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A consistent formulation of current algebra and pion partial conservation of axial-vector current is

given for the kaon nonleptonic weak decays K -2m and K — 3n. . This includes evaluation of kaon cr

terms and AI =1/2 and AI =3/2 contributions to the weak current-current Hamiltonian. A large
meson cr term, o' f, „-2m, apparently is necessary to explain the K, and K, measured decay
parameters. The hyperon nonleptonic decays are then reexamined and also shown to be compatible with

a large value for a«. Implications for the (3,3) chiral-symmetry-breaking model and for octet
dominance of the weak Hamiltonian are then discussed.

I. INTRODUCTION

The amplitudes and slopes of the four K-3'
decays have not been completely understood in

the context of the algebra of currents and the cur-
rent-current model for the nonleptonic Hamilto-
nian, II~. There are now clear indications that H~
must contain 4I = —,

' parts along with the dominant
&I = & contribution, not only in K-3m decays, '
but also in the K&- an decays and K' —w'm' decay
as me11.' ' The problem is more than simply find-
ing a best phenomenological fit to the data; the
very existence of &I = —,

' parts in H+ leads to differ-
ing conclusions depending upon the method of anal-
ysis employed. One of the important results
of this work is that the rapidly-varying-pole meth-
od first used by Weinberg in K„decays ' can con-
sistently and satisfactorily account for the K-2m
and K- 3m decay parameters.

At the same time, and in a seemingly different
context, there is growing evidence that the chiral-
symmetry-breaking o terms are much larger than
first assumed in the (3, 3)-breaking model. ' This
can be seen in low-energy nN scattering, ' ' KX
scattering, '" q'-ymca decay, and in q -3m decays. '
Given this fact, one is obliged to investigate their
consequence in the nonleptonic decays where such
0 terms have been previously ignored. We shall
show that large meson o terms are precisely what

is necessary to account for the 4I = —,
' contributions

to the K-Sm parameters.
These large meson o terms mill also contribute

very little to the seven s-wave hyperon decays
B-8'm, mhich are now well understood without
such corrections. " The B-B'm decays are there-
fore completely described in a manner exactly
analogous with low-energy mN scattering: i.e., as
a sum of current commutator terms, rapidly vary-
ing spin-& baryon and spin--,' decuplet poles cou-

pled with large baryon 0 terms in nX and large
meson o terms (which turn out to contribute in-
significantly to B—B'v).

The nonleptonic meson decays K- 2r and K-3p
will have a parallel expansion as a sum of current
commutator terms and rapidly varying meson
poles coupled with the same large meson 0 terms.
Throughout this paper, we shall stress this rapid-
ly-varying-pole (and nonpole) method.

We emphasize that, along with the postulates
and techniques of current algebra and soft-pion
PCAC (partially conserved axial-vector current),
our only fundamental assumption mill be that the
nonleptonic weak Hamiltonian has the current-cur-
rent structure, H~ (V-4) (V-A), and that the
currents are octet operators, so thatHv(&S =+ 1)
contains only &I = 2 and &I =-', parts (H»&, and

Hw, 3g2)
In Sec. II we gather together the soft-pion and

current-algebra results preliminary to the calcu-
lation of the nonleptonic kaon decays. A brief dis-
cussion of PCAC and of the Cabibbo-Gell-Mann
theorem" is included.

In Sec. III me discuss the ~I = ~ amplitudes for
K,„and K„, and in Sec. IV me include the ~I = -';

effects.
Section V contains an analysis of the combined

K„,K„results. Good agreement is found, pro-
vided the 0 term, o«, has the anomalously large
value of &« =2m„'.

Section VI contains a brief reanalysis of the hy-
peron nonleptonic decays (B-B'n) in light of the
large a«value discovered in Secs. III and IV.
The large value of 0« is found to be consistent
with the data.

Section VII discusses octet enhancement of the

K„,K, „decay amplitudes. This effect is shown
not to be due to the suppression of Hli, „in the op-
erator sense or in the single-particle matrix ele-
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ments, but rather to be due to the large value of
o«. Somewhat similar a,rguments are indicated
for octet enhancement in 8-8'm.

Section VIII contains a resume of the conclusions
of the paper.

Appendix A analyzes the isotopic spin content of
the K, decays, assuaging only &I = ~ and —,

' trans-
formation propel. ties for 8+.

Appendix B contains an analysis of the K„,K, „,
&I = 2 transitions in the multi-soft-pion limits.
This analysis justifies the PCAC assumptions for
the &I = & amplitudes. Unfortunately, the applica-
tion to the ~I =-,' amplitudes shows that the PCAC
smoothness assumption must be extended in this
case.

II. SOFT-PION AND CURRENT-ALGEBRA RESULTS

[A,'(0), Sa'(x) J.. .= —Ia' o(O) P(x),
[A,'(0), o(x)],o, = iSA'(0) 5'(x),

(2a}

(2b)

where, as throughout this article, isospin indices
take the values 1 & i, j, P & 3.

In addition, it is assumed that the strangeness-
changing weak Hamiltonian is of the standard cur-
rent-current form H~ -(V -A} ~ (V -A). When
combined with the current algebra, this leads to
the convenient property relating the axial-vector
to the vector char ges

[0,', Hw] = —[O',H~],
and the soft-pion PCAC formula (f, = 94 MeV)

lim (m'IH~I) = —(([Q',H~][) .
Pi ~0 r

The matrix element for the decay K-n m is de-
fined in terms of the weak Hamiltonian by"

M(z- ~' ") = -&~'(P, ) ~ ~ IH, (0)lz& .
In this expression, there is no intrinsic reason
why the momentum of the kaon should be equal to
the sum of the momenta of the pions; the Harnilto-
nian can be considered as a momentum-carrying
spurion. Indeed, such a "momentum-nonconserv-
ing" approach is useful in defining limits in which
all (or all but one) of the pions are soft It is.to be
understood, of course, that when used as the am-
plitude for a physical process, M must be eval-
uated at the point of "momentum conservation'*:
I =Zp;.

In deriving the soft-pion limits, we have used the
standard SU(2) x SU(2) algebra of currents, sup-
plemented by the 0-term comrnutators derived
from the Gell-Mann-Oakes-Renner (GMOR) mod-
el' of (3, 3)-breaking or the Gell-Mann-Levy o
model 3

In the course of this paper, we will need two
strong-interaction amplitudes which can be ob-
tained through the use of soft-pion limits and cur-
rent algebra. The first of these strong-interac-
tion amplitudes is

- f 2
f"+(p, p, ) oxx (7)

which is just the steinberg amplitude for Km scat-
tering, with the initial w crossed to the final state;
both kaons are on the mass shell. The a,mplitude
in Eq. (7) retains the o term which is usually ne-
glected,

oxx =&xr = «Iol&& . - (8)

In the simplest form of the GMOR model, this
term has the value 0« = ~ m, ', though present in-
dications are that it may be much larger. This
point will be discussed later in this article; for
the present, o«will be treated as a parameter.

The function E(p;, p, ) in Eq. (7) is necessary to
continue the amplitude to the physical region. It
is symmetric in p;, p, ; in order to have the arn-
plitude satisfy the correct soft limit (p„p, -0)
and the Adler consistency condition ( p; -0), we
must have

z(o, o) =I,
J (p, =0, p, ' = m„') = 0 . .

(9a)

(9b)

The two obvious candidates for this function are

I. +(P;,P,)=l-(P +P,')/~. ',

ll. ~(p„p,)=I-(p;+p, )'/~, ',
(IOa)

(lob)

though obviously a linear combination of the two
is possible. It should be noted that both forms
(if applied to the o term in mN scattering) yield

M"(m' —v' n" ~') =, 0"0"[(p, + p„)' rn, '-J+cycl,

(5)

where, as throughout this paper, "cycl" denotes
the other two terms generated by the cyclic per-
mutation of the indices i,j,4. This amplitude is,
of course, the steinberg amplitude for nm scatter-
ing, "with one of the pions crossed to the final
state. The matrix element in Eq. (5) is written
for v' on the mass shell (p, ' = m, '); it obeys the
Adler consistency condition, "and embodies the
o term as found in the (3, 3) model":

o,", -=a, „=(m(o(v) = m„'.
The other strong-interaction amplitude that will

be needed is
~ ijm m

M"(A(y)-ff~'m')=, [2u (P,. -P,)-P,'+P, ']
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the value E(p„p,)o„„=-o„„atthe on-shell Cheng-
Dashen point [p,'= P,' = m„', (P, + P,)' =2~,'].
Though we examine the effect of beth forms in
the ensuing sections of the paper, we prefer form
II for several reasons:

(i) Form I would imply that the soft limit is ob-
tained at the point p, '=0= pj'

Iim M" (K-Kw'w') =—,0»»~'o'-0

rather than the more restrictive soft limit

sf $ j ij
lim M (K-Kw' w~} =-, c»» .

P~,Pj ~0 f.'
(ii} The momentum dependence in form II is

interchangeable in the pion and kaon momenta,
p&+ Pj = k+ k', and the soft-kaon limits then dic-
tate that some dependence on form II is necessary.
In the SU, limit, the exact form of F can be deter-
mined through the use of the soft-pion and the soft-
kaon limits to be 2 E, + 2 E„(where the kaons have
been put back on the mass shell). Unfortunately
in the real world, m~' = 3.3m„' and the power
series expansion in the variable (P& + P&) which
is used to approximate E(p„p~) has a radius of
convergence of 4m, ' (the onset of the ww cut) about
the soft point. Since the region of physical inter-
est lies outside this circle of convergence, we
cannot use the soft-kaon limits to detex mine the
exact form of E, but we can use them to say that
some dependence upon form II is necessary. "

(iii) Our analysis will show that the &I = —,

slope tests rule out form I taken alone. Any lin-
ear combination of forms I and II will increase
the magnitude of o« far beyond the GMOR value
and only serve to emphasize our conclusion.
Therefore we will adopt form II alone.

For the purposes of this paper, we regard PCAC
smoothness as a semiphenomenological hypothesis:
The soft-pion limits are ot primary importance
and are determined by the current algebra, which
we take as a fundamental dynamical postulate. In
its most naive form, PCAC assumes that matrix
elements of, e.g., H~ behave approximately as
constants in the extrapolation from the physical
region to the soft-pion limits.

While this most naive form of PCAC works for
some cases, there are other cases where it is
clearly inconsistent with the soft-pion limits:
e.g. , K,~, K», B-B'm, B-B'y, and the present
case of K,„,K,„. %'hen it is recognized that the
strong interactions tend to be "solved" in terms
of resonances and bound states, however, a more
sophisticated form of PCAC can be postulated:
Once the pole terms have been explicitly extracted,
the remaining "background" contributions to the

matrix elements are approximately constants.
With this form of PCAC, it proves possible in
most cases to satisfy the soft-pion limits; in
addition, good agreement with experimental data
can be obtained. It should be kept in mind that
PCAC is a hypothesis whose major justification is
that it is simple and gives good results.

For the &I = —,
' weak nonleptonic kaon decays,

however, the situation is not so clear. The weak
Hamiltonian lies in an exotic channel, for which
the strong interactions appear not to have been
solved in terms of resonances. Once again, we
find ourselves in a situation in which PCAC
smoothness as enunciated is inconsistent with
the soft-pion limits; furthermore, this is a chan-
nel in which PCAC has not been adequately veri-
fied in other processes. We shall try to enunciate
a "maximal smoothness" form of PCAC for 4I =-,'
in Sec. IV, but clearly in this case the assump-
tions are more vague and less well justified than
in most applications.

Finally, we must mention the Cabibbo-Gell-
Mann theorem, "which is of fundamental. impor-
tance in the kaon nonleptonic decays. This the-
orem states simply that the K-2m CP-conserv-
ing decays are forbidden in the limit of exact SU,
if Hw is of the current-current form. Through the
use of PCAC, this theorem can be extended to
show that alE the decay parameters in Secs. III-V
are zero in the limit of exact SU, .

We do not propose to present any specific theory
of how SU, is broken to give nonzero K,„,K„de-
cay parameters. It is simply assumed that such
breaking does occur, and in the evaluation of all
matrix elements, only SU, is used to relate one
SU, -broken quantity to another. [The single ex-
ception to this occurs in Eq. (V5), where SU, is
used to estimate the ratio of two amplitudes, both
of which are zero in the limit of exact SU, .] It is
possible, however, that SU, is broken in K„ in a
very simple way. It has been shown" that "kine-
matical" SU, breaking of the masses (m» = ISm, ')
in the invariant dynamical K-2n amplitude which
is then combined with SU, Clebsch-Gordan coeffi-
cients in fact voids the Cabibbo-Gell-Mann con-
clusion.

III. Kq„, K3„'. AI=~ AMPLITUDES

It is shown in Appendix A that the data for non-
leptonic kaon decays can easily be separated into

1&I = ~ and 4I =-,' parts, provided there are no con-
tributions to the decays from parts of the weak
Hamiltonian with &I ~ —,'. The data support the
assumption that there are no &I » —,

' contributions,
and in any case our model contains only &I = 2

and —,'; hence it mill prove convenient to consider
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amplitude:

lim M, /, (K- v' »') = ——{n'1[@',H~, /, ][K)

FIG. 1. Rapidly varying K pole in K&„decays.
j./2 Iaf j - i jm mX

(18b)

the two cases separately.
It is convenient to define the fundamental

strength for the nI = & nonleptonic kaon decays
through the matrix element&

i Pc 1
{»IH~, /, IK}= —

~2
I.„,~,

so that

{»'IHg,/, I K~}—I,/, .
A formal soft-pion limit of Eq. (11) yields

{0)H"„,) K& = — vlf, I,„,. (12)

As is well known, the single soft-pion limit for the

X„amplitude depends on the identity of the pion
which is soft. Indeed, this is manifest in the last
term of Eq. (12b), which changes sign under the
interchange of the identity of the two pions.

Following the K,4 anaylsis of %binberg, 4 it is
clear that this rapid variation can be accounted
for by the kaon pole of Fig. 1. %e implement this
model by postulating an unsubtracted dispersion
relation in q', where q=k —P, —p~ is the momen-
tum carried by the weak Hamiltonian (spurion);
clearly at the end of the calculation, we will set
q =0 to find the physical amplitude. Thus

A. E, amplitudes
M1/2(K» +)™2w1/2 2W 1/2 (14)

ln the case of pure nI = 2 transitions, Eg. (4)
yields the following soft-pion limit for the K,

where M is a background term arising from the
continuum contributions. The pole term is readily
found to be

M~'",
/~

—-{0[H~,/2 ~K)M (K(k) 7/' w K(q))/(q -m» )
(15a}

(15b}

i &2L,g
5"

4f,

(16a)

(16b)

When we impose on-mass-shell and momentum

conservation constraints to evaluate the physical
amplitude we find from (14}-(16)

e

Mg/2 (K-&'&') = —— '"~"[1+4I"(0 0,)&»»/~»']

(1"I)

or, in terms of the specific &large a.amplitudes

M'/"'(K'-»'v') =0

where use has been made of the fact that q' = m~'
in the residue of the pole term; the strong-inter-
action amplitude is taken from Eq. (7).

In accordance with the PCAC hypothesis of max-
imal smoothness, we assume that the background
term M is, to a good approximation, a constant.
Hence it can be evaluated through the limit

M„,/2 —— lim [M,/, (K- » v'} ™»,/, ]
P ~ ~0t

B. K3 amplitudes

The traditional parametrization for the am-
plitude and Dalitz-plot slope parameter for the

K,„decays is
abc

(19)

where s; =(k —p;)'; s, is the invariant correspond-
ing to the momentum of the odd pion in the decay;
Sg +S (), + Sc = 3S0 = tBg + 3f8 ~

Since the days of the original current-algebra-
PCAC calculations of the gI =-,' contribution to the

K3 slope and amplitude, ' '0 there have been four

types of approach to the problem;
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A. Momentum -conserving aPProaches. Here
one can neglect the rapid variation of the matrix
element due to the behavior of the pole terms in
the soft-pion limits.

(i) Assuming that M =a+ bs, describes the off-
shell as well as the on-shell amplitude, one can
calculate the slopes and amplitudes in the follow-
ing manner: Equation (4) and Bose statistics show

that limj&, &,M(Kz- jj'jj jj') =0; hence the
Dalitz-plot slope is g ' '=6m, '/m«' =0.47 which
no longer compares favorably with experiment:
g' '=0.60+0.02 (Ref. 1) or g' '=0.73+0.02 (Ref.
21). Taking the momentum of jT' soft in this ma-
trix element gives an amplitude ratio A' 'j
M(K-2jj) which is in reasonable agreement with
experiment. This method cannot be applied to
j}-3jj (Ref. 22) or j}'-j}jjjj (Ref. 9).

(ii) The amplitude in (i) is rather ad hoc and,
perhaps, does not adequately take into account
off-shell effects. One can take a more general
form of the amplitude M = a+ bs, + cp,' + d(p, ' +p, ')
and try to determine the four coefficients from
various soft-pion limits. Unfortunately, the two
soft-pion limits are ambiguous in this momentum-
conserving approach. This method, however, can
be applied to q -3n decays, since the ambiguous
terms vanish identically in this case."

I3. Momentum -nonconservi ng (sPurion) aPProach-
es. Here one must take into account the rapid vari-
ation of the matrix element caused by the presence
of pole terms.

(iii) Explicitly extracting the rapidly varying
pole terms (as in the case of K„above), one eval-
uates the background term, M, through single-

K ~W

FIG. 2. Rapidly varying K and 7( poles in K&, decays.

soft-pion limits. This will be the approach used
in this paper.

(iv) With the same assumptions as in (iii), one
demands that multiple-soft-pion limits also be
satisfied. This approach displays the full implica-
tions of the current algebra and will be outlined
in Appendix B; while it gives consistent results
for ~I = 2, the implementation of PCAC for the
~I = —,

' amplitudes is obscure.
We therefore consider the momentum-noncon-

serving amplitude for the matrix element of the
&I = 2 part of the weak Hamiltonian:

M„.(K- «' «' 2) = -(v' v' 8 lH„'"„,iK(n)&.

Dispersing in the spurion momentum q', we are
led to an expression analogous to the expression
for the case of K„[Eil. (14)]:

M, /2(K —jj jj jr") —M 3„,/2 + M, ,/2 + M3

(20)

where the pole terms correspond to the diagrams
in Fig. 2. The kaon-pole term is evaluated through
Eils. (7) and (11) (with q~ = m«2 in the residue nu-
merator}:

M, „",/, =(jj'
I H «/, iK(q)) M

'
(K(k) —jj' jj"K(q))/(q' —m «') + cycl

,"'f[ie"'+6"7' O'"T'][2k ~ -(pj-pj} pj'+p, ']-4-6j'g'F(p p„}c«}

(21a}

&[2& (P, +P,) -(Pj+P )'] '+cycl.
The pion-pole term is likewise found to be (q' =jjj,' in the residue numerator)

(21b)

M;,",~&, =M "(n"(q)- jj' jjj jj')(jT"(q) iHi«, /, iK}/(q' -m, ')

"' (6"7'[(P;+f,)'-~.']+cyci'f[(f;+p, +p.)'-m. 'i ' .W2 f.„,
(22a)

(22b)

As previously, the basic PCAC hypothesis in the
approach is that the background term, M, is to a
good approximation a constant. Thus we can eval-
uate it in the single soft-pion limit,

M„„,= lim [M„,(K-«' v'a)

The pole terms are given explicitly in Eels. (21b)
and (22b); the soft limit of M, /2 is found by using
Eils. (4), (14), (15b), and (16b); all the momen-
tum-dependent terms cancel, leaving

i/2 (6jj Ta 6jk &i 5ai j}
8f 2

g/f K Pole )l~ ff Pole
3w, 1/2 " 3m, j/2 ] ' (23) Gathering together the information in Eqs. (20)-
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M ""' (K-zz'zz" zz )=6"T SII +6' r'3)I '
1/2 1/2 1/2

glori 7 f gg (j ) (25a)

~ (;) W2Lzi, [sz +4F(p, & p, )o«J
z/2 8f 2 nt '-p2. ' (25b)

In terms of charge states, this gives"

1~2

~ phys
1/2

1/2

M 1/2

(K'- zzo zz'zz') =W23II &3&&, (26a)

(K' —zz' zz'zz ) = &2 (SII ~' + SII ' ) (26b)

(K~- zz' zz- zz') = —W2% z'i", , (26c)

(K,-""")= -W2(3}I~'&+ 3}I '&+ 3}I('))

(26d)

where 1, 2, 3 refer to the first, second, and third

(24} and imposing on-mass-shell and momentum-
conservation constraints, we find the physical
amplitudes

pion written in the argument of the decay ampli-
tude, M, /, .

Rewriting these amplitudes in terms of the con-
ventional amplitudes and slopes of Eq. (19), we
find, of course, the 41= 2 relations:

A. = 3A.+ = —3A ' = ——'A'+
1/2 1/2 1/2 2 1/2

+-0 00+ g ++-g 1/2 g 1/2 g 1/2

(21)

(28)

Hence it will suffice to consider explicitly only
the quantities A,'/'2 and g 1+/, ', the other physical
parameters are then determined by Eqs. (2 I) and
(28).

The fundamental strength Lzi, is eliminated in
favor of experimentally measurable quantities
through Eq. (18b). The form of the amplitude dif-
fers considerably, depending on which form of the
function I' is used to continue the value of the 0
term from the soft limit to the physical region.
Some tedious algebra yields, for the two forms
given in Eqs. (10},

Form I: gz'i2 ——6nz„'(nzzz'+ Sm„' —12cr«) ',
m~2+3m 2 —12v~~

Sf (I '-m ')(I-4o /m ')

Form II: g z+i20 ——6m, '(1 —4zz«/nz, 2)(mzz'+ 3 nz, ' —4zz«mrz/nz, ')-z,
—i (mr'+3m, ' —4zz~~nzr'/m, ')M„,(K, - zz'zz )
3f, (m+2-m, a)[1 —4o«(mr -nz, )/(mz. m„')]

(29a)

(Sob)

C. Comparison with experiment: bI =
q

As is shown in Appendix A, we can extract the
&I = 2 contributions to the slope from the experi-
mental data by

goo+ 0 523+0 023

g " = —0.214 + 0.004,

g' 0= 0.604+0.023,

(32a)

(32b)

(32c)

g+-0 z (g00++ +-0 2 ++-)

Using the experimental values'

one obtains g,'/, ' —-0.52. Use of the more recent
experimental value" of g' 0=0.73+0.02 gives the
higher value, g,'/, '~ 0.56.

I'A&LE I. Comparison of K&~ decay parameters with experiment for various values of Ozz.
Form II for the function F [Eq. (10b)] 11as been used throughout. It should be noted that the
transition from ozz ——0 to cr&& = ~2~ is not a continuous one.2 ~

2
2m% 3m. ' Expt

~ =2 tests

1 (gpoy + g z- () 2gyc. -)

(~ +-[x IO6

~ =2 tests

g 00+ + 2g++-

g 00+ 2g++- 2g+-0

1.9

0.10

0.30

0.60

1.4

0.13

0.20

0.50

1.5

0.12

0.07

0.48

1.6

0.12

-0.20

0.47

1.6

-0.42

0.52 + 0.01

1.92 + 0.02

0.096 + 0.024

-0.256+ 0.052

] p++ —
y +-(}

p+ 0
tI}W+ + 0.17 0.18 0.11 0.008 -0.11 0.190+ 0.025
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We will consider three different possibilities:
(i) Neglect of cr term: o»»=0. In this case,

either Eq. (29a) or Eq. (30a) yields g~+&20 —-0.38.
Thus it is clearly inconsistent to neglect the term
~KK'

(ii) Form I for the function F: In this case, Eq.
(29a) yields g«, '=0.60 for o»»= 2m, ', the naive
GMOR value; values of v«2 ~m, ' are incompatible
w th the experimental slope data.

(iii) Form II for the function E: In this case,
Eq. (30a) yields 0.60& g,'/, '&0.46 for -', m, ' & c«
~ ~ and values of a«s ~rn, ' are definitely ruled
out for this case.

With regard to the amplitude Ay/2 We will
neglect the small 4I = -', contribution to the ampli-
tude for the moment. From the K„decay rate,
we deduce the magnitude"

M, /2(K; —»' » ) =M(K»-»' » )

=+0.79X10 6mK.

Thus, we find that the present scheme yields the
following results in the same three cases as con-
sidered above for the slopes:

(i) Neglect of o term:

I/I" -I = 1.9x 10-';

where Q) = 1y 2y 3.
In analogy with Eq. (11), we define the funda-

mental matrix element for &I = —,
' nonleptonic kaon

decays as"'2'

{»'Ia„„,IK}=—,
' L„,6"',

so that

(34)

do not contribute in the case of &I = —,', and those
pole terms which do appear are not sufficient to
account for the rapid variation that occurs. The
soft-pion limits are not consistent with constant
background terms. Accordingly, we will have to
make several assumptions in this section that go
beyond the usual assumptions of PCAC smooth-
ness.

In analyzing the ~I = —,
' transitions, we employ

the Rarita-Schwinger formalism to describe the
I =-,' weak isotopic spurion. Thus, any ~I =-,' ma-
trix element is to be multiplied from the left by
the vector -spinor isotopic spurion":

1. —,'v2 6~'+ "(1,0)+ W25~ '(0, 1),
(33a)

~ =1: ——,'W26"'-"(0, 1)+ &25" '(1, 0),

(33b)

(ii) Form I for F: Eq. (29b) yields, with o»»
= 2m, ' as implied by the slopes, (» IH~, /, IK~} I.,/, . - (36)

~A.
"-i =1.4x10 -6;

(iii} Form II for F: Eq. (30b) gives

1.4x10-' IA"-I 1.6xlo-'

for ~m, ' ~0«-- ~. The experimental value is
IA" l=(1.92~0.02)xIO '. It is felt that PCAC
often misscales absolute quantities such as am-
plitudes by 10-20% {for example, the Goldberger-
Treiman value of f,), and that therefore, when
all the uncertainties are taken into acccount, the
slope predictions are a more accurate test of our
scheme.

In summary, comparison of our model with the
~I = ~ slope data indicates that 0'«should not be
neglected. Form I of the function E yields accept-
able results only for 0«-—2m, '. Form D yields
acceptable results for 0«~ 2m„'. Detailed re-
sults (for form II) are presented in Table I.

We also note that, due to conservation of iso-
topic spin,

{0IH,"„,IK) =-0. (36)

A formal comparison of Eq. (36) and the soft-pion
limit of Eq. (34) shows that, even at this level,
naive PCAC is badly violated, since L,&, must go
to zero in the soft-pion limit.

A. E2, amplitudes

For the K-2m decay, isotopic-spin symmetry
[i.e., Eq. (36)] does not allow the pole term of
Fig. 1 to contribute to the &I =-,' amplitude. Thus
the analog to Eq. (14) is simply

M~/2(K- »' 7/'} = M», 3/2. (37)

We can, however, no longer assume that the back-
ground term Q is a constant. Explicit calculation
of the soft-pion limit yields"

IV. E,E:Dl=- AMPLITUDES lim M„,/, -=lim M,/, (K —»' »')

As was stated in Sec. II, the ~I = —,
'

amplitudes
present considerably more difficulty than their
&I = & counterparts. Many of the pole terms
which accounted for the rapid variation of the
~I = 2 matrix elements in the soft-pion limits

3/2 (5t~l l8+/6w/ ~l ~6wl ~J)iL
8J,

(38)

Now the background term can be parametrized in
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terms of two functions:

Sc 3/2
—SE QSS 3/2 + (5 'F + 5 T )QSS 3 /2

= ——'M'"'(K-w'w')

3 i L~g2

where ~,'„,~, is the amp 1itude leading to the I
or 2 2w final state. Although Eq. (3$) determines
the value of M &' & to be 5i Ls/2/$f, in the limit
p &

-0, Bose statistics de mand s that at the phys ical
point (Pik =Pjk = m„', k =pj +pj), it is identically
zero . Thus Af

Q 3 /Q is of no immediate interest.
Qn the other hand, M &' ~ is apparent ly also mo-

mentum -dependent; the results of Appendix B
[Eq. (816}] would indicate that Q ~2 & is zero in the
two -soft-pion limit (P„Pj-0). In the absence of
any specific information on the form of the mo-
mentum dependence of this function, we will make
the following assumption:

(a) The value of %2~2 IS/2 at the physical point is
closely approximated by its value in the single-
soft-pion limit. Thus,

M'" = limM~sj(5~i 3 /+5 /s, '}
2 ~,3/~

—
2 ~, 3/2

P~ ~0

8.E3„amph tudes

lake &Sa k(j5ur &jc+ 5wc 7 i) (42)

Through use of identities, one can always recast
the isotopic factors into one of these two forms .

In the K-3m decays, the pole diagrams of Fig. 2
contribute to the &I = —,

' amp 1itude, though the y do
not completely reconcile naive PCAC and the soft-
pion limits . Thus, we find

j ~ E
3/2(ff w } 32,3/2™3 S/2c™32,3/2 '

For the ~I = -,' contribution to the K- 3m decays,
the final sr state can be in either I = 1 or 2 . In the
case of the I = 1 state, the isotopic factors always
occur in the form 5~ 5 ', while for the I = 2 final
state, one always find the combination"

3/2 (52j 7' j +52 / & i) (40)
i L
8

In ter m s of specific charge amplitudes, the on-
shell amplitudes are then

In complete analogy with Eqs. (21} and (22), the
pole terms can be calculated in terms of previous-
1y defined quantities:

ME pck 3/2 ((Iijk + 5jk 5tui 5ik 5wj) [2k, (~ p ) p
2 +p 2]

u

-$5"5"+(p;, Pj) j/EEL/[» (P; +P/) (P j +0,)'] -' + cycl,

M,"pok/. =
2
".' (5"5"HP; +Pj} -jsj.'] + cyci], [(pi +Pj +Pk)' -pjj.'] (4 5)

An important but technical assumption in Eqs. (44)
and (45) is that LS/2 is taken as a constant defined
by Eq . (41); this does not directly contradict the
zero soft-pion limit formally implied by Eq. (36)
since the values of the arguments of L~&, are dif-

ferentt

in the two cases .

As previously, we will attempt to evaluate the
background term through the single -soft-pion lim-
it . In evaluating this limit, we wil 1 maintain mo-
mentum conservation (q —= k -p i -p j -pk = 0) . Thus
we w i11be able to avoid tak ing such unknown q uanti-
ties as N, '„,&~ into account . This procedure yieMs

lim MS „3/2 -=lim [M 3/2 (K w' w w" ) -MS pck/2 MS pkiu/2]-
Pt ~ 0 Pg ~ o

'/'(-4[1+&P(pp)o /m'](5" 5" +5'5'+5" 5')

[Q JQ Z(p p ) o / 2] [(5/k 5jat 5jk 5/w) + (5 jk5ku 5jj 52)] +(Ij/k+ I jkj)].
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As is apparent, we will have to make additional
assumptions. Assuming that M truly behaves as a
background term, we would expect that M is a con-
stant for the physical matrix element; hence we
assume

(b}M„,/, can vary only with P3 [some variation
is demanded by Bose statistics and Eq. (46)].
Then the part ofI that leads to the I =2 37t final
state is proportional to the covariant

I'"(Ij 3-ijjk}+cycl

and not to the covariant

I" (s; —s, ) + cyc1,

which would lead to a nonconstant ~I/I in the physi-

cal region. " With this assumption, the I'" terms
in Eq. (46} disappear on the mass shell. Bose
statistics and the demand that M vary only through
p' also cause the second term in Eq. I'46) to van-
ish on the mass shell. Finally, we make a smooth-
ness assumption similar to (a):

(c) The totally symmetric part of M„,/, [first
term of Eq. (46)J varies little in the single-soft-
pion extrapolation.

Since the calculations are becoming complex,
we simply note that F(P;,Pj) of form I [Eq. (10a)J
is inconsistent with Eq. (58) below; one obtains a
result which is of different sign from the exper-
imental results. Hence, from this point on, we
consider only form II of F [Eq. (10b)]. With this,
we find

PkYr~ ~3/3 1
4 (m» m 3 ) o (6jj 6kw+ 6jk 6iw+ 6ki 6jw8f' 3II E

(47)

Putting everything together, we have

M PkP! (K &c &j &k) 6i j 6kw 5m(k) 6jk 6sw5R {i) + 6ki 6jw 5R(j}
s/2 s/2, & S/2, l. S/2, 1

+ II3/3 3 [I (S; —Sj)+ I (Sj —Sk)+ I (Sk —Si)J, (48)

where the I =1 3m final-state amplitude is given by

(48)

and the I = 2 37t final-state amplitude by

gg
s/2

16f,'(m»' m, 3) '- (50)

M (K+ —jj' jj ) = A3/3 e' 3,

M(K, -ir'ji ) = A, /, e' &&+ —', A3/ke' 3, (52b)

In terms of charge amplitudes, one has

M3/,"'(K'-s'v's') = 3R,"„',+&(s, -s,)II„,„
(51a)

+ 9(s, -s,)5)I,/. . . (51b)

M'""'(K -»'K-K') = 25}I " (5lc)

M 3/3 (Kj- jj v' ji') = 2 [5g 3/3 g + %3/3 3+ %3/3 i]
(5ld)

where 1, 2, 3 refer to the first, second, and third
pion in the argument of Ms/Q.

(52c)

where 0, , are the final state I =0, 2 mw phase
shifts. The problem of comparing the real results
of current-algebra low-energy theorems with the
complex amplitudes yieMed by experiments has
been discussed elsewhere. " We will simply adopt
the usual assumption that the (real} current-alge-
bra results are to be multiplied by the final-state
phase shift factor. Thus we find, comparing Eqs.
(18), (41), and (52},

I.,/
——2 if, A, /3 [1 —4o»K(m»' m3)/(m» ni, k)J-',

(53a)

C. Combined AI =-, -, amplitudes
1 3

I.„, -8if,A„,/-3 . (53b)

Anticipating the fact that form I for F(P;,Ij,) is
ruled out, we gather together the combined ~I = z

and —,
' amplitudes, using form II only [Eq. (10b)].

For K,„, the traditional parametrization is

Using these values, we can write the K„am-
plitudes in the standard form:

. abc
M (K- jj' ji ji') = A' ' 1+,(s, —sp)
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with

A++ = 2A + = A,'g~ (1+68), (54a)

g"' = g i+i,
' jl+6[(10-4o»»/m, ') d -Il]],

(55b)

A.' = —'A~= —pA,'i2 (1 —268), (54b)
g"-=- -,

' g,',-,'(1+6 [(I-4o„/, ') d -a]],
(55c)

g ' 0= g,')20[1+6 [-(11—8o'„»/m 2) 0+2B]),
(55a)

where 6 A,&,/A, &, and where A;~', and g,'~, ' are
given by Eqs. (30) with

2 [m»'+3m, ' —4r»»(2m»' -m ')/m»'][1 -4o»»(m»' -m„')/m»']
3 (56a)

d = -,"[1-4cr»»(m»' -m, ')/(m»'m, ') J / [1 -4o»»/m, '] . (56b)

g ~+ +2g '+ =9d5g i)20

goo+ g. ++- 2g+-0
(57)

= 35g,'(20[(11.—8o»»/m, ) d -28] . (58)

As is noted in Appendix A, Eq; (57) is a measure
of the &I = —,

' transition to the I = 2 Sm final state;
the prediction depends only on assumptions (a) and
(b) above, and is independent of assumption (c).
The right-hand side of Eq. (5V) comes purely from
)ig E pole'"' 3 m, 3/2

On the other hand, Eq. (58) is a measure of the
&I = —,

' transition to the I = 1 sm final state; the
prediction depends on assumptions (a), (b), and
(c) above.

D. Comparison with experiment: hI =
2

The above expressions are exact only to order 5.
The combinations of the slopes that will be need-

ed below are simply expressed as

If one includes the radiative corrections, ' the value
of 5 increases to 0.06. Since we have not estimated
the effects of the radiative corrections in K -Sm
decays, it is perhaps more consistent to neglect
them in the E-2m decays as well. Therefore„we
use Eq. (59) to estimate the strength of the (real)
current-algebra predictions of Eqs. (18), (41),
and (53).

The results for the K,„decay parameters that
measure the L3I= & transition are presented in
Table I. A. word of caution is necessary: Almost
all the quantities listed in the table pass through
a singularity as the value of o« is increased from
0 to & m„'. Hence, the results with 0« = 0 and
a« = —,'rn„' are of the same order of magnitude, but
the transition is not a continuous one. The reason
for this discontinuity is the factor of (1-4o«/m„')
in Eq. (53a).

The quantity

e = 0.044 (59)

for 5, —5, =47'. This compares favorably with the
magnitude extracted from the experimental ratio
of I'(K'- w'w')/I'(E - ww) =(0.152 +0.002) x10
which is essentially independent of 50 —5,:

The first thing to be done is to extract the value
of 5 =A, y, /A, y, from the K„experimental data.
The difference, 50 —5„of the mn phase shifts in
Eq. (52) can be determined either from wN- wwN

and nN- wm4 peripheral collisions or from extrap-
olating the Weinberg mm threshold amplitude up to
& =m~' using singly- and doubly-subtracted dis-
persion relations. 2 In either case the result '~

is 50 52 = 4V at +=m~'. Neglecting radiative cor-
rections, the experimental branching ratio of'
I'(IC»- w'w )/I'(E»- w'w') =2.195+0.029 along with
Eqs. (52) implies

is seen to be in reasonable agreement with experi-
ment for all values of v«quoted. The quantity

F00+ 2@++ — 2g+ -0

is much more sensitive to the value of v«, and
indicates that 0«= 2 pn, ', much larger than the
naive GMOR value of 0'« = &m, '. This slope test
completely rules out form I for the Km amplitude.
Unfortunately, as noted above, this prediction
rests on all three of our assumptions (a), (b), and
(c).

With regard to the amplitudes themselves, there
is only one relation that is a measure of the BI= —,

'
part of the weak nonleptonic Hamiltonian. Ex-
pressed in terms of rates, this is'

1 1(X ww w )-1(Z, -ww w)--
2 P(++ -) @(+—0)

/5|=o.o5. (60)
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where p are phase-space factors that include pion
mass differences, the observed slopes, and the
final-state Coulomb interaction. It should be noted,
however, that corrections as large as 0.1 can be
added to the experimental value of the left-hand
side of Eq. (61), due to uncertainties arising from
mass differences, and from the large slopes. '

V. DISCUSSION OF THE K,K3„RESULIS

In Secs. III and IV we have discussed the non-
leptonic decays of the kaons in terms of the algebra
of currents and of the current-current weak Hamil-
tonian (which implies AI=-,' and —,'only}. The in-
clusion of the o« term in this analysis is not
trivial; in order to make the 0'-term contribution
have the correct Adler zero, it was necessary to
assume a function F [Eq. (10)] to continue the con-
tribution of the a term to the Kw scattering ampli-
tude from the soft point to the physical region.

With regard to the AI=-,' contributions to the K„
parameters: The slope data seem to indicate fairly
unambiguously that one does, indeed, need a a
term o«&-,'m, '. The data on the K,„rates, how-

ever, which are well fitted for a«=0, give an

amplitude which is too low by &5-25/0 for a«
& —,'m, 2. We regard this 20 jq suppression of the
amplitude as an inherent problem of PCAC and the
soft-pion limit —analogous to the suppression of
the Goldberger-Treiman value of f„=86MeV com-
pared with the value found from the Cabibbo form
for m„decay, f„=94 MeV.

With regard to the ~I= & contributions to the K,„
parameters: One combination of the slopes [Eq.
(57)] gives a prediction which depends primarily on

the hypothesis that the background term, M„,~„
is a constant in the physical region; the prediction
agrees well with the data. The other combination
of slopes [Eq. (58)], which depends on a stronger
PCAC smoothness assumption, argues unambigu-
ously for form II for the function F [Eq. (10b)]
and for a value of o'« —2m„'. Final]. y, the one
test on the nI = ~ contribution to the rates [Eq. (61)J

seems to be in agreement with any large value of
o«excePt v« —-2m, '; the estimate of the experi-
mental value of the left-hand side of Eq. (61), how-

ever, is rather uncertain. '~ In view of the approx-
imations used in Sec. IV, moreover, it is not un-
reasonable to assume that a more accurate treat-
ment of the problem would reconcile these last
two pieces of data.

PCAC has been employed throughout as a semi-
phenomenological demand for smoothness in the
e&rapolation from the soft-pion point to the phys-
ical point. This has been interpreted as the postu-
late that, after explicit pole terms have been ex-
tracted, the remaining "background" term is a

I 2
KK 2 Pkl II

2
gq q

= 3yil

c = —1.25,

(63a)

(63b)

(63c)

(63d)

and the quadratic meson mass formula. While Eq.
(63a) agrees well with experiment [and is incor-
porated in the nv scattering amplitude, Eq. (5)],
it is valid in the (3, 3) model, independent of c and
the structure of the meson mass formula. It has
been argued elsewhere, however, that the remain-
ing predictions Eqs. (63b)-(63d) are not so well
verified. In fact, uncertainties in the traditional
(SU, -dependent) methods of determining the pa-
rameter c allow a value of c= —1. Then o« in

Eq. (63b) is increased by a factor of -3 which is
in agreement with our results of Sec. IV (which
are SU, -independent). It is interesting to note
that this change of the value of c also accounts for
the discrepancy between the GMOR determination
of o„'„" and the larger value that seems to be in-
dicated by several independent analyses of the
data. ' '"

VI. NONLEPTONK HYPERON DECAYS
AND 0 TERMS

Having seen that the meson v terms play an

important role in &„and K„decays, we are
obliged to investigate their consequences in the
seven hyperon decays B-B'v. Traditionally one

simply ignores the role of any a term or kaon
pole and proceeds to calculate the s- and P-wave
amplitudes A. and B defined as

M(B- B'w) =id+By,

from the current commutator term M„
= lim, ,M(B- B'v) and the (rapidly varying)
baryon pole term of Fig. 3:

M(B-B'm}=M, +M

—M ~"'(q —0}+)(f

(64)

(65)

constant. For the AI=-,' transitions, this assump-
tion is completely consistent with the soft-pion
limits. For the DI= —,

' transitions, on the other
hand, this simple PCAC assumption proves incon-
sistent with the soft-pion limits, and some varia-
tion has to be included in the background term to
achieve consistency.

Finally, the large value a«= 2m, 2 is clearly
inconsistent with the simplest form of the GMQR
model for chiral symmetry breaking

II' = uo + cu„,

which implies
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FIG. :3. Rapidly varying octet baryon pole in 8 -B'71
decays.

FIG. 4. Rapidly varying K pole in B —B'~ decays.

&nIH,", IZ')=0

2&2
with

dv/fv = -0.9,

h, f~ =110 eV,

(67a)

(67b)

(67c)h„=-1.7 eV,
and d~ +f~ = 1.

Indeed, a small r I= —, part in H~ (H+») of -2%
was even found necessary to improve the fits to
Eq. (65). Furthermore, this procedure also cor-
rectly describes the weak radiative decay Z' -Py
rate and the sign of its measured asymmetry pa-
rameter. " In sum, all of the (two-body) weak
hyperon nonleptonic decays are now completely
understood in terms of current algebra and there
is little room to incorporate any o-term contribu-
tions which have thus far been neglected.

On the other hand, from the standpoint of the
present work, we see no reason to ignore the
rapidly varying K' pole term of Fig. 4 which is
the baryon analog of Fig. 1 and corresponds to
the o-term amplitude [which contributes to the
s-wave amplitude 4 in Eq. (64)]:

M'(8-8'r) = Lif (Bff —8 v)-(0I Hw~„ Iff )/mr

In a recent paper, it was shown that one must also
separate out the rapidly varying decuplet poles
from M in order that the theoretical fits to the
data agree with experiment. " One then finds that
H~ - 4 J = (V -.4) (V -A) obeys

(66a}

L„,(I -4o„,/m, -')
'

=0.77&&10 'm„, (72)

we infer from Eq. {11}that

I &0IH."„,IH')
I
=0.42f, m, 'x io-' for o„=-,'m„-'.

= 0.06f, m r'x 10 ' for o~r = 2m, '.

Combining Eq. (71) with Eq. (73) and fr = 120 MeV,
our estimate of Eq. (68) is

I.V (8- 8'v)1-0.04x10 " f» o~, = 2m, ',

-0.02x10 for a+~-—2m

{74a)

We have taken the q, ' = 0 limit along with the required
q&=0 limit in order to avoid setting the baryon
masses me and me equal. Equations (6S) and

(70) lead to the soft amplitudes

I f,f.;Lf(aKo- 8'v)
I

—-1O MeV for c = -1.25,

(71a)

-30 Me V for c = -1.0
(71b)

for all B, B' except 0„"'z. which vanishes, as does
the entire Z'-nn+ s-wave amplitude. We shall
therefore use Eq. (71) to estimate the strong low-
energy amplitude in Eq. (68).

In order to complete the estimate of Eq. (68),
we must rely upon our K, „, ~ I=

& amplitude, Eq.
(53a). Since

We must regard Eq. (68) as a rapidly varying
part of M in Eq. (65). In this case M'(~'- 8'v)
is the strong meson-baryon amplitude evaluated
at q'=m~' which obeys

lim frf, M "(BK -8'v)=-oe ~

which must be added to the other s-wave contri-
butions in Eq. (65). The actual magnitude of the
s-wave amplitudes is of the order of 0.3&&10 ',
and it is clear that neither value of o«destroys
the previous good fits to the data.

where, in the (3, 3) model, VII. THE SIGNIFICANCE OF OCTET DOMINANCE

o,",,'= — (W2+c)&8'Iu oI 8').
2/3

(70) Finally we return to the original current-current
form for H~, and try to understand the meaning of
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the resulting octet dominance of the &,„, K„,
and B-B'm amplitudes. In the operator sense,
the Cabibbo current-current Hamiltonian contains
equally large &J= 2 and &I= & contributions to
H+ and so one usually assumes that dynamics
somehow enhances the octet part of H+, Recently,
Pagels and co-workers" have discovered the dy-
namical octet enhancement mechanism for the
semistrong mass-breaking Hamiltonian Hs„but
the extension to H~ (Ref. 32) leads to dynamical
inconsistencies" and to fitted parameters not in
agreement with the data [Eqs. (66) and (67)].

Another dynamical procedure is to saturate
H+ -J J with intermediate single particle and
resonance states and sandwich the result betmeen
single particle baryon or meson states. Updating
the experimental parameters used in Ref. 34 which
occur in &B'I Z Zl B& leads to precisely" the fitted
parameters, Eq. (67). Unfortunately, the same
procedure applied to &al J.Jiff& involves too many
undetermined parameters and does not lead to a
convincing explanation for the octet dominance of
&~ I H, I

ff'& (R«. 36).
On the other hand, our discussion in the last

section shows that the preferred value of v«
=2m, ' suppresses the strength of &xl H~, I, Iff&

by a factor of 7 relative to & a
I Hw, ;)2lf~&:

It is difficult to dram any conclusion about octet
dominance of H+ from the hyperon decays. The
large values f~-10, d~- —9 in Eqs. (67) obscure
the "raw strength" of the baryon matrix elements
of the octet part of H+. However, there is no
obvious contradiction with the conclusion drawn
above.

%e therefore conclude that H+ is not somehom
octet-dominated in the operator or single-particle
matrix-element sense. Bather, H+ „is almost
as large as H+„as the ordinary Cabibbo current-
current form would indicate; the dynamical values
of o'rr = 2m

'
and f~ = 10 in effect suppress H~, ,

for the three-body matrix elements of &., and
B-B'm.

UIII. CONCLUSION

It has proved possible to give a consistent de-
scription of the &„and &,„decays through the
Cabibbo current-current Hamiltonian, using low-
energy theorems and an extended version of
PCAC. %e have employed the rapidly varying
pole method in all cases. In so doing, we have
found clear indications that it is necessary to
include the effects of the cr terms in order to
achieve reasonable agreement with the experi-
mental data.

One of the predictions of our work [Eq. (58)]
implies that

(75a}

where we have used Eqs. (53), (59), and o= 2m, '
to evaluate the right-hand side of Eq. (75a}. This
result is unaltered if me use standard SU, argu-
ments to rewrite Eq. (75a,) in terms of matrix
elements of the 8 and 27 pieces of the Cabibbo
current-current Hamiltonian:

&x'IH, ,„IZ,& 9f.„,yL,„, (75b)

This result is satisfying in that it does not imply
the octet dominance of H+ in the operator sense,
consistent with the discussion above. In conjunc-
tion with Eq. (75b), however, the Cabibbo-Gell-
Mann theorem" should be remembered: In the
limit of exact SU„all the kaon matrix elements
of this paper are identical. ly zero. The %igner-
Eckart theorem for SU, has been used in deriving
Eq. (75b), basically to compare the relative
strength of I= ,' and —,

' in &elH~„Iff-'). Hence, we
have assumed that the SU, Wigner-Eckart theorem
gives reasonably good results for the ratio, even
though the reduced matrix elements are essential-
ly SU,-broken. "

~Y QW

K ~ K
~(T

FIG. 5. Pole terms contributing to Eq. (B7).

= ~(v 2 c+)&KI&2u, +u„l &ff

has the anomalously 1.arge value of a«= 2m, -'.

This interesting result reinforces recent specula-
tion that o terms have values larger than one
would expect from the simplest form of the GMQR

(3, 3) model.
The hyperon nonleptonic decays have also been

reanalyzed by including the kaon pole (Fig. 5}
which has previously been neglected. Once again,
comparison with the data, indicates that a large
a« term is compatible with the data,

A conclusion of this work is the possibility that
octet dominance is not to be understood in terms
of the vanishing of the 27 piece of the current-
current Hamiltonian in the operator sense, no~
in the suppression of single-particle matrix ele-
ments of H+ „with respect to H~„. Rather, the
enhancement of &vv I H~, I ff& is due to the large
value of (Tgg.
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No&e added iu Proof I.t has been pointed out to
us that B. Holstein [Phys. Hev. 163, 1228 (l969)]
has also attempted to find the ~I = 2 amplitude in

&2„and &3 by following the rapidly varying pole
technique originally advocated by one of us
(P.C.M. ). Our treatment differs from of Holstein
because we demand that the nonpole background
amplitude, M, be constant, at least in the physical
region. Furthermore, Holstein's choice of the
function I is 2E&+—2'F&I.
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APPENDIX A

In analyzing the experimental data for &„, it
is frequently useful to separate explicitly the dif-
ferent contributions to the four charge modes of

the decay. "
We assume that there are no contributions to the

decay from a weak Hamiltonian with & I~ —,. This

seems to be verified from the data, and is implied

by the current-current model used in this paper.
With this assumption, we can write the amplitudes
(neglecting any higher order momentum depen-
dence)

M(K' -w'm'w') =a"'+b"'y+a"'+b"'y+c'"y&

M(K'-m'v m ) = 2a"'- b"'y+2a"'- b'"y+c" y,
(Al)

M{K r'1r 7r') = -a"2 —5"'y ~2a" 2

M(K, —~'~'~') = -3a"'+6a"-,

where v = (s, —s,)/(2m „'-), as defined in Eq. (19).
In these equations, a"' and b"' are constants
that arise from the &I= 2 piece of the weak Hamil-
tonian; a3/2 and b"' arise from the &I= —,

' contri-
bution to the I=1 3~ final state; c"' describes the
~I= & contribution to the I= 2 3r final state.

Assuming that the &I= 2 contributions are much

larger than the C I= 2 contributions (a"', b»'
» a"', 5"', c"') one can derive, to lowest order in
a"', 5"', c' ' the following:

b"- c"- a"'
M(K -mww ) —a 1+ „, I+y „, 1+ „,+

a a 5 5 a

a3/- 1 y 1/2

M(K' —w'x'm )=2@"' 1+ „, 1 ——ya 2 a

b3/ C 3/2 a3/2

a 1/2

a3/2 yl/2 g3/2 3/2

M(K~-m'rr n')=-a»' 1 —2 „, 1+y „, 1 —2», +2

a3/2
M(Kg 7f 7 r )= 30

'

1 2

In terms of the parametrization of Eq. (19), we

see that the experimental values of the slopes can
be combined to yield the following information on

the 4I= 2 weak interaction:

fected in terms of the amplitudes themselves, as
in Eq. (61).

51/2

a"' ' (A3)

APPENDIX B

c 3/2

g +2g =2
a

(A4)

Finally, to isolate the &I= 23 weak contribution
to the I=1 Sm final state, the combination is

pl/2 y3/2 3/2

g 2g++ 2g = 6»g yg2»g (A5)a - 5 a

It is clear that a similar separation can be ef-

To isolate the information on the 4I= —,
' weak inter-

action that leads to the I= 2 Sn final state, the

following combination is relevant:

It is the purpose of this appendix to show that,
in the case of the LV= 2 transitions, the interplay
of pole terms, constant background terms M, and
multi-soft-pion limits yields an intricate but con-
sistent picture of K„and K„decays.

Given the assumptions of current algebra (ex-
tended to the a term), the current-current Hamil-
tonian and the soft-pion limits [Eqs. (2)-(4)], one
can use standard T product identities to derive the
following soft-pion limits":

lim ( '(H, () = —. ()[Q', H, ][),
P.~o )II
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&

' 'IH. I& =-2f, &l([q', [q', H. ]].[qj, [q', H. ]]]l&
P PP. 0 wi j

lim d~xe'~Pi P&~'" T Pi —P) V' x H~ 0 )
f(( P. , P j pg

l

lim d~xe'{Pi'P~)" T(g x H~ Q )
P(.P j p

(82)

lim &jj'jjjjj'IH I& =-
4 .{»"p" +35"5"+»"5")&i[q',H)v]l&

Pi PPg PPg, 0
Iv 4f 3

« , &II.[q', [q', [q', H. ]]]+ [q', [q', [q', H. 1]].[q', [q', [q', H. ]]].[q', tq', [q', H. ]]UI&

Z~ i) 2

p,. -p&) V' x Q', B~ ) +cycl
P(IPj Pj) p

gi)
+—3 linl

P; Pj.PP P

'xe'(P('Pj'*&I T(o(x)[q, Hp'1)l& +cycl. (83)

In the last equation, the first two terms appear
unsymmetric in the indices i, j, 4; when taken to-
gether, however, the resulting matrix element is
symmetric. In Eqs. (82) and (83), the terms in
which the limit has not yet been taken are either
singular in the limit or have a value which de-
pends on the path taken to the limiting point.

In Sec. II we demonstrated that [Eq. (16)]

(84)

Now it will be demonstrated that the PCAC as-
sumption that the background term M is a con-
stant is consistent with the two-soft-pion limit,

llm
Pi PPy O

lim [M„,(K- jj'jjj) —Mr@(„";,]. (85)
Pi PPf 0

The kaon-pole term is given explicitly in Eq. (15),
so it only remains to calculate from Eq. (82)

)'m lf (Ic ) L y
)'Ill J4 8 '" '*(()IT((P, -I;) )"(*)a, „.(D))I@

+—,5 ' lim
Z

f)) P(, Pj p

d4xe'(P( "j"&OI T(o(x)H~ „,(0)) I K& . (86)

The second term in this expression can be calculated by extracting from the one- and three-body inter-
mediate states the pole term which corresponds to the Feynman diagram in Fig. 5(a}; all other contribu-
tions to this matrix element go smoothly to zero in the limit P, , p, -0. Thus

I v 2 f,f.„,T) 2k-P( —Pj)„
(P —P )" J4'* '"""(()14'(&„'() , „,4a))14(()')) =-(); —P;, )" 2

'4 "*,', ' " o(jl.
j 774 x

Similarly the last term of Eq. (86) can be calculated by extracting the pole term of Fig. 5(b):

J
—&if.arel. „,d4xe'(P('Pj) "(OI T((j(x)H~ „,(0)) IK(k)&= (, 2+c+o(p),
pj +pj) — p(+pj)'

where C is a possible constant term. When Eqs. (86), (87), and (88) are substituted into Eq. (85}, all the
apparently singular (orill-defined} terms exactly cancel against similar terms in M„P'z, , leaving
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(89}
is 2, i

Comparing Eqs. (84}and (89), we see that M
differs from a constant by momentum-dependent
terms which give rise to C, and which depend on

the detailed dynamics of the weak and strong in-
teractions. Rather than abandon the PCAC as-
sumption that M is essentially a constant, we

could make either of two different (though not un-

related} assumptions:
(i) C is zero or small for dynamical reasons;
(ii) M evaluated at the single-soft-pion limit

involves the smallest extrapolation to the physical
value, and the momentum-dependent terms in M
that give rise to C are small on the mass shell.
These assumptions are rather similar to those
made in the vastly more complex case of 4I=& in

Sec. IV.

K ~K~7T

K ~7T~ 7T

FIG. 6. Pole terms contributing to Eqs. {B12).

For the case of K„, we have already derived
the one-soft-pion limit of M„„,in Eq. (24). For
the two-soft-pion limit

lim M,„~,
P. , P Oi' j

lim [M„,(K- )('v'v ) —M ~'" —M ~" ]
Pi Py~o

(810)

we use Eq. (83) to find

&2K„,
(i ))(„,(rc ' '~') =-,"*()""~, )'m fd'*e" "i"(w')I )'((), -p) )"(x)H„, „,(0)) IIr)

Pi rP)~0 3f 2
sP( 0

io"
&jm d xe'~ i'&'"

m T oxH~, f, 0) Kj.
f)( p( ti o

(811)

In exactly the same manner as before, the pole terms of Fig. 6 are isolated to give

()' -)))"j '&~'"'""(&'l )'()"„(*)((,, „,(0))l((()'))

i~&L „2T'&'(2h - p( - pJ )„1W21.„,e" T (2p„-p, -p, )„-
(P, P} (i, p p). . .

2 (p p p), , ~,O(P), (812.)

i
J

d '~ e'~""i) *(s'] r(o(x)ff, „,(0))[Z(f )}

~&L,(,&'&gr 1 &2L,(,m. 'r'

where C' is a new constant term that cannot be ruled out a priori Equations .(Bll) and (812}are to be sub-

stituted into Eq. (810}to find

lim M = ' (l}'~7 +5~ r' 5+v')+ 5'~rC'
fl(

(813)

which differs from the single-soft-pion limit [Eq. (24)] only by the term proportional to C'.
Finally, the three-soft-pion limit can be arrived at, using Eq. (83) to find

lim
Pi.Pg Pa-0

(ff v* v' 2-) = I.-(~* '~r~"+"'+ a" ")i ' 3~2 i ' 0 'k i Ai

i~"'+, lim (f'xe' (' ~''*(0~ T((p, -p, ) ~ V'(x) [Q', H)((,&,])~K}+cycl
fl Pi, P~, Pg, ~0

ig+, lim d~xe'~ i+ ~' " 0IT & x Q H~, iy2 IK +cycl.
Pi, P. ,Pf, ~Q

(814)

Evaluating the last two terms by Eqs. (87) and (88), we proceed in the usual way to fin(i
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v2 Li~a C
+3%,l/2 6f 2 3f 3

i'

x(6ii Ta+()j~ Ti+6ki T j)

(815)

In short, we have found that it would be totally
consistent with the soft-pion limits to assume that

R„,~2 and Q3, i/g are constants, if it were not for
the unknown constants C and C' which arise in
conjunction with the 0 field. It is difficult, a
priori, to say anything concerning the value of
these terms; we can, however, make the assump-
tion that these terms contribute little to the on-

mass-shell value of K
With regard to the ~I =-,' transitions: The case

is very complex since it is quite apparent that
there must be large variation in the background
terms. For instance, isospin conservation [Eq.
(36)], the lack of a pole term [Eq. (37)], and Eq.
(83) immediately show

(816)lim %2„3g2 =0.
t.&) 0

A careful consideration, moreover, of the multi-
soft-pion limits for 4I= —,

' only leads to a large
number of relations among a number of unknown

functions, and it has so far proved impossible to
solve these equations with any reasonable ansatz.
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