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The pionization process in high-energy collisions is considered in a constituent-fluid model. The fluid
picture describes the macroscopic behavior of the hadronic matter under expansion before the formation
of physical pions. The constituent picture provides the microscopic basis for the fluid description.
Assuming that the hadronic matter is a highly degenerate fermion system, the density and temperature
variations during the expansion phase are derived. The single-particle inclusive distribution is shown to

be scale-invariant and constant in rapidity.

1. INTRODUCTION

For hadronic collisions at very high energies,
the multiperipheral model® and the diffractive
model® have each been successful in describing
certain aspects of the experimental data, but
neither provides any significant insight on the in-
ternal structure of the hadrons. The parton model,*
on the other hand, does make a specific assertion
about the constitution of the hadronic matter, but
the recent data on e*¢” annihilation® have cast some
doubt on the validity of the details of the model.

If Bjorken scaling® breaks down at larger values
of @%, it is not clear what aspects of the parton
model can still be salvaged. Landau’s hydrody-
namical model,® as revived recently by Carruthers
and Minh Duong-Van,” is remarkably successful in
fitting a variety of experimental data, and should
be taken seriously as a preliminary but realistic
description of the high-energy phenomena.

The model that we shall discuss in this paper is
similar in spirit to the hydrodynamical model,
although in detail quite different. The main points
of our model to be emphasized are the following.
First, the fluid description of a macroscopic sys-
tem should have a statistical basis at the micro-
scopic level. Second, we regard a hadron as being
made up of many constituents with essentially in-
finite degrees of freedom. Third, we envisage
that the gross features of the hadronic interactions
as revealed by high-energy experiments are deter-
mined mainly by the statistics that the constituents
satisfy, rather than by the nature of the detailed
dynamics governing the interaction between the
constituents.

We do not pretend to know what the constituents
are, let alone their interaction. If they are the
same as Feynman’s partons,® then we should call
them partons. However, if the usual properties
associated with them as described in the canonical
parton model (such as their quarklike nature) turn
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out to be wrong, it does not invalidate our model
here, since our discussion is independent of those
properties. Thus, to be free from any prejudices,
let them be referred to simply as constituents for
now.

The process which we shall consider exclusively
here is the pionization process common to all ha-
dronic collisions. We associate this production
process with the bulk of the constituent matter.
The leading-particle behavior, on the other hand,
retains the memory of the quantum numbers of the
initial particles, and should therefore be associ-
ated, not so much with the bulk, but with the tags,
which for example may be the valence quarks,®
and which usually carry large momenta. In this
paper we shall say nothing about the leading-
particle behavior.

We regard pionization and diffraction excitation®
as two extreme situations corresponding to small
and large impact parameters, respectively. In the
case of large impact parameter, the two initial
particles barely overlap at the instant of collision;
they emerge from the peripheral configuration in
excited states while retaining all the initial quantum
numbers. The description of the excitation pro-
cess in the constituent fluid picture is a problem
that remains to be studied. On the other hand, for
small impact parameter, the collision is violent
and more interaction takes place between the con-
stituents of the two incident particles. Indeed, we
regard the central collision as forming one big
fireball, a hot fluid which expands in the longitudi-
nal direction; when the local mass density be-
comes low enough, breakup occurs and pions
emerge from the fluid. The aim of this paper is
to provide a description of this process both in
the macroscopic and in the microscopic pictures.

Our specific goal will be to obtain the single-
particle inclusive distribution of the produced
pions. This is a modest objective. The signifi-
cance, we hope, lies in the demonstration of the
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meaningfulness of the concept that the gross
features (at least the pion spectrum) of particle
production can be understood in terms of the
statistical aspects of the hadronic constituents
without the reliance on any knowledge of the dy-
namics of the interaction among the constituents.
However, we anticipate that the two-particle cor-
relation and the transverse-momentum distribution
will reveal more about the details of the statistics
(such as the correlation length in coordinate space)
or even about the nature of the constituent inter-
actions themselves. In that respect this paper
may be regarded as setting the language for more
detailed studies later.

II. THE MODEL

For simplicity we consider here only the case of
zero impact parameter and ignore any transverse
motion. We describe first the physical picture of
the production process and then its statistical
basis.

A. Macroscopic picture

We regard the hadrons as extended objects,
which are Lorentz-contracted into thin disks as
they impinge upon each other at high momentum.
As they coalesce at zero impact parameter, the
initial kinetic energy is partly converted into the
creation of hadronic matter and partly into the in-
ternal energy of that matter. The hypothesis is
that the creation of constituents takes place entire-
ly during this initial phase of the collision process,
and not later. We have then a disk of high-density,
high-“temperature” hadronic matter at some in-
itial time. The details of this formation phase will
not concern us in the following.

As time develops, the disk expands longitudinally
in accordance to relativistic fluid mechanics.®
The leading edges of the fluid move out at relativ-
istic velocities with the space in between filled
continuously with hadronic matter. During this
phase of expansion no hadronic constituents are
created. Local density and temperature, defined
by appropriate averages over some reasonable
spatial extension within the expanding cylindrical
volume, decrease with local time.

When the local mass density in its proper frame
is lowered to the value corresponding to that of a
free pion, that section of the fluid breaks off and
a pion is produced. Since different parts of the
fluid move at different velocities, the mass den-
sity is not uniform, so the breakup process
occurs at different times for different parts of
the cylinder. Moreover, because of Lorentz con-
traction different slices of the cylinder that break
off have different thicknesses. Evidently, the
single-particle inclusive distribution for the pion-

ization process depends on how the local velocity
varies with the longitudinal distance.

B. Microscopic picture

We hypothesize that a hadron consists of many
constituents. The number of constituents is not
Lorentz-invariant because virtual pair production
and annihilation cause fluctuation in that number,
and the lifetime in those virtual states depends on
the frame that they are described in.* During the
initial formation phase of the collision process
many pairs of constituents are created. In the
c.m. frame they move out longitudinally at high
velocities, v=1, during the expansion phase.
Owing to time dilation the virtual states are al-
most real, so it is a good approximation to regard
the number of constituents as being fixed during
the expansion phase if we stay in the c.m. system.
The only exception is for those that are slow in
the ¢.m. system, i.e., Feynman’s “wee” region.®
We shall, however, ignore their perturbation,
since they contribute only to an infinitesimal frac-
tion of the total number of constituents. What the
total number is need not be specified, so long as
they are numerous enough to render statistical
considerations meaningful.

It is also unnecessary to specify at this stage
the sizes of the constituents, their masses, and
their quantum numbers. Since our immediate
objective is to describe, in the constituent fluid
picture, the pionization process common to all
high-energy hadronic collisions, we shall ignore
the whereabouts of the few “valence quarks” that
tag the initial particles; thus, we shall not attempt
to say anything about the leading particles in this
paper.

For a free pion that is produced, one can define
a momentum distribution function f(k) to describe
the probability of finding a corstituent in the pion
with momentum 2,. Before the breakup process
that produces that pion, those constituents belong
to a certain slab in the fluid moving longitudinally
in a definite relation to its neighbors, viz. faster
than the fluid closer to the center of mass but
slower than the fluid farther from the center.
Continuity of the fluid ensures a smooth dependence
of the constituent density on the average position
and velocity of any slab. Let the average position
of a slab of fluid be denoted by a 4-vector x,. We
then define F(x, k) to be the number density of the
constituents in that slab located¢at X, with momen-
ta (of the constituents) between k and k + dk. At
breakup F(x, k) for the pion at x, becomes pro-
portional to f(k). Our hypothesis is that there
exists a function F(x, k) which interpolates between
the macroscopic properties of the fluid in the vari-
ables x, and the microscopic properties of con-
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stituents in the variables &,.
We define the flux vector S, (x) by

S,(x) = [ k,F(x,k)dw , 1)

where dw = d*k/k,. Clearly, S, has the meaning of
the average number density of constituents at Xys
and S; the flux density. Contact with the macro-
scopic description of the fluid is made via the
energy-momentum tensor which is defined by

Ty0) = [ Bk, F(x, k)o . @)

Since the number of constituents are conserved
during the expansion phase, as we have argued,
and since energy-momentum must also be con-
served, we have the continuity equations

3,5¢=0, 3)
8,TH" = 0. (4)

They restrict the possible forms that F(x, k) can
have, a subject to be discussed in Sec. V.

We have defined the function F(x, £) in the c.m.
system. Its meaning in the proper frame of a
slab centered at x; is hard to make precise be-
cause the number of real constituents is frame-
dependent. However, the energy-momentum tensor
T,, given in (2) has a well-defined meaning in any
frame according to the usual theory of relativistic
fluid mechanics.® Since we know how k, trans-
forms, we may therefore regard (2) as a definition
of the scalar function F(x, k). When evaluated in
the proper frame, we can interpret it as being the
number density of real and virtual constituents in
that frame such that when used in

Ty, = [ Kk FG, R, 5)

where the primes denote proper frame, it gives the
correct energy-momentum tensor which is unam-
biguously defined in that frame. We shall have no
need to use (1) in the proper frame.

III. RELATIVISTIC FLUID MECHANICS

For later usage we collect here some of the
basic equations of relativistic fluid mechanics.®
In the proper frame of an elementary volume of
a fluid, the tensor T'*" is

T100 = P, Tu'i = pau s (6)

where p is the internal energy density of the fluid
(or, equivalently, the mass density of the hadronic
matter in our problem), and P is the pressure.

In a general frame, which we take in our present
problem to be the over-all c.m. system, and in
which the elementary volume of fluid moves at an

average velocity v in the longitudinal (z) direction,
the energy-momentum tensor becomes

THY = (p+ P)v# ¥ - Pgh?, (1)

where v* = (1,0,0, v)y, andy = (1 = 0#)" V2,
There are two equations derivable from (7) that
are particularly useful to us. They are

T _ T3 = o (8)
and

T® + T3 1+ 92
T03 v

(9)

Evidently, if we are given F(x, k), we can calcu-
late from T"” the average velocity of any portion
of the fluid and the associated proper density of
the hadronic matter.

IV. CONNECTION WITH OBSERVATION

We must now establish an important link be-
tween the macroscopic picture of the fluid and the
observables accessible to experiments, before we
discuss the microscopic behavior of the constit-
uents. First, let us consider the momentum of a
pion detected in an inclusive experiment. It comes
from a slice of the cylinder of the fluid of thick-
ness R/y, when the proper density p is equal to
the free-pion density p, ~ m,R™3. Here, R is the
pion diameter, m, its mass, and y the Lorentz
factor. The associated momentum (hereafter,
always in the c.m. system) is

p=mgvy. (10)

In terms of the energy-momentum tensor, we have
first in the proper frame

m, = TIOORS
= T"Aq?,, (11)

where Ac’Y = (R3,0,0,0), and then in the c.m.
frame

P =T"a0,, (12)

where Ao, is related to Ao, by a Lorentz trans-
formation. Indeed, the total energy-momentum of
the whole system is

Pt = fT‘”’do,,, (13)

where the integration extends over the entire body
of the fluid along some spacelike surface. This is
to be compared with the energy-momentum sum
rule of the inclusive distribution:

d3
P dpﬁ'df*p. (14)

For the sake of simplicity let us ignore here-
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after the transverse motion and consider only
one space and one time dimension. Then, from
(13) and (14) we can identify

°dN=T"do, (15)

where dN stands for the number of pions detected,
corresponding to the breakup of a certain portion
of the hadronic fluid signified by do,. This is in-
clusive, since we do not question what happens to
the remainder of the fluid. Let us call that por-
tion of the fluid under consideration a cell.

Let the longitudinal dimension of the cell in its
proper frame be 6z’, so that

"o 62')
do (0 .

Then in the c.m. frame, where the cell moves with
an average velocity v, we have

a5 ) a®

where 6z =6z’ and 8¢ = v6z. It then follows from
(15) that

PPAN = (T = vT°%)6z . 17)

Here 6z is an interval defined for a fixed time ¢
in the c.m. system. Define the rapidity variable y
in the usual way so that

AN _ pdN
dy ap
and we obtain, using (8) at breakup,

dN
—_— = . 1
& dp=p,bz (18)

In the unit R = 1, we have dp = p,y3dv, whence

dN _ bz 19
dy y¥dv’ (19)

Now, dv is the difference in velocities between
the leading and the trailing edges of the cell,
whose average velocity is v. However, 6z is not
the length of the cell in the c.m. system, as can

be seen in Fig. 1. The distance between the bound-

aries of the cell at a fixed time ¢ is dz, which
differs from 8z by

6z —dz = vbt = v36z;
consequently,
bz =y%dz. (20)

Using this in (19) we obtain finally

&G @

This equation relates the observable on the left-
hand side to the expansion characteristics of the
fluid on the right-hand side. What we need to know
next is how the velocity v(z,¢) depends on z for
fixed t. It is evident from (2) and (9) that vis an
average quantity, to be determined by appropriate
integrations over the momenta of the constituents.
Note, however, that (21) is a general result inde-
pendent of the details of the microscopic picture.

V. THE DISTRIBUTION FUNCTION

The distribution F is a scalar function that de-
pends on the vectors &, and x,. It describes the
momentum distribution of the constituents in a
volume element centered at x,. It could, in
principle, depend also on dx, /dr, where 2= x* Xy
higher-order derivatives, and other possible
vector quantities in the problem. We shall, how-
ever, at this point consider just the simple case
where F is a function of k2, and x, only. Then the
only scalars that can be constructed out of 2, and
X, areT, w?= k“kp, the constituent mass, and
k,x*, upon which F depends.

The world line of a cell of the fluid may not be
straight in the Minkowski space. That is, if x*
=(t,z) refers to the center of the cell, and if we
define

dz

v=(—1t—,

F4

u =7 N

it is not necessary that v=u. In other words, the
proper frame (or v frame) of the cell does not nec-
essarily coincide with what we shall call the «
frame, reached by a Lorentz transformation by a

FIG. 1. Minkowski diagram showing the world lines of
the two faces of a cell moving at v and v + dv. The
primes denote variables in the proper frame of the cell.
The length AB at fixed ¢ is dz, while AC is é6z.
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velocity # from the c.m. system. Let us use a
double prime to label the variables in the # frame,
SO

X" =(1,0), 1= (yx*)2,

kY 1 -u\(k
"= 0 )= (¢]
k (k”) Yu <_u 1) <k ) bl
Yu = (1 _uz)-llz .

Now, if F(x, k) depends on k, only through the
variable k,x", as we have assumed, then in terms
of the u-frame variables it depends only on k; 7
for a cell at x,. Consequently, F is an even func-
tion of k”, and one expects the average momentum
of the cell in the u frame to vanish, whatever form
F may take. That implies v = u.

More precisely, we calculate v using (9). From
(2) we have

T 4 T33=f (ko2 + K2)F (k+ %, 7 )dw

=yﬁf[(k{,’ +uk")? + (ukl + k"))

d n
x F(k! 7, 7) %K
ko
1 + uz ” ” " dk”
=1 f(k°2+ R T, TV g
A similar consideration gives
dkll
T03 = u f (kllz + kuz)F(knT T)
1 - u2 0 0 ’ kg

Substitution into (9) yields v = u.

The result v = z/t implies that the world lines
are straight, as for free particles. It is a con-
sequence of our assumption that F depends on &,
through k,x* only. In general, v need not be equal
tou. However, since most pions detected in high-
energy inclusive experiments are relativistic, the
only exceptions being the ones in the wee region,?
most cells of the hadronic fluid are near the light
cone where v=u is very nearly exact. Hence,
our assumption about F is quite reasonable for an
overwhelming majority of the detected pions at
high energy. It is in accord with the argument
which we used earlier (due originally to Feynman®)
that in the c.m. frame the fast-moving constituents
behave as if they are free.

From v=z/t we immediately get

vy 1 1
az),—t—y'r’

which when substituted into (21) yields

dN
=T

dy " To» (22)

where 7, is the proper time that the cell takes from
formation to breakup.'® Note that (22) has no ex-
plicit dependence on v. Thus, if 7, is the same for
all cells of the fluid, then the pion distribution is
constant in rapidity.

We remark that if F(x, k) has a different depen-
dence on &, than what we have assumed, we would
still have v~u~1 for all cells of interest, but
dv/du need not be 1. We expect that dv/du would
still exist in the limit of #~1, and that its value is
of O(1). If that is true, then (22) is still correct
except for a numerical multiplicative factor. To
illustrate this point, consider Landau’s hydro-
dynamical model®” in which

2 _ 1
1-02
l+u

Y

zl-u;

consequently, for u-1,

(av _dv 1

'52), T tdu "4t

The result thus differs from (22) by only a multi-
plicative factor of 4.

We now assert that as a consequence of F(x, k)
being a function of x,k* and 7 only, the breakup
time 7, is universal, i.e., independent of the loca-
tion or velocity of any cell. This can be seen by
noting that in the proper frame (labeled by a prime)
or the u frame, we have k,x" = kj7. It then follows
from (5) and (6) that p is a function of 7 only.

When p(7,) = p,, the mass density of a free pion,
breakup occurs; consequently, 7, is universal.

We therefore obtain the result from (22) that the
single-particle distribution is constant in rapidity,
which is, of course, in agreement with the experi-
mental data on pionization.

It is remarkable that the very simple assumption
that F(x, k) depends only on the two vectors x, and
k, is sufficient to lead us to the flat rapidity
plateau in the fluid picture for pionization. How-
ever, we still need a concrete description of
F(x, k), which contains all the general properties
we imposed, viz., (3) and (4), and which deter-
mines explicitly p(1) as a function 7 so that we
can follow the development of the expansion phase
of the fluid until breakup. It should be stated from
the outset that we have no a priori knowledge of
F(x,k) until a dynamical theory of the constituents
becomes available. For the moment we can only
adopt the inductive approach in the hope that some
simplifying assumption can help us to catch a
glimpse of the ultimate microscopic theory re-
vealing some aspects of its essence.

We have assumed that F(x, #) depends on k,
through k,x* only. Let us now further assume
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that its dependence on k,x* and T can be expressed
in terms of one scalar variable £, defined by

t=kyxtg(r). (23)

This assumption is made not just for simplicity’s
sake; it is also sensible in that it is the generaliza-
tion of €/kT in nonrelativistic statistical mechan-
ics, since {—~k}7g(7) in the proper frame of the
cell at x,. Thus g(r) gives a measure of the local
temperature T that changes with proper time.

With the assumption that F({) is a function of ¢
only, we now make use of the continuity equations
(3) and (4) and deduce the constraints on F(g).

(@) aus" =0. From (1) we have

a3
8,5" = fk“ a—f—,,—F'(g)dw -0,

where
ey - GF (&)
F'(0)= =35,
a_g-k (k- )f&.d_g
axh | wEFRTX) T

If we define an average over F’(g) by

(¢")= Jo F e (24)
JF (dw’
then by substitution we obtain
-3 dg _ B1
375
-8 dT <§2> 1) (25)
where p? =k k". Integration yields
T2 2
dar
-2(1) = 2f -2 26
g ( ) “’ A <§2> +go b ( )

where g, = g(0) is a constant. It is clear from (23)
and (24) that (¢®) can at most be a function of 7 only.
(b)9,TH#" =0. From (2) we have

2 d
f<u2g+£?—d—f—>k"F’(§) aw =0.

Multiplying by x, yields

3 d
(e 5 %) @an - o,

which implies on account of (25)
€= - 27

A sufficient condition for this to be satisfied is
that F’(¢) is a sharply peaked function of .

VI. FERMI-DIRAC STATISTICS

In order to introduce the notion of temperature
in the present context, we need some contact with

nonrelativistic statistics where temperature is
well defined. It is not absolutely necessary for us
to discuss temperature if we do not relate the
breakup process to some critical temperature.

We have, in fact, defined breakup to occur when
the mass density p is equal to the density p, of free
pions. However, to calculate p we must know
F(x,k), which is intimately related to the tempera-
ture variation. It suggests that we could just as
well have defined the breakup process in terms of
T reaching a critical temperature. Indeed, to
interpret the pionization process as a phase transi-
tion is an interesting speculation.

It is by now widely accepted from electropro-
duction experiments that the hadronic constituents
have spin 3; this property probably survives even
if the details of the parton model® do not.* We
assume that their spin is %; hence, they satisfy
the Fermi-Dirac statistics. It has been our hope
that the gross features of hadronic interaction do
not depend so much upon the nature of the inter-
action between the constituents as on their statis-
tics. Thus, instead of speculating on the basic
interaction, we conjecture that we are dealing with
a highly degenerate fermion system. As in the case
of a low-temperature, high-density electron gas,
many properties of such a system are determined
mainly by the states near the Fermi energy. Let
us therefore consider the very naive but interest-
ing and soluble model in which F(x, k) is given by

F,

——— 0
Fe) exp(f -gy)+1 7

(28)
where F, and {, are constants. This distribution
has the following attributes. If ¢, is large compared
to unity, F(¢) is very sharply cut off at £=¢, (in

a scale normalized by £,), so that F’ () is sharply
peaked at £,. We therefore have ({") ~ ¢,", which
satisfies (27). Thus the necessary condition for
the conservation of energy-momentum tensor is
satisfied to a high degree of approximation in a
rather simple way. It is not hard to see that by
restricting £ to a small neighborhood near ¢, the
constraint 3,7"" =0 becomes equivalent to 3,5 =0.
The latter implies through (26)

g = (—‘;1) L2 (29)

Apart from some unspecified parameters, the
function F(x, k) is now completely determined.

The other attribute of (28) obviously is that in
the proper frame of a cell it reduces to the fam-
iliar form of the Fermi-Dirac distribution

F,

Frple) = exp| B(€ - €) [+1 (30)



2266 RUDOLPH C. HWA 10

where € is the kinetic energy, € the Fermi en-
ergy, and B=1/kT, k being the Boltzmann constant
and 7' the temperature. If we substitute for ¢ in
(28) its form in the proper frame, ¢ =k;7g, and
then compare the result with (30), we can make
the following identifications:

ko M+ €’ (31)

Tg:By €O=B(€F+ U-)-

We have thus obtained the important equation re-
lating the temperature to the parameters of the
fluid; in particular, because of (29), we have the
time dependence

o5 &) -G T @

As we have already mentioned, in order that
(28) may satisfy at least approximately the con-
straint imposed by (27), ¢, should be large; it
should in particular-be large compared to the min-
imum value of ¢ corresponding to k' =0, i.e., ¢,
>>¢ .= uB. It then follows that the first term in the
square bracket in (32) is negligible, so we may
write

T(7)=(kgT) ™, (33)

to the extent that (28) may be regarded as being
consistent with the continuity equations. Thus the
temperature decreases as the fluid expands ac-
cording to a remarkably simple inverse-power
dependence on 7 until it reaches a critical tempera-
ture T, characteristic of a free pion. The formula
should be regarded as meaningless after breakup.

The divergence of T as 7-0 is merely a reflec-
tion of the fact that if we let the expansion phase of
the fluid go backward in time, the fluid would even-
tually become infinitely dense and hot. In reality,
of course, the finite size of the system at the
beginning of the expansion phase precludes the
applicability of (33) from arbitrarily small values
of 7. We shall return to this point later. We note
that the condition {,>>upB implies further that
g(7), as expressed in (29), changes very little
from g,. Thus, the breakup time 7, is long
enough for the temperature and density to decrease
to their critical values, but is short enough to
keep g essentially constant.

Because T is a function of the proper time 7 only,
independent of the cell location, and since at a
fixed ¢ in the c.m. system large |z| corresponds
to smaller 7, the leading edges of the expanding
fluid are hotter than the center. Hence, breakup
occurs in the center first.

The criterion for breakup is p(7)=p,. Using (5)
and (6) and approximating (28) by

F(¢)=Fo6(¢ - uB)6(L, - £),

we obtain

p(1)= Fo(le'k,',+ u2ln M)
Ko/ rg=tym

=Fop*{a(e? - 1)"2+In[ a+(a® - 1)'2]},

where a={,/up. Using again the condition a>>1,
we have approximately

p(T):Fo[ ZOKT(T)]Z- (34)

The mass (or energy) density is therefore propor-
tional to T2 in contrast to the case of black-body
radiation (< 7%) as assumed in Landau’s hydro-
dynamical model.®*” Because of (33) we see that
p(7) varies as an inverse-square power of 7,

p(T)=p £ (To/T)3, (35)

independent of the location and velocity of the cell.
Regarding the Fermi energy, we note first that
the condition ¢,>> ppB, applied to (31), implies

€r(7) =£oKT (1)
zgo/gof- (36)

Since {,>>1, we see that kT <<€y, It should come
as no surprise that we recover the condition for

a highly degenerate system. Moreover, we note
that €, decreases with 7 in the same way that T
does. That €, should decrease as a cell expands is
reasonable, since the eigenenergies associated with
the normal modes in the cell also decrease.! That
the degree of degeneracy remains unchanged is a
consequence of our assumption that ¢, is a constant.
To the extent that there exists a critical tempera-
ture T, at which the fluid breaks up and produces a
pion having mass density p,, we can define a cor-
responding Fermi energy € for free pions by
means of (36):

6; = §0KT1r-

It is a parameter characteristic of a free pion in-
dependent of the mode of production. In terms of
it the breakup time is

To=L0o/8o€F- (37)

So far we have not discussed the dependence on
s, the square of the c.m. energy. The form (28)
for F(¢) has no explicit s dependence. We now
argue that g, should furthermore be independent
of s, so F(£) has no implicit dependence on s
either through {. We have already discussed in
connection with (33) that there is an initial 7; cor-
responding to an initial temperature T; at the be-
ginning of the expansion phase. It is related to the
initial volume of the fluid. The longitudinal dimen-
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sion of the initial volume is approximately R/v,
due to the Lorentz contraction of the incident
particles by the factor y;. If we regard the
(straight) world lines of all constituents to extrap-
olate back to the tip of the light cone where 7=0,
then the initial longitudinal dimension of R/y; im-
plies that 7; is proportional to y; ~!. Since

y; Vs, we have 7, < s”!2, On the other hand,

T; should be proportional to the total c.m. energy
available; hence, by (33) we obtain the result that
8o should be independent of s.

The constancy of g, implies by virtue of (37)
that 7, is indeed a universal constant, not only in-
dependent of the locations and velocities of the
cells, but also independent of the incident energy.
It then follows from (22) that the height of dN/dy
is s-independent. It is remarkable that all the ex-
perimental features of the single-particle distri-
bution can be deduced from the simple form that
we have chosen for F(x, k).

Stodolsky'? has argued that the height of the cen-
tral plateau is a measure of the strength of strong
coupling. It is of order unity. We have seen that
the height is 7, in the unit where the pion diameter
R is set equal to 1. Since 7, is a universal constant
in our model, but is expected on physical grounds
to be shorter (longer) if the interaction between
the constituents is weaker (stronger), we support
the interpretation of Stodolsky.

VII. CONCLUSION

The constituent-fluid model that we have de-
scribed involves three different levels of consider-
ation. The general fluid consideration relates the
single-particle distribution to the velocity gradient
of the fluid. The constituency aspect of the fluid
then relates the velocity gradient to a characteris-
tic (breakup) time of the hadronic matter. Finally,
the statistical consideration of the fermion system
provides a concrete solution to the hydrodynamical
equations, giving not only the time dependences
of density and temperature variations of the ex-
panding fluid, but also the scale invariance of the
single-particle spectrum.

This model differs from Landau’s hydrodynami-
cal model in almost every aspect except the com-

mon usage of the continuity equation for T, during
the expansion phase. Landau treats a massless
boson system whose equation of state corresponds
to that of black-body radiation (p <7*). By taking
the transverse motion into account, a Gaussian
distribution in rapidity is obtained for the single-
particle spectrum, which is not scale-invariant.
Our consideration of the pionization process has,
on the other hand, led to a flat spectrum; more-
over, by regarding the hadronic matter as a highly
degenerate fermion system, we have obtained the
relation pxT?,

Turning to a comparison with the parton model,
it must be said that our model relies heavily on
the physical picture that Feynman originally en-
visaged about the hadron constituents. However,
the reasoning for the pionization process is quite
different. By incorporating the fluid picture as a
macroscopic manifestation of the constituent dy -
namics, we can discuss pionization without en-
countering the difficult question of how a parton
turns into a hadron. The embarrassing question
of why the constituents are not seen remains a
problem. Although preliminary and simple minded,
our statistical consideration of the fermion system
has nevertheless shed some light on the hydro-
dynamical properties of the hadronic fluid.

The most interesting aspect of our fluid picture
is the possibility of relating the momentum of a de-
tected particle to the position and velocity of a
portion of the fluid. In this paper we have shown
that the single-particle distribution is inversely
proportional to the velocity gradient. We envisage
that the momentum correlation of two detected
particles can be related to the position correlation
of the fluid and consequently the range of inter-
action of the constituents. The implication of this
model on large-momentum-transfer processes and
lepton-induced reactions are all interesting prob-
lems that remain to be investigated.
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