "g") '" is the lapse function. '
follows from this Lagrangian that the momentum
conjugate to the field variables g;, is m

' defined
in (1). It follows that the Hamiltonian can be writ-
ten as

If we calculate this integral for the Schwarzschild
solution we get the desired result that E = m, the
Schwarzschild mass. It can be seen that the form
of the integrand in (7) is a noncovariant expression
that must be evaluated in asymptotically Cartesian
coordinates to yield the correct result. Of course,
in other asymptotic coordinate systems the form
of E will change, while its value will remain in-
variant. Later in this section we will derive from
(I) a, coordinate-invariant expression for the en-
ergy E [see (18)].

Arnowitt, Deser, and Misner' earlier obtained
exactly the same expression' for the energy by
explicitly calculating the generator of time trans-
lations at inf nity. They also showed that this en-
ergy is the quantity that determines the far-field
orbits (active gravitational mass), i.e. , it is the
"Newtonian" mass of the system as seen by an
observer who is very far away. These properties
require both that the spacelike slice be asymptot-
ically flat and that the slice be properly embedded
in a spacetime which is also asymptotically flat.
This means that there must exist a coordinate
system in which the spa. cetime metric approaches
the Minkowski metric quickly enough, i.e. ,

+N&(-2V&n 'I d x,

where N& = 'go;.
This expression vanishes by virtue of the con-

straints (2) and (3). DeWitt' pointed out that this
result does not lead to "frozen dynamics" because
the Lagrangian contains linearly occurring second
derivatives of the field variables. These may be
isolated as a total divergence 0

(A», ~
—A~. »)],id x.

(ggy, y -Agp, I)d~g ~

where in (6) we assume N= 1 at infinity. There-
fore, the "real" Hamiltonian 0„ is obtained after
removing this divergence:

H„=H —D =H+ 16mE=16mE .

This is the quantity that generates the dynamics.
The energy E of the gravitational field is the nu-
merical value of H„given by

g 2K&a'g 2E (103

where we have assumed V; N,- is negligible and
N- 1, since we are only interested in the far-field
time development of g;, when no asymptotic Lo-
rentz boost is involved. Therefore, so long as K&,.

(or equivalently v") falls off faster than 1/r, the
1/r part of g;, , which contains the energy, is con-
served. Below we will propose a definition of en-

One also requires an asymptotic bound on "g„,
A possible choice is

"'g„,„=O(1/r'") for some e~o, (9

but it can be weakened somewhat as we shall see
below. These conditions lead to

g,, —5,, = O(1/r), v" = O(l/r2" ).

%e shall later remove the necessity of stating
asymptotic conditions in terms of Cartesian co-
ordinates. The asymptotic conformal structure of
the initial data is the relevant concept; this is co-
ordinate free.

The energy is effectively the average value of
the 1/r part of the three-metric at spacelike in-
finity. ADM' showed that this energy is conserved
in time and that together with the total momentum
of the slice (defined as the generator of spatial
translations), ' it forms a four-vector under Lo-
rentz transformations. ' An easy way to see the
conservation of energy is to consider
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ergy equivalent to (7) and, in the process, the

asymptotic conformal structure of the three-
metric will be examined and we mill sharpen con-
ditions (8) and (9).

It is obvious from Eq. (7) that the ADM energy
depends explicitly only on the intrinsic geometry
of the slice, and depends implicitly on the ex-
trinsic geometry m'~ only through the fact that the
constraints must be satisfied. 'this fact permits
us to compare very simply the energy of two sets
of initial data whose intrinsic geometries are con-
formally related. Equation (7) can be evaluated
for any three-metric, of course, but only defines
the energy when the metric satisfies the asymp-
totic conditions and forms part of a valid initial-
data set.

Conformal transformation and definition of energy

A similar expression was obtained by Brill and
Deser for the case of infinitesimal. conformal
mappings. " It is especially interesting because
the form of hE is independent of the choice of
coordinates.

This relationship between conformal factor and

energy is of particular interest in the case of con-
formal flatness „"i.e. ,

Zii fo ~ Zii 0 fii

where f;, is a flat metric expressed in arbitrary
coordinates. In this case we can use Eq. (13) or
(14) to define the total energy of the g, 'i system,
rather than the change of energy, since the g;~
=f;i system has zero energy by definition. For
example, we could have g„=f„, v' =0 a.nd g, ',

= P'fii, v" w0, trace v™=0. In any event from
(15}we obtain

Let us now compare the total energies of two

sets of initial data whose intrinsic geometries are
conformally related. Therefore, we are given

g&&,
w™and g&&, w", both of which obey the con-

straints. %'e shall assume that g,~
= g'g„, where

Q is some strictly positive, bounded function
which goes to one at infinity. Ne do not assume
that there is any particular relationship between
the m™s. That is, we know that for a given con-
formal equivalence class of metrics, there will be

many solutions of the constraints, depending on

the structure of the m'™'s. The conformal rela-
tionship between the three-metrics permits a
simple comparison of the total energies. From
(7) we get

=16 g g g g~ tf -gcga}de P

where dS, is a conformal invariant, dS,'=dS,
= (d'x), . Then

16'FE = Q Wg g g gle if
—gcg b

16' ' = —8 V'Q dS

where the integration is carried out in flat space.
(In the particular example just cited, one knows
that E ' & 0.")

The covariant expression (16) suggests a gener-
alization and a definition of the energy of a single
initial-data set which is derived from the "com-
parison" formulas (13) and (14) and which reduces
to an expression equivalent to (16). Suppose that
for a, given solution of the constraints (g„,v"),
it is true that g&& may be written in the form

g;i = P.'[f;i +0(1/r )],
a&0, a-I=V(i').

That is, g„ is conformal to a "base" metric b;&,

g, &
= A.'b;, which itself has no 1/x part. Of course,

in general b„will not correspond to any solution
of the constraints. Moreover, because of the
rapid falloff of b„, all the mass of g„ is thrown
into the conformal factor A.'. Thus, assuming g;,
is a solution of the constraints and satisfies (17)
for a given ii;, , we define

=16mE+4 Wg 1-3 Q,g" dS,

= 16' —8 VP ~ dS .

Therefore,

or using Gauss's theorem

16mAE= -8 g V Pd x.
Y

(14)

(18)

where the integration is carried out in the base
metric b, &. This is the coordinate-invariant defi-
nition alluded to above. It may be considered as a
generalization of Brill's definition of E for the
case in which m'~ =0. This definition completely
agrees with the Arnowitt-Deser-Misner and with
the Landau-Lifshitz definitions of energy when the
latter a.re evaluated in a suitable coordinate frame.

The requirement above says in effect that the
three-geometry is asymptotically canformaLly flat.
This requirement limits the set of three-geome-
tries on which we can use this formula because it
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is a stronger requirement than the condition that
the geometry be asymptotically flat. However, we

argue below that this condition on the three-metric
has physical significance, that it is a very reason-
able requirement to place on the three-metric, and
that we lose no initial-data set of interest when we

do impose it, . The assumpt on concerning the ex-
istence of a rapidly falling-off base metric is jus-
tified by {29).

Degrees of freedom, coordinate waves, and energy

The independent dynamical degrees of freedom
of the gravitational field have been defined else-
where as the conformal intrinsic geometry and
the transverse, trace-free part of the momentum. '
The kinematic degree of freedom, corresponding
to a choice of the spacelike hypersurface, is the
trace of the momentum. It is natural {following
ADM)' to define the far-field of any gravitational
field as the region in which all the degrees of free-
dom have been shut off. For simplicity, let us
consider vacuum fields and assume that (trace
m' )=0. Then this region would have to be confor-
mally flat and have no momentum. Then the only
quantity needed to describe the geometry in this
region is the conformal factor ~. In this region
the momentum constraint is trivially satisfied
and the Hamiltonian constraint reduces to 8 = 0.
But since the region is conformally flat we have
A= —8A. 'V'A. . Therefore, A. obeys Laplace's equa-
tion

v'x = 0.
Not only can we calculate the energy at spacelike
infinity as

gi j = f;, + Ij,j + (1,W), j + ,'h f,j .- (21)

We will show that the energy of the three-metric
g;, is purely the 1/r part of the scalar

(22)

The scalar h ~ supplies another coordinate-invari-
ant definition of the energy, which will be shown
to a.gree with the definition of energy given by (18).
In particular, this approach is especially useful in

that it shows explicitly how to deal with the prob-
lem of "coordinate waves" at infinity.

Since f;, is a flat metric, then

is also a flat metric for any vector I', since it
corresponds only to a shift of coordinates. Let us

therefore pick I' = &" and choose as our flat
metric

f j- f,, +VjWj+VjW, .

uniquely covariantly decomposed with respect to
the flat metric f;, , or with respect to g;, . ' Here
we use f;, . One obtains an orthogonal decomposi-
tion into three parts:

h„=ling + (I-W);j + 3h fij,
where h~ is transverse, trace free with respect
to j;j,

(LW)„=V,.W,. +VjW,. —-', j,.j V, W"

is the "conformal Killing form" of the asymptot-
ically vanishing vector W', and forms the longi-
tudinal part of h;;. The third term in the decom-
position is the trace h =h„f ' .

Hence, we get

16' = -8 VA. ~ dS,

but we can also calculate the energy as

16mE= —8 vX d8,
S

(19)

This is just as good a choice as the original fo
because the two metrics are physically identical.
Then we get

g„= f;&+&„- +3{h —2%~+'")f;,

+terms of second order in h;, , W',

where in (19) S is any closed topologically spheri-
cal two-surface constructed in the far-field region
that surrounds the part of the manifold in which

the degrees of freedom are activated. In other
words one has a simple flux theorem for the en-
ergy in this case.

If we are given an asymptotically flat three-
metric g;&, then

g„-fij as r

or

Now h, ~ is a symmetric tensor and so can be

Tr
g;, = f;, +hj +-,'hrf;, . {23)

Now consider the coordinate transformation that

goes from f,j to the Cartesian metric fj', = 5;j. Per-
form this coordinate transformation on g;,. (it be-
comes g', ji), and since each part of the right-hand
side of Eq. (23) is a tensor in flat space, we im-
mediately get by the usual coo dinate transforma-
tion formulas

gij fij +hij + khrfij

5;; = h;, + terms of second order .

Since we are only interested in the asymptotic
behavior of g, , we need retain only the first-order
terms
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To calculate the mass of this metric, we can sub-
stitute immediately in Eq. (7) and obtain

we have (dropping the primes)
TT

gii fii+hii + 3hrfii

=(I+3hr)f(, +h;, (27)

which is a coordinate-free expression, since h~

is a scalar. Observe that the energy is contained
in the I/r part of hr and has no explicit depen-
dence on h;, . However, there is an implicit de-
pendence, because of course the initial data must

obey the constraints. In particular, the Hamil-
tonian constraint can be written in the form

--'v'h =[ '(v h-~)'+( v~)'] +~ ~ ~ . (25)

But

= f,, hi,. (I W}ii+3hj,i+viM, +v, Mi.

V, Mi + Vi M; = (I M )&~ + 3(V,M")f;; .

Therefore,

gfi = f i+her +[I (W+M)],i+3(h+ 2v, M )fii.

Therefore, if we have finite energy, i.e. , h~ fall-
ing off like I/r, then V, h;& must fall off faster
than r '".

Our physical requirement that the space be as-
ymptotically conformally flat, i.e. , Schwarzschild-
ian at infinity, reduces to the condition that h&&

itself falls off faster than 1jr. These two asymp-
totic conditions on h, &

can be satisfied by limiting

our attention to those initial-data sets where h;&

falls off faster than r '". This is a reasonable
condition because k~ contains the gravitational
waves and so in general V, h,.&

only falls off as
fast as h, &

. In addition, we require that the other
degrees of freedom of the gravitational field
(vri, v.) vanish asymptotically. vrii must fall off

faster than r '", 7 faster than r '.
The method of calculating the mass of an initial-

data set as the I/r part of br= h -2V„W is espe-
cially appealing because it manifestly eliminates
possible effects of "coordinate waves. " As an

example, let us add a coordinate wave to a metric

g;& = f;, +h„. The effect of this wave on g, &
will

enter in the form V, M&+ V&M, for some vector M'.

which shows that, asymptotically, gravitational
waves are identified in the metric by the presence
of h„. , i.e. , gravitational degrees of freedom are
measured by the deviation of the metric not from
simple flatness, but from conformal flatness. "
This is in accord with our identification of the
conformal metric g&, =g '"g;, as being the freely
specifiable part of the metric in the initial-value
problem.

Equation (27) may also be put in the form

ai=(1+ 'hr)[fi -+(I+bohr) 'h;i 1

= (1+3hr}b„, (28)

with the asymptotic "base" metric b„defined by

b„=f,, +(1. +3hz) 'h;,. (29)

16mE = —8 VA. ~ dS

Since b„approach. es f;, faster than I/r, it con-
tributes nothing to the mass integral for g„. Thus,
all the mass in g, &

is found in the conformal fac-
tor 1+3h~. This result shows that every metric
with finite mass may be assumed to be confor-
rnally related to one that contributes nothing to
the mass integral, in full accord with (18). This
was also a key assumption in Brill's treatment of
axisymmetric waves at a moment of time symme-
try. '

We may also make the following observation.
Since in our approach gravitational radiation is
indicated by the presence of spatial conformal
curvature and the conjugate variable m~~, we may
assume that the spacetime of an isolated system
that has only been radiating for a finite time can
be sliced in such a way that the conformal curva-
ture has a compact domain of support, and like-
wise for 7tT'T~, at some instant of time. In this case
one may assume that the base metric b;, is exactly
equal to f;, outside a compact set and that mrii. is
also zero outside the same set.

The definition of energy as

The energy will be calculated from h~~=h+ 2V„M'
—2V~(W +M'). But clearly h$, =hr, so the pres-
ence of a Killing form V&M~+V&M„ interpreted as
the manifestation of a coordinate shift, has no ef-
fect on the energy.

Fast falloff of base metric

Another consequence can be deduced from the
decomposition of an asymptotic metric. From (23)

may be also applied to asymptotically flat initial-
data sets, including those which are topologically
non-Euclidian (i.e. , contain wormholes or singu-
larities). In these cases, however, care must be
taken in using Gauss's theorem when going from a
surface integral to a volume integral because the
surface of integration includes in addition to the
surface at infinity, interior surfaces S;„surround-
ing the singularities. Therefore,
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16' = -8 V'0 ~ dS
the present to vacuum spaces. We are given a set
of initial data with m =0, i.e. , the momentum m'~

is a transverse, trace-free tensor density which
we will call o'' . The Hamiltonian constraint shows

III. TIME-SYMMETRIC INITIAL-DATA SETS
AS MINIMA OF ENERGY

We have shown elsewhere' that the independent
dynamical degrees of freedom of the gravitational
field may be given as the conformal intrinsic ge-
ometry (g;, ) and the transverse, trace-free part
of the momentum. The trace of the momentum (7)
is a kinematical degree of freedom. The dependent
variables are the trace-free longitudinal part of the
momentum ol"I, which takes the form of the "con-
formal Killing form" V'8" +7'W' —

&
g" V,%' of

some vector S", which is chosen to satisfy con-
straint Eq. (2), and the conformal factor P which
is chosen to satisfy constraint Eg. (3). The con-
straint equations with this choice of independent
and dependent variables form a system of four
quasilinear elliptic equations for Q and W'. For
an arbitrary choice of the independent variables a
solution almost always exists to these equations.
If a solution exists, this solution is unique. In
view of the close relationship between the con-
formal factor and energy [Eqs. (13) and (14)], the
independent variables uniquely define the energy.
Similarly it can be shown that ~' defines the total
linear and angular momenta of the system, and
so the independent variables also uniquely define
the momentum. '

In this paper we will not change g;, but will con-
sider the changes of energy arising from changing
the other independent variables. In this section we
will limit our attention to maximal slices, i.e. , we
set the trace of the momentum equal to zero. In
this case al"~ vanishes when we have no source
current density and the topology is Euclidean (no
"holes" ), therefore the momentum is identical to
its transverse trace-free part and constraint
Eq. (2) is automatically satisfied. We will show
that the minimum of energy occurs when we have
no momentum (time-symmetric initial-data sets),
and any "addition" of momentum or matter cannot
but increase the energy. To demonstrate the re-
sults we will prove two theorems:

Theorem 2. The intrinsic geometry of any set
of initial data on a maximal hypersurface is con-
formally related to a unique time-symmetric ge-
ometry, i.e. , one on which R = 0.

Theorem 2. Among all initial-data sets on max-
imal hypersurfaces, whose intrinsic geometries
are conformally related, the unique time-symmet-
ric geometry has the least energy.

Proof of Theorem 2. Let us limit ourselves for

R = (1/g)o "o,„~0.
Under a conformal transformation g,', =g&&Q', the
scalar curvature transf orm s as

R' = y-'R -8y-'g'y. (31)

The original space is conformal to a time-sym-
metric one if 3 Q & 0 such that

R'=0, i.e. , 8v'y -Ry=0

(P = 1 at ~; 0 ( (p (~) . (32)

Since R» 0 this equation always has a unique,
positive solution (this is an application of a maxi-
mum principle" ). Therefore, the intrinsic geom-
etry of any maximal slice of an asymptotically
flat spacetime is conformal to one and only one
space that has R —= 0. To extend the proof to
spaces with sources we note that the Hamiltonian
constraint becomes

R ——(m' w;, —qv') = 16m T», (32a.)

where T* is the local energy density, which we
assume non-negative. The momentum need no

longer be transverse, because the momentum
constraint in the presence of sources becomes

V,m" = 8@8', (32b)

where 8' is the current density due to the sources.
But since we are considering a maximal slice, the
momentum will still be trace-free. Therefore, the
Hamiltonian constraint reduces to

R = —(w'i ——,
' g "v)(w, ~

——,'- g, ,v) + 16m T*)0,

(33)
so the proof carries through just as before.

Proof of Theorem Z. Let us have a vacuum,
time-symmetric initial-data set, i.e. , a metric
g„with R =0. Let us have an initial-data set on a
maximal slice with intrinsic geometry g;, . We
have

R =0-'R -8(9 'v'6) (35)

Since R = 0, this is equivalent to

—BV &=RH' (8=1 at ~).

R = —o' o;, + 16wT*» 0. (34)

Let the two intrinsic geometries belong to the

same conformal class, i.e. , there exists a positive
bounded function 8 such that g&, = 0 g;;. Equation

(31) then shows us thd, t
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However, Eq. (18) tells us that the difference in

energy between the initial-data sets is given by

Now solve

BV''p, = -M8 "
(p, = 1 at ~). (42)

Therefore, substituting from Eq. (36)

16m'& = 885 ~g d~x.

But we know A ~ 0, 8' & 0; therefore,

16msE & 0.
Therefore, the energy of the maximal initial-data
set is strictly larger than the energy of the con-
formally related time-symmetric set. The only
time one gets b, E =0 is when A =—0, i.e. , 8—= 1.

IV. ENERGY AS A FUNCTIONAL OF

GRAVITATIONAL MOMENTUM

where M= (1/g)o "o;& ~ 0 and 8 is the scalar curva-
ture of the original manifold, If this equation has
a solution, it will be a unique solution. " We can
prove the following existence theorem.

Theorem 3. Equation (39) has a solution if and

only if

8V'8=88 (8=1 at ~; 0&8&~) (40)

has a solution on the same manifold, for the same
A. This is equivalent to requiring that the initial
three-manifold be conformally related to one on
which A -=0.

Proof. Theorem 1 proves the necessity part of
Theorem 3. As to sufficiency, let 8 be the solu-
tion of (40). Use 8 as a, conformal transformation
on the original manifold, i.e. , g,'& = 8'g;, . Equation
(39) in the new manifold becomes

9gs 2yr (M8
—1 )yr-27

We have mentioned several times that the trans-
verse, traceless part of the momentum charac-
terizes part of the independent dynamical degrees
of freedom. This is because it is a conformal in-
variant. If a" is a transverse, trace-free tensor
density with respect to g, , then cr"'= Q 'cr" is
transverse, tracefree with respect to g,'~ = Q'g;, .
Therefore, if we limit ourselves to maximal
slices and choose as momentum any transverse
trace-free tensor density, constraint Eq. (2) is
automatically satisfied, and all we need to do is
find a conformal factor so as to satisfy constraint
Eq. (3). This equation reduces to

8V'P = -MP '+A/ (P = 1 at ~; 0& P & ~),

Since M8 "~ 0 we have 7' 'p ~ 0, so we can use a
maximum principle" to show that p. cannot have

any interior minimum. Therefore a solution exists
with 1 ~ p, & ~. Now transform the original mani-
fold using 8p. as a conformal factor, i.e. , g,";
= {8g)'g;&. Equation (39) becomes

{43)

~8 —12 —12'» -7 ~8 —12 -5@»

(where P" = P/8p), (44)

=+M8 "p, "(-P" '+ p'P"). (45)

The right-hand side of this equation has one and

only one positive root at Q" = p, "'. This is suf-
ficient to show that it has a unique positive solu-
tion, bounded by p. "'and 1." Therefore, Eq.
(39) has a solution and Theorem 3 follows.

We can analyze the restrictions that Theorem 3
places on the existence of a solution to Eq. (39)
by appealing to analogous features of Schrodinger's
equation. If 8 is everywhere non-negative, Eq.
(40) will have a solution. This is equivalent to
zero energy particles scattering off a potential
barrier. The wave function is everywhere posi-
tive, i.e. , no resonances. If A is only "slightly
negative, " i.e. , a shallow potential well, the wave
function is again everywhere positive and (40) has
a solution. On the other hand, if 8 is substantially
negative, we start getting resonances in the wave
function, i.e. , places where it vanishes, and we
can no longer use it as a conformal factor.

Therefore, the set of all maximal, open (without
boundary), mass-free initial-data sets is iso-
morphic to the set of (all open manifolds in which
R —= 0)x (all transverse trace-free tensors on each
manifold).

What we have been doing is holding the conformal
manifold fixed, and looking at the changes of ener-
gy as the transverse-trace-free tensor density is
changed in a nonconformal manner. We obtained
the result that the minimum of energy occurs when
there is no transverse trace-free tensor density.
This is analogous to holding the magnetic field
fixed in Maxwell's equations and varying the elec-
tric field. The electromagnetic energy in that
case is a minimum when there is no electric field.
In fact, we can push the analogy further. If we
fix the magnetic field and scale the electric field
with some constant e, we discover that the energy
is a monotonically increasing function of n', i.e. ,

&(n) = (8'+ (P E') dv.
V
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Now consider the set (o.o', g;, ) for any o.. We will
dernonstra. te that a solution exists to

8V 8= —a M8 '+R8 (6=1 at ~).
Now let us rewrite Eq. (42), using as our in-

trinsic geometry the conformally transformed one

g;, = P„'g;&. Then Eq. (47) takes the form

8V ILj, = —e Mp. '+Ay. (p. =1 at ~),
where ]LI. = 6}&~Q„M=M/, ", R is the scalar curva-
ture of g,&. Equation (46} shows R = ilI= Mp, ".
Equation (47) can be written as

8V'p. =+ M(- n'p, '+ p), M& 0. (49)

This is a quasilinear elliptic equation. We have
discussed else~here theorems for the existence
and uniqueness of such equations. " Let us con-
sider o.' & 1. When ILj, = 1 we have

M(- o.'p '+ g) = ( —a'+ 1)M& 0,
when p, = ~ &1 we have

M(- a'g '+ p) = 0 .

Therefore, 1 and a'" form '"lower" and "upper"
solutions to the equation. In addition, the boundary
value lies in the interval [1,n'"]. Therefore, a
solution exists in the interval [1, o.'"}to the Eq.
(49)

Also, Q(- o.'p ' g} has only one root, and this
is enough to show that the solution is unique. Since
the solution lies in the interval [1, o."4), we have

Now, if 0 j~ is a transverse trace-free tensor
density with respect to some metric gj„obviously
eg' is a transverse, trace-free tensor density
also with respect to the same metric gj& for a con-
stant n. %'e can show the following: If (o ",gj;3
permit a solution of Eq. (39}to exist, i.e. , if they
can be conformally mapped into a solution of the
initial-value equations, then (ao ', g„) also gen-
erate an initial-value data set, for any constant
e. In a,ddition, the energy of this initial-value
data set is a monotonically increa, sing function of
Q ~

Given that (o",g;&) permit a solution to Eq. (39)
to exist, i.e. , there exists a positive bounded func-
tion $0 such that Qo obeys

SV $0= -Mpo '+Rp, ,

trinsic geometry of the solution (o",g, , ) to the
solution (o.a",g„). Therefore, the difference in
energy is given by [Eq. (18)]

—SV'p, &0 (55)

aF &0. (56)

In particular, theorem 3 shows that if we have
a three-metric gj~ for which A =0, i.e. , a mo-
ment of time symmetry solution, and any trans-
verse trace-less tensor density 0" on that mani-
fold, then we can always put them together to form
a solution to the initial-value constraints. In this
case Eq. (39) reduces to

SV g = -MQ M= —0'"0
lg (57)

and we know it has a solution.

This equation shows us that 6E &0 (as we expect).
In fact we can rewrite this equation in such a way
as to demonstrate the existence of the negative
"interaction energy" term.

It is possible to show that p ~ 1. Given a solution
P to Eq. (57), we can go by a conformal transfor-
mation g'j, =P'g,

&
to a frame in which the Hamilto-

nian constraint is satisfied.

R ——0 'Oj, -M=MQ "-Q.
Now the conformal transformation that moves us
back from this frame to the original frame in
which R =0 is X = I/P. But from Eqs. (31) and (33}
we know that A. obeys the following:

SV'z AX=0 (&=1 at ) . {59)

Since R ~ 0, this equation obeys a maximum prin-
ciple, which forces A. &1. Therefore, P & 1. Equa-
tions (57) and (59) permit us to write the change of
energy in two ways:

16m'AE= MQ 'v g d'x,

16mb, F = — SV'pig d'x&0.
V

The energy monotonically increases for increasing
Q. . On the other hand, if cy'& 1, we get as "lower"
and "upper" solution e'" a,nd 1. Then the solution
lies in the interval (n'", 1]. In this case we have

8V p, = —n Mp, '+MLL(, &0.

Therefore

(52) 16mAI = MA. &g d3x .
V

Therefore

{61)

-SV'g & 0.
But g is the conformal factor connecting the in- 16vhE & [ M vg d'x, (62)
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16@DE& M Wgd3x,

AE & "local energy density. " {65)

In each case it is possible to write down an expres-
sion for the negative "interaction energy. " Re-
turning to Eq. (57) we have

Equation (63) is stronger than Eq. (62) because

M Wg =-M Wg y-' &M Wg .

There are two natural measures of the "local
energy density" of the gravational momentum.
This involves M/16m, but it can be measured in
either the moment of time-symmetry frame, or in
the solution frame. However, in either case we
can make the statement

This law may be justified by considering the elec-
tromagnetic field as source. The transformation
of Eq. (73) is exactly the one required so that the
Maxwell constraints remain satisfied. %'e get a
similar result when transforming the neutrino field
or from a dimensionality argument. Therefore, Eq.
(72) finally becomes

-8V'y =16mT~y ' (y =1 at infinity} .

Vfe will assume that T* obeys t:he physically reason-
able condition T* ~ 0. By an argument similar to
that for Eq. (57) we can show that a solution exists
to Eq. (74) and that @ ~ 1. If we define p. = I/P « I
and set g, &

= $4g„, we have parallel to Eqs. (60)
a.nd (61)

8P VQ=-M,
-M=6V ~ (P'VQ) —56$'(VQ)' .

Therefore

(67 )

16m AE = 16m T~ P 3/g d 3x,

16mhE =16m T~p.4g d x,

and therefore
Mdv = 8 Vy. dS 56 y'(V y)'dv, (68)

since Q =1 at infinity. Therefore

16v&E = M~g d'x —56, (O'VQ)'vg d'x .
Similarly we have

r+Wg d'x .

In this case (7/2v)f(P'VP)'v g d'x is the negative
interaction energy.

On the other hand, if we rewrite Eq. (59) we will
get

and

7*&g d'x — vg d'x . (79)
v * 2m v

16mb.E = M Wg d'x —8 — vg d'x . (70)

V. GEOMETROSTATICS

As an alternative to adding momen'. um to a time-
symmetric geometry, we can add a source, either
matter or field energy density T*. To keep the
discussion as simple as possible, let us assume
that the source current density vanishes. In this
case the momentum constraint [Eq. (32a)] is trivi-
ally satisfied, and we need only to find a conformal
transformation that maps us onto a solution of the
Hamiltonian constraint [Eq. (32)]. That is we need
to find a positive function Q, such that when g;~
= 4'g;g,

The definition of energy in terms of the confor-
mal factor Q at infinity [Eq. (22)] can be related
very closely to Newtonian. gravity by writing

()=0 at )

and regarding g as the Newtonian gravitational po-
tential. Recall that the gravitational potential V

due to a mass distribution p satisfies

V'V =4mp (V =0 at infinity) .

Then of course

r
16nE = 16m v = 4 V'Vdv (Newtonian},

(82)

R =16mT*, . (71)
16@E = 4 V'fdv (general relativity) .

This reduces to

-SV'Q =16'*,Q'. (72)

The next problem to be solved is to express T~ in

terms of T* and Q. The most natural transforma-
tion is of the form'

It is of interest to expand Eqs. (69) and (78) in

terms of the gravitational potential. Vfe get

M 3 7
— vg d'x- — {Vq)'vg d'x

16m Bm

and
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(vg) Wgd x . (85)
flux = number of lines = (S"t, )WgdA, . (93)

This is well defined because
The reason for the different coefficients on the
negative interaction energy terms in Eqs. (84) and

(85), is due to the different powers of P on the
right-hand side of Eqs. (57) and (74). They in turn
arise because in one case we are dealing with a
(o rr)' and in the other case with an E'+8' term.
We choose the conformal transformations laws in
each ease so that they preserve constraints, but in
one case we are dealing with a symmetric tensor
and in the other with a vector. Let ST'T be a trans-
verse, trace-free tensor and let E' be a transverse
vector, then under the conformal transformation
g;& = Q'g;, , they transform differently so as to re-
main transverse.

If VbSab =0, let S"=Q "Sab then VbS"=0 .

(86)

If V, E'=0, let E'= y 'E'; then V, E'=0 . (87)

These transformation rules can be justified on a.

physical basis. The rule V', E' = 0 arises from an
integral conservation law, and therefore the flux
of E through a surface is a physical quantity,
which we expect to be unaffected by scale changes
in the geometry. " Now we have

But

g„=&4g.b so e, =(Pe. . (9o)

Under the conformal transformation g;, = P'g;, our
measure of area picks up a factor of P'. Therefore
if we wish to leave invariant the number of lines of
force, E must pick up a factor Q 4. Note that
E ~ dS is the product of (physical component of E in
normal direction)x (proper area).

Therefore E =E' e„where e, are the basis vectors.

Now

A 8=~m& ~b =gab.

(S"t, ), , = 0. (94)

In this case dA, is a conformal invariant so we
need

Since

we get

S ah y-10Sa b

(95)

(96)

(9'7)

While there is a close relationship between the
Newtonian gravitational potential and the eonfor-
mal factor [Eqs. (80), (82), and (83}l, they are not
identical. To demonstrate this, consider their
behavior under uniform scaling of the source
energy-density. A uniform scaling of the source
energy-density will induce a constant scaling by
the same factor in the Newtonian gravitational po-
tential and hence the total energy of the system
will change by exactly the same factor, i.e. , if
~'q„=4np, then

V'(~y„) = 4w(op)

for ~ = constant and

E(a) = uE(o = 1).

(98)

(99)

Qn the other hand, if we scale T~ byaconstant
factor o. in Eq. (74) we get a behavior of the en-
ergy very similar to the behavior of the energy
under uniform scaling of the momentum. The
total energy of the system increases monotoni-
eally with increasing ~, but the rate of increase
is always less than unity. In fact it is easy to
prove that

The reason for gb =$4(b is that if (' is a eonfor-
mal Killing vector with respect to g&&, it is also one
with respect to Q'g&, . Therefore,

But we have
E(u)
&(P)

(100)

ae P-4Ea e

Therefore

Ea p -6Ea

(91)

(92}

Similarly, a transverse trace-free symmetric
tensor can give rise to an integral conservation
law, but here we require that the space have a
symmetry, so as to transform the tensor into a
vector. In this case if (' is a conformal Killing
vector (including Killing vectors), we have

when a & P and u, P are positive constants, by
following the procedures in Sec. IV.

A simple example may serve to illustrate this.
Let us have a unit sphere of uniform density p in
flat space. Then the solution to Eq. (V4) is

Q = 1+ wp ——,'w'p' -(—',wp ~ w'p')r'- —, w'p r4 (r& 1),
(101)

&p =1+(3wp =, w'p'}r ' (r& 1).

(We have included terms only to order p'. )
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Then

E=—np ——n p
16 2 2 ~ ~ .

3 5
(102)

v gg g (gb~, ~ g~ ~)dS~

VI. NEGATIVE ENERGY?

The question of the existence of a. negative-en-
ergy state naturally separates into two subsec-
tions: firstly, whether or not there exists a nega-
tive-energy initial-data set on a maximal slice,
and secondly, whether or not there exists a nega-
tive-energy initial-data set when the maximality
assumption is dropped. %e will discuss these
two questions in order. "

There exists a number of results about the en-
ergy of initial-data sets on maximal slices which
makes it unlikely that negative energy exists in
this case, but no conclusive proof has yet been
discovered. For example, Brill' showed that all
axially symmetric, moment-of-time-symmetry
data sets have positive energy. Upon using the
theorems in Sec. III of this paper, we can imme-
diately prove that all axially symmetric, maximal
data sets have positive energy.

In fact we can use theorems 1 and 2 to prove
that a negative-energy maximal initial-data set
exists if and only if a negative-energy moment-
of-time-symmetry data set exists. Here we shall
produce a sufficient condition for the existence of
negative-energy time- symmetric data.

Consider a Riemannian manifold with R « 0,
R,&

w 0 only on a compact domain of support.
Therefore the rest of the manifold is flat and we
can use Cartesian coordinates outside the region
with curvature. It is easy to see

~gg"g '"(g„, g..,.)d~. = 0. —
$V

(103)

Using the results in Sec. II we know that this man-
ifold is conformally related to one in which R -=0.
Therefore we have a positive bounded solution
/to

The solution to the initial-value equations is a
conformally flat space, containing a unit sphere of
density py '. The total mass in the solution space
is~3 ~p ——„~p'. The extra energy loss is the grav-
itational binding energy of this sphere —„n'2p'. It
is clear that the correction term grows more
quickly under uniform scaling of p than the total
energy. This detailed analysis is, of course, only
correct for p«1, but, in fact, no matter what the
source, or how large the density, it always be-
haves qualitatively in the same way.

gac, ~
—g~, ~~d~a

(10&)

= -8 v'Q Wgd'x (108}

&0. (107)

Now g„ forms the intrinsic geometry of a mass-
free initial-data set at a moment of time symme-
try since R =0. But this initial-data set has nega-
tive energy from Eq. (107).

Such manifolds, with a bump of positive scalar
curvature, surrounded by flat space, do not exist
for two-dimensional manifolds. " It is an open
question whether or not they exist for three-di-
mensional manif olds.

Even if it can be proven that all moment-of-
time-symmetry data sets have positive energy,
one is still left with the problem of nonmaximal
initial-data sets. In this case the momentum m"

is no longer trace-free, and therefore the con-
straints take the form (for empty spacetime)

R —(I/g)(v "m;, —2v') =0, (108)

V,n" =0.
If R ~ 0 then obviously

8V'P=RP (P=l at ~)

(109)

(110}

16m AF = R Q Wg d'x.

If we assume that R is small, then we have $-1,
and so the energy difference is dominated by

16mDF. = R Wgd'x.

has a positive, bounded solution, and therefore
there exists a moment of time-symmetry initial-
data set with less energy than the given nonmaxi-
mal data set. These statements follow immediate-
ly as in theorems 1 and 2.

If we consider a general nonmaximal data set we
can no longer assume R ~ 0, but as long as R
is "not too negative" we will still have a positive
bounded solution to Eq. (110}. Therefore, the
intrinsic geometry is conformally related to a
moment-of-time-symmetry data set; i.e. , if
f», = Q'g;, , then R =0. The energy difference be-
tween these two data sets is given by

8~'y =Ry (y = I at }.
It immediately follows (with g„=P'g„)

(104)
One can show that, at least near flat space, that
this integral is positive, even for nonmaximal
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perturbations.
It has been shown elsewhere' that any symmetric

tensor S" on a Riemannian manifold may be de-
composed into three parts, a trace, 3g' S, a
transverse-trace-free part ST'T, and a longitudinal
part (LW)", i.e. ,

S"= SYT +(LW)" + Sg'~S

ficulty in proving such a condition is that the cur-
vature of the three-space leads to an integral
whose sign in general is difficult to evaluate. By
a straightforward integration and use of Gauss's
theorem, one can show by using (116) and (117)
that'

where

(LW)' = O'W'+O'W' —sg '&pW . (114)
These three parts are mutually globally orthogo-
nal. Now we decompose the momentum n" in
the same way

x" = o~ + Kg (LW)" +-,' Wgg'"T .

where

V,(LV)"=-R')V'6

+R i,O'OV'8]0 g d'x, (118)

(119)
Constraint Eqs. (107) and (108) can now be ex-
pressed as

R = (1jg}c"c;, + (3/Wg }c"(LW);,

+ (LW)"(LW)„—8~' I

V, (LW)" +-,'V'r =0.
(116)

(117)

If it could be shown that fRdv ~ 0 by virtue of the
constraints, it would then seem unlikely that re-
moving the maximality condition would permit
the existence of negative-energy states. The dif-

is now equivalent to (117}. The only term on the
right-hand side of (118) that is not positive-def-
inite involves the Ricci curvature, which is equiv-
alent to the full Riemannian curvature in three-
space. The full content of the constraints in
integral form was employed in obtaining (119). It
would seem that a final settling of the positivity
question, at least along the lines we have de-
scribed, awaits a deeper appreciation of the be-
havior of curvature on asymptotically flat, topo-
logically Euclidean three- spaces.
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