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Gauge-free quantization of the linearized equations of general relativity*
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Carmeli's method of gauge-free quantization of the electromagnetic field is extended to the
case of the linearized equations of general relativity. The first-order Newman-Penrose
equations vvith a particular choice of frames of reference and tetrad system are formulated
in terms of functions over the group SU2 and all the field variables are expressed in terms
of one complex function, The equation for this function is derived and a canonical gauge-
free quantization procedure is carried out. Implications of these results to the problem of
quantization of the exact I'nonlinear) equations of general relativity are discussed.

t. INTROOUCTfON

How are the equations of general relativity to be
quantized'P The first question one encounters in
approaching the subject is how to choose the field
variables. The obvious choice are the metric
tensor components g„„, or, for a weak-field ap-
proximation, the quantities

where g„, is the Minkowski metric. This choice
gives rise to mell-known gauge problems, stem-
ming from the fact that the number of field vari-
ables exceeds the number of degrees of freedom. '

In the weak-field approximation the difficulty turns
out to be surmountable. ' However, difficulties
arising in the form of infinities in the expressions
for observable quantities are still present.

These problems are similar to the gauge and
renormal. ization problems of quantum electrody-
namics, a similarity which was extensively used
by most researchers. A comparison with the
electromagnetic field indicates that the metric
tensor components are not the only possible field
variables for the purpose of quantization. The
customary way of quantizing Maxwell's equations
is to use the vector potential components A„as
field va, riables and then impose gauge conditions
to reduce the number of independent variables and
equate this number with the number of degrees of
freedom. ' Recently, however, an alternative pro-
cedure of quantization, which is entirely gauge-
free, was carried out by Carmeli. ' His method
is based on formulating Maxwell's equations in
terms of functions over the group SU, and expres-
sing the electromagnetic field in terms of one
complex function. ' Since the number of field vari-
ables {e.g. , the real and imaginary parts of the
complex function} is equal to the number of degrees
of freedom, the canonical quantization procedure
is straightforward, and the problem of gauge does

not arise at all. Section II contains a summary
of Carmeli's work.

The purpose of the present paper is to extend
Carmeli's approach to the case of the gravitational
field and carry out a gauge-free canonical quanti-
zation program for the linearized equations.

The starting point (Sec. III) is the Newman-
Penrose null. -tetrad formalism for general rel-
ativity, ' specialized to a particular choice of a
ten-parametric set of frames of reference and a
tetrad system in those frames. (This particular
choice was constructed by Robinson and Trautman'
and Newman and Penrose'; it will be referred to
as the "Robinson-Trautman frames. ") The lin-
earized equations are then formulated in terms of
functions over the group SU, . It is shown that all
the field variables can be expressed in terms of
one complex function; this function is expanded
in the matrix elements of the irreducible represen-
tations of the group SU, and the equations for the
coefficients are derived (Sec. IV). The corre-
sponding Lagrangian density is defined and the
canonical quantization procedure is carried out
(Sec. V}. We conclude with a discussion of the
implications of these results to the problem of
quantization of the exact (nonlinear) equations of
general relativity (Sec. VI).

Throughout the paper three types of coordinates
are used: the polar frames, the Robinson-Traut-
man frames, ' and a third type which is obtained
from the Robinson- Trautman frames by simple
linear transformations. All three types are ten-
parametric, i.e., they are uniquely determined
by a choice of origin (4 parameters) and a choice
of tetrad at the point (6 parameters}. The fact
that a gauge-free quantization procedure can be
carried out in these frames agrees with an earlier
conjecture, based on general considerations, by
Halpern and the present author, concerning the
central role of ten-parametric sets of coordinate
systems in the problem of quantization of general
relativity. '
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II. CARMELI'S GAUGE-FREE QUANTIZATION
OF THE ELECTROMAGNETK FIELD

V=E+iB. (2.1)

Using the notation

V, = -2 "'(Vd, + tVe),

Vo= V„
(2.2)

we introduce the following functions:

Consider Maxwell's equations without sources
and introduce the complex vector field

g
—V e"~'

r]o= Vo,

where Q„ together with the usual angular variables
Q, 8, is such that with any value of the variables
f, 6), Q, we can associate a rotation g (=. O„whose
Euler angles are &n' —Q, 6), Q, . The functions g, , g,
can be considered, therefore, as functions over
the group 0, for each value of the time t and the
radius r in polar coordinates. It turns out to be
more convenient to consider the functions g„q,
over SU„ the covering group of O„rather than
0, itself. Euler angles are again employed to
describe an element v~- SU„

cos-, 8exp[-, i(()22+@,)] sttn, 8ex p[--, (t$ 2— ()2,)]

t sin-,'8 exp[-,'t((t2, —422)] cos-,'8 exp[ 2t(&-2-+ ()2,)]
(2.4)

1 1
(r'qo)+IC, q, = 0,~r "dt

9 8 1
+ —+ —(rq. )+ —E,(1,=0,

~t '- ~2

(2.5)

where y, = —,'n —y.
It was shown by Carmeli' that Maxmell's equa-

tions in free space are equivalent to the folloming
set of equations for the g functions:

In Eqs. (2.9) and (2.11), dv= —,', (( 'sin8dp, d8dp, is
the invariant measure over SU„normalized so
that fdv= i. T'*„(v}is the complex conjugate of
T „(v). Equation (2.11) follows from the ortho-
gonality relations of the T', :

T', (v)T",* .(v)dv = . 5...5„,6„,. (2.12)
1

2j+1 "
If the function f(v) satisfies the equation

where the operators K. are defined by

8 . 8 8
K, =e" 2 +cot8 +t—vcsc8 . (2.6)a6 ay,

These operators, along with

f()tv) =e" f(v),
where

-tc/2 0
X= n real

0

(2.13)

(2.14)

a
K~ =i (2.7)

are mell known from the theory of representations
of SU, . They satisfy the following relations:

is an element of the group SU„and s is an integer
or half-integer, then f (v) is called "a quantity of
spin weight s, " and when it is expanded in the
T', „(v), the triple sum (2.10) reduces to a double
sum:

K,T' „=[(j sm +1)(j+m)] 2('2T„„,

K,T' „=rnT' „,
(2.8) f(v)= g g P',„T',„(v).

j= [s] n=

(2.16)

where T' „(v) are the matrix elements of the irre-
ducible representation of meight j of the group SU, .

Since the matrix elements T' „(v) of all the irre-
ducible representations of the group SU, form a
complete orthogonal set over the group, any
function f(v), v +SU„which satisfies

It was shown by Carmeli that the functions
are quantities of spin weight 1, 0, -1 re-

spectively. Therefore they can be expanded as
follows:

q, (t, r, v) = g g a'„„(t,r)T'„„(v),

lf(v)I'«

can be uniquely expanded in the T,'„(v):

i(v)= g P g8'. .T'..(v),
j m=-jn= -j

where

(2.9)

(2.10)

J=1 n=

220

r),(t, r, v) = Q Q o(do „(t, r) T', „(v),
j=o n= -a

where the coefficients are given by

(2j+1) 2a222 „(t, r) = q, (t, r, v)T', 22'„(v}dv,

(2.16)

(2.17)
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Substituting expansions (2.16} in Eq. (2.5) one
can obtain a partial differential equation for the
a', and express a'„ in terms of a', , i.e.,

82 82
(r'o', )+j(j+1)a', =0,

-1' Jg(dJ Q

8g
~ J'g =~J' +my8+ *

(2.2 t)

&m=r &om ~ (2.20}

because of Eq. (2.18) the functions a' satisfy the

equation

(
a' a' , j(j+ 1)

m
(2.21)

Equation (2.21) will be considered as a complex
wave equation and will be quantized by the usual
canonical quantization procedure.

A Lagrangian density will be defined as follows:

(2.22)

where

aa'* an'„aa" an' j(j+1)
8t 8I; 8r 8r r

(2.23)

and the weight factor ~j is given by

v~ =2j(j+1)(2j+1). (2.24)

~'* is the complex conjugate of eJ .
Equation (2.21}and its complex conjugate are

the Euler-Lagrange equations of the Lagrangian
density (2.22); i.e., Eq. (2.21) is obtained as

a ag a ag aZ
( )at aa~~ ar a(aot ~/ar) aQ~*

and the complex conjugate of Eq. (2.21) is obtained
as

8 8g 8 8g Bg
at ah'„+ ar a(aa' /ar) aa'

where h' =aa' /at.

The canonical momenta are defined as

j=0, 1, 2, . . . , m =-j, . . . , +j (2,18)

1 1 8 8
vl, m [2'( '+ 1))1/2 a at ( Om} f

j=1, 2, . . . , m =-j, . . . , j. (2.19)

We thus arrive at the conclusion that the func-
tions n', (t, r) determine a'„„completely, through
substitution in Eq. (2.19). The problem of solving
Maxwell's equations reduces, therefore, to the
solution of Eq. (2.18) for a single scalar complex
function rto(t, r, v).

Let us introduce now a new set of functions

and the equal-time commutation relations are
given by

(2.28)

and all the other commutators vanish. 5(r —r )'
is the one-dimensional 5 function.

The Hamiltonian density is given by

m J

8(yJ ~
1 m m

J m m J

-1~~ ~ ~J g~J( +1)
r2 m ™Ym

The merit of this method of quantization, as
compared to the usual procedure of quantization
of the electromagnetic field, is its being gauge
free. Since the number of field variables is equal
to the number of degrees of freedom, the issue
of choice of gauge does not arise at all.

III. LINEARIZED EQUATIONS OF GENERAL RELATIVITY

IN THE NULL-TETRAD FORMALISM

l n" =-m mu*=1
u

L mu=i mu*=n m"=n m"*=0
u

(3.1)

In the linearized approximation to general rel-
ativity, as formulated utilizing the method of spin
coefficients, the field variables are defined as

The "method of spin coefficients, " utilizing a
null-tetrad formalism, was introduced by Newman
and Penrose' as a new approach to the mathemati-
cal expression of the ideas of general relativity.
The linearized theory of the Newman-Penrose
formalism was worked out by Janis and Newman. '
Higher order approximations to the full nonlinear
theory were subsequently worked out by Torrence
and Janis, "Couch e~ al. ,

" and others; the formal-
ism was successfully applied to problems of grav-
itational ra.diation, ' '" and led to the discovery
of new conserved quantities. "

The null-tetrad formalism is constructed in
four-dimensional Riemannian space-time .by con-
sidering a tetrad system of vectors l„,m„„m*„,n„,
where tu, nu are real null-vectors, m„and its
complex conjugate m*„are complex null vectors.
They satisfy the orthogonality relations
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quantity q is defined as having spin weight s if the
transformation

(3.2)
m" -m'" = e'@2m" (3.5)

4 =--C, m"'n'mp*n'
4 PIJPO

where C„,p, is the linearized Weyl tensor. " The
4~'s are considered a field in flat space-time.
A particular choice of a ten-parametric set of

coordinate systems in flat space-time wil1. now be

made. "The null polar coordinate system
(u, r, 8, Q) is defined by (2 u+)r/&2 being ordinary
time, r/W2 being the radial distance in the usual

polar coordinates, and 6), ft) being the usual polar
angles. With this choice of coordinates, u labels
null hypersurfaces (&2u is the usual retarded time
parameter) and r is an affine parameter along the

null geodesics contained in the null hypersurfaces.
In these null polar coordinate systems the tetrad
system will be chosen as follows:

EP
1

(3.3)

a4'0 1 a%0 1 W2

au 2 H' 2T 2T
(3.4a)

(l" is the outward null vector tangent to the hyper-
surface u = const, n" is the inward null vector
which points towards r =0, and m" is tangent to
the sphere ~ = const contained within the hyper-
surface u = const}.

With these choices of coordinate systems and
the tetrad system the linearized equations of
general relativity take the following form:

in the choice of the tetrad system [see Eq. (3.3)]
induces the transformation

Q ~ 'g = e 2'g .
The operators 5 and & * are now defined by

a g a
sq= -(sin&)' —+ . —[(sin&) 'q],

&8 sin& &$

a g, as*q=-(sin&} ' —— . —[(sin&)'n],
a8 sin& aQ

(3 6)

f (v) = '&(8 (j&)e (3.8)

satisfies Eq. (2.13). (The parameters P, = 2v
—Q, 8, Q2 describe the elements of the group SU,
[see Eq. (2.4}].}

The proof of the lemma is contained in a paper
by Carmeli"'" on a group-theoretic approach to
the new conserved quantities in general relativity.

where g is a quantity of spin weight s.
It follows from Eqs. (3.2) and (3.6} that the func-

tions 4„are quantities of spin weight 2-A; and
therefore, by the definition (3.7), the last terms
on the left-hand side of Eqs. (3.4) are well defined.

The relationship between functions of the polar
coordinates (i.e., functions defined on the surface
of a sphere) which are "quantities of spin weight
s" (Eq. 3.6) and functions over the group SU, which
are "quantities of spin weight s" [Eq. (2.13)] is
described in the following lemma:

Lemma. If g(8, P) is a quantity of spin weight

s, i.e. , it satisfies Eq. (3.6), then the function
over the group SU, defined by

aq, 1 ae, 1 W21 1 y +
au 2 aT r ' 2r (3.4b)

IV. THE LINEARIZED EQUATIONS IN TERMS
OF FUNCTIONS OVER THE GROUP SU,

1 a%2 3 v 2—=42+ =&4', - 0,au 2 H' 2x 2r (3.4c) Corresponding to the given field variables 4„
[Eq. (3.4)] let us define the following functions P,:

a+, 184, 2 v2
au 2 K r ' 2r (3.4d) y, (u, r, v) =-4, ,(u, r, 8, y)e "~2, (4.1)

ae, 4 W21 + + + 5++ 0
ay 7

' 2r

ay, 3 v2'+ —+ + —5~4 =0
ay j 2 2r

ae 2 v2' + —4, + =5*42=0,
y ' 2r

ay, 1 W2' + —+, + —&*C,=O.
af f 2I

(3.4e}

(3.4f)

(3.4g)

(3.4h)
(4.2)

S*r)(8 P) =ie' ' ' ' 'Kg(v)

where s =-2, -1,0, 1, 2. The P, are functions of
the coordinates u and r as well as the elements
v of the group SU, . By virtue of the lemma at the
end of Sec. III they are quantities of spin weight s.

It follows from Eqs. (3.7) and (3.8} that if q(8, P)
is a quantity of spin weight s defined over the
sphere and f(v) is the corresponding quantity of
spin weight s defined over the group SU„ then

5 q(8, P) = ie' "'"~2K„f(v ),

The angular differential operator 5 is defined by
its operation on "quantities of spin weight s." A where K, and K are the infinitesimal operators
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1 efI}, 1 .v2' ——y, +i—K, y, =o,
~u 2 Br 2r 2r (4.3a)

of the group SU, [Eq. (2.6)].
Substitution of Eqs. (4.1) and (4.2), with q(8, Q)

=4„(u, r, 8, 4/) and f(v) = P,(u, r, v) in Eqs. (3.6)
yields the linearized equations of general relativity
in terms of the functions Q, over the group SU,
(see Ref. 16):

aa'., 1,- V 2
+ —a', + —[(j —1)(j+2)]" a'-, = 0. (4.5h)r r ™r

The orthogonality property of the functions T,' (v)

[Eq. (2.12)] was used in deriving Eq. (4.5}.
Equations (4.5c), (4.5d), (4.5g), and (4.5h) can

be used to express the a', , a", a', and a" .,

in terms of the ajo .

1 &$0 3 . W2——
ft) +i—K (I} =0

eu 2 r 2r 2r

(4.3b}

(4.3c)

j(j+1) &u
' er

(4.6a)

+i—K P -0 (4 3d)
2 1//2

(j-1)(j+2)

ey, 4'+ =/, +i—& fjt},=0,2r

erat},

3 ~2-'+ —P, +g —E y, =o,H' r ' 2l

(4.3e)

(4.3f)

BH Bj

2

j( j+1) (4.6c)

(4.3g)

.W2'+ —Q, +i—K $,=0.

The functions /}/, (u, r, v} can be expanded in the
matrix elements T', (v) of the irreducible repre-
sentations of the group SU, [Eq. (2.15)]:

(u/, r, v) = Q Q a', (u, r)T', (v).
j=Ist m=-j

Substitution of Eq. (4.4) in Eq. (4.3) yields, by
virtue of Eq. (2.8), the equations for the coeffi-
cients a,' (u, r}:

(4.4)

aa', 1 aa', 1, v 2——a', +=[(j—1)(j+2}]"'a', =0,
gu 2 gr 2r '~ 2r

(4.5a}

1m 1m a/ ~ [ '( 'pl)]&/2a/ -0 (4 5b)
~u ~r r

(4.5c)

8a' 1 8a'-lm -1m a/ ~ [( 1)( 'g2)]&/2a/-1m 2-

= 0, (4.5d}

2
a~~= —

(
.

)(
.

)
Y +4a] . (4.6d)

The equations for the a', are obtained by elim-
inating a', from Eqs. (4.5c) and (4.5g) [or, al-
ternatively, by eliminating a', from Eqs. (4.5b}
and (4.5f)]:

-~~ aom 1-~ ~ aom -. ~aom -- ~aor —pr p
—or +3r

BuN Br H

—3a', „+ j( j+1)a',„=0. (4.7}

Using the commutation relations

Eq. (4.7) can be written in the form

(4.9)

So far the functions a', (u, r3 were considered in
the Robinson-Trautman coordinate system. ' The
transformation to the ordinary polar coordinate
system in flat space-time (f is the ordinary time;
r, 6}, Q are the usual polar coordinates) is given by

l =(2u+r}/W2,
(4.1O)

r =r/i 2.
ca', 4, W2

l fft
+ =a' + =[(j—1)(j+2)] a', „=0,

aa', 3, ~2
+ —a', „+—[j(j+1)]"'a', =0,

8a'
+ =a', + = [j(j+1}]"'a', =0,

(4.5e)

(4.5f)

(4.5g)

Transforming Eq. (4.9) to the ordinary polar co-
ordinate system we obtain

9- 9'-1 .3, + 2 —,+ —j(j + 1) (r'a', ) = 0 .
Bt &t&r 8r r

(4.11)
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V. QUANTIZATION

The field variables to be quantized mill be de-
fined nom as

a' (t, r) = r'a', (t, r) . (5.1)

Because of Eq. (4.11) the a' satisfy the equation

B B B"3, +2 —,+ —j( j+1) 'a'„=0.. Bt2 BtBy By2 y ~ ™ (5.2)

Following Carmeli's notation4 let us define the
Lagrangian density as

Taking the complex conjugate of Eq. (5.2), we
obtain the equation for the complex-conjugate
functions a~~:

B2 B2 B23, +2 —,+ —j( j+1) a'„*=0. (5.3)
L 8$ BtBy By y'

The a', a'*, Il', II'* are now assumed to be
operators, satisfying the canonical equal-time
commutation relations:

[a'.(t, r), ll'. (t, r '}]= [a". (t, r), fl'. *(t, r') ]

= t5"" 5 5(r —r'}, (5.10)

and all the other commutators vanish. 5(r —r'}
in Eq. (5.10}is the one-dimensional 5 function.

The folloming notation will be useful'.

x'= t, x'=y,

x~=Tf~px y P, =Oy 1

(5.11)

(5.12)

(5.13)

mhere the summation convention over v =0, 1 is
assumed in Eq. (5.12) and q„„ is defined as

where

By the usual variational techniques the energy-
momentum stress tensor will be defined in com-
plete analogy with the electromagnetic case by

m m m

j(j+1)
amam y (5.5)

Bg Ba' BZ ba'*
s(sa' /sx„) sx" s(sa'*/sx„) ax'

a dot denotes partial differentiation with respect
to time; the weight factor ~„ is given by The conservation law' s

(5.14}

&u, = 2j( j+1)(2j+1). (5.6)

Equations (5.2) and (5.3}are now obtained as the
Euler-Lagrange equations for the Lagrangian
(5.4):

T„„=O
B

X
(5.15)

follow from the Euler-Lagrange equations (5.7).
Comparison of Eqs. (5.9) and (5.14) yields

TOO (5.16)

g g+—
st sa' srLs(sa' /ar)J sa'„

(5.7)

P„ = T0 dy (5.17)

Defining the integrated quantities P, (v =0, 1) by

-1 3ajg + m
m gal J m

BaC f,j BaH'*= .; =
&

' 3a'„+

(5 8)

and the Hamiltonian density is given by

X= P (11'.a'. +rr'.*a'.*}—Z
Z, m

The canonical momenta conjugate to a' and a'*
will be defined as folloms: and P" (p, =0, 1) by

I'" = q„ I'„ (5.18)

it follows from the commutation relations (5.10}
that

t[P&, a'. ]= sa'. /sx„,
t[P", a'*]= sa'„*/sx

(5.19}

VI. ON THE QUANTIZATION OF THE EXACT (NONLINEAR)

EQUATIONS OF GENERAL RELATIVITY

j,m

-~ O' O'* —-'II' a' —-'Il"a'4'
m m 3 m m

«u, ' Sa' &a" &v, 'j(j+1)
+ ', a' a'*

m m

(5.9}

Can our approach be extended and used to quan-
tize the exact, nonlinearized equations of general
relativity'P In trying to carry out the procedure of
Secs. IV and V for the case of the exact Newman-
Penrose set of equations one confronts the com-
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plexity of the equations. It is unclear, however,
whether the difficulty is one of mathematical
skill, or of a more fundamental nature.

It seems that the nonlinearity of the field equa-
tions is not, in itself, an obstacle to the construc-
tion of commutation relations between field vari-
ables. For example, in the case of the Yang-
Mills theory" (which is nonlinear) several dif-
ferent quantization schemes were proposed by
Arnowitt and Fickler 's Schwinger "DeWitt
Mandelstam, "and Loos, "and consistency condi-
tions were formulated by Fickler and Russo. "
Rylov" has recently proposed a new method of
quantization which enabled him to obtain exact
solutions for a simple case of a nonlinear scalar
field, without using perturbation theory.

One feature of the present quantization procedure
indicates that a generalization to the case of the
exact, nonlinear theory, may be possible. It was
previously argued on general grounds by Halpern
and the present author' that a successful quantiza-
tion program must be carried out within a ten-
parametric set of coordinate systems; i.e., given
the equations of general relativity, a particular
choice of a ten-parametric set of coordinate sys-
tem must be made; only after the equations are
formulated in terms of the chosen coordinates can
they be quantized. The present quantization pro-
cedure is in full accord with this approach: The
(u, r, 8, P) frames used in Secs. III and IV as well
as the polar frames (t, r, 8, Q), used in Secs. IV
and V are, indeed, ten-parametric sets; each is
uniquely determined by a choice of origin (four
parameters) and a choice of a tetrad of unit vec-
tors at the origin (six parameters). The (u, r, 8, P)
frames are easily generalized to the general case
of a Riemannian space-time. In fact, they were

originally defined by Robinson and Trautman' as
well as Newman and Penrose' in a general
Riemannian space-time and then specialized to the
case of flat space-time when the first-order
equations were considered.

APPENDIX

The equations for the functions a', are derived
in Sec. IV for two types of coordinate systems:
the Robinson-Trautman coordinates (u, r, 8, Q) and
the usual polar coordinates (t, r, 8, Q). Let us de-
fine a third kind, a "primed" coordinate system
(a', r', 8, Q) as follows:

u' = (u+ f) jv 2,

r'=r/v 2;
(A1)

(r"a',„)+ „(r"a',„}= 0 . (A2}

It is interesting to note that when the field vari-
ables a' =-y "a', [Eq. (5.1)] are substituted in Eq.
(A2), the equation is formally identical to the one
obtained by Carmeli for the electromagnetic
field' [Eq. (2.21)]. The coordinate u' in Eq. (A2)
is, of course, different from the ordinary time
t in Eq. (2.21).

6) and Q are, again, the usual polar angles. The
physical meaning of the primed coordinate systems
is given by the observation that 2u' is the usual
advanced time and r'=r is the usual radial dis-
tance.

A transformation of Eq. (4.'I) using Eqs. (Al)
yields the equation for the a', in the primed co-
ordinate system:
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The total energy of asymptotically flat, nonsingular gravitational fields is discussed in terms of the
initial data on a spacelike hypersurface. The total energy is a surface integral which we relate to a
volume integral over "sources, " including the contributions of gravitational waves. This relationship
follows from a recent formulation of the initial-value equations of general relativity and is free of
coordinate conditions. We show that time-symmetric initial-data sets form minima of energy among all

initial-data sets on maximal hypersurfaces. Combining this result with a result of Brill, it follows that
every nonsingular, axisymmetric, asymptotically flat spacetime admitting at least one maximal slice has
non-negative total energy. Negative "interaction energy" contributions are described and a discussion of
nonmaximal initial data is given.

I. INTRODUCTION

It is well known that the total energy of an as-
ymptotically flat gravitational field defined on a
spacelike hypersurface has two distinctive fea-
tures: (I) It may always be calculated as an inte-
gral over a two-dimensional surface surrounding
the sources, including among these gravitational
waves; (II} There is, in general, no mell-defined
local expression for gravitational energy density.
These two features are closely related and show
that energy is a global rather than a local property
of a gravitational field. As a result of (I) the en-

ergy of spacetimes with closed spacelike slices
may be defined to vanish identically. %e shall
therefore confine our discussion to nonsingular
asymptotically flat spacetimes.

The initial-value data on a spacelike slice form
Cauchy data for a spacetime, i.e. , define it unique-
ly and completely for some finite time, and there-
fore the energy, which is a constant of the motion,
should be describable in a natural manner purely
in terms of the initial data. This means that we
can limit our attention to a given "state" of the
gravitational field, defined by the initial data on


