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It is shown that for each exclusive model satisfying a multiperipheral principle, there is an inclusive

model satisfying a multiperipheral principle which predicts the same values for all exclusive and

inclusive differential cross sections. The converse statement is also true. The relation between these

models is thus one to one; we give formal expression for the transformation between one model and

the other. These expressions have the form of the nonrelativistic Lippmann-Schwinger equation. The

proof is given first for multi-Regge models having poles and cuts as the J-plane singularities. It is then

generalized to models with multiparticle thresholds. The physical origin of such thresholds is discussed.

Also treated are the further generalizations of the proof to models having N quantum number channels

and to models having any general multiperipheral structure.

I. INTRODUCTION

The multiperipheral model (MPM) first proposed
by Amati, Bertocchi, Fubini, Stanghellini, and
Tonin (ABFST)' has been an important source of
insight into multiparticle dynamics. It provided a
theoretical basis for a qualitative understanding
of early cosmic-ray observations of large multi-
plicities, small average transverse momentum,
leading-particle effects, and approximate inde-
pendence of particle production. ' These observa-
tions have since been confirmed by accelerator
experiments. ' The original MPM has been sim-
plified (such as the Chew-Pignotti multi-Regge
model}' and modernized (see Chew, Rogers, and

Snider, ' and more recently Dash' ).
A substantial advance in our understanding of

the dynamics of many-particle reactions was made

by the introduction of the notion of scaling for in-
clusive processes. ' It is notable that this scaling
is predicted by the MPM. ' Mueller, ' in an attempt
to obtain the sealing predictions in a more general
framework than the MPM, showed that inclusive
processes can be obtained as discontinuities of
forward n namplit-udes (generalized optical
theorem}. Thus inclusive processes measure in-
formation directly about an amplitude, and de-
mand as much interest in themselves as a single
exclusive process.

In exhibiting sealing, Mueller assumed that the
(discontinuities of the) n —n amplitudes had a
leading Begge behavior. In practice, this assump-
tion is difficult to implement unless some simple
rule relates the n-particle inclusive cross section
to the (n —1}-particle cross section. In exclusive
multiperipheral models, a rule exists and can be
stated generally as: The 0(Z, 2) partial-uave pro-
jections of the cross sections satisfy finite recu, r-

sion relations. We shall call this rule the multipe-
ripheralprinciple (MPP). The recursions are such
that when satisfied by exclusive cross sections, the
O(2, 1) projection of the total cross section satis-
fies a Fredholm integral equation. The intuitive
consequence of the MPP is that the projection of
the n-particle cross section is simply the nth
power of some kernel. We nevertheless mean to
include the ABFST model, as well as all subse-
quent MPM's, within this general principle. In
particular it should be noted that we include those
MPM's which attempt to describe both the large
and small subenergy behavior of the cross section.
The MPP is then a constraint not only on the
leading J-plane singularities, but also on the sec-
ondaries (daughters, background integral, etc. ).

We now propose to extend the MPP to the discon-
tinuities of the n -n amplitudes considered by

Mueller. Such models, which we define as in-
clusive multiperipheral models, will necessari1y
lead to Feynman scaling. As with exclusive
MPM's, the factorized O(2, 1) structure for in-
clusive MPM's is assumed to hold not only for
the l,eading trajectory, but also for the 8aughter
trajectories. The models considered are extended
to apply over all of phase space. Formally the
O(2, 1) projection of the elastic cross section in
the inclusive MPM satisfies a Fredholm integral
equation. The simplest examples are those in
which the projection of the n-particle inclusive
cross section is just the nth power of some in-
clusive kernel. Of course more complicated mod-
els are included as well, such as all versions of
so-called Mueller-Hegge models (MRM's), '0 and

all models of this type defined by integral equa-
tions. " In what follows, we shall at times loosely
refer to all inclusive MPM's as MBM's.
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Having now formulated the MPP, we ean be
more precise about the exact connections which
exist between inclusive and exclusive models
which satisfy the multiperipheral principle. We
show in this paper that for each exclusive model
satisfying the MPP, there is an inclusive model
satisfying the MPP predicting the same values
for all exclusive and inclusive differential cross
sections. The converse statement is also true.
Thus whether one formulates a multiperipheral
model for exclusive or for inclusive amplitudes
is purely a matter of convenience. In particular,
Mueller's original proof of scaling can be inter-
preted as a MPM proof.

It should be noted that this equivalence has been
suspected for a long time. ' To our knowledge,
the first explicit demonstrations of equivalence
were given for certain specific models in Ref. 11,
and for a general class of &-channel Chew-Pig-
notti models in Ref. 13. In this paper we have
generalized the demonstration to include any
class of models satisfying the MPP.

In Sec. II we discuss the general one-channel
problem; that is, the ease where there is one
input trajectory a (t) in the exclusive picture.
We start from the MPM and explicitly calculate
the equivalent MRM. The process is then re-
versed; it is proven that the connection of MRM

to MPM, and MPM to MRM is governed by the
same unitary transformation. The general multi-
channel problem where there are several trajec-
tories simply requires the addition of matrix
indices, and the treatment of Pinsky, Snider, and
Thomas" (PST} can be incorporated here directly.
Therefore, any standard multiperipheral model
which had a finite recursion relation can be treat-
ed by the method of Sec. II, The method also
applies to all models of the Chew-Pignotti type
and all ABFST models where the elastic ampli-
tude is saturated by Begge exchanges (which is
almost always the case}. As an example we treat
the recent model of Webber and Green. " In See.
III, we consider models that do not have simple
8-plane propagators. Such models arise, for
example, when thresholds are included. " The
physical motivation for such models is discussed
in some detail and it is shown that all models of
this general class obey the same equivalence as
the simpler model of Sec. II. The method of Sec.
III also applies in principle to general ABFST-
type models. Section IV discusses such general-
izations.

II. MULTI-REGGE MODELS

Consider a multi-Hegge model for the e-particle
exclusive cross section, i.e. ,

g(so„„(s))=
0 1 1 1

tl dttt+ tDd(tl) g t(t )
(tlt t2}g t(t ) g t(t )

Db(tn+ 1) t (2.1)

where 2 implies Laplace transform (J'-plane par-
tial-wave projection),

D(t) is the square of the end vertex in the multi-
peripheral chain, G(t„ t, ) is the square of the
center vertex of the chain, and the jP;&'s are the
invariant momentum transfers along the chain.
The Toiler-angle dependence has already been
integrated out, i.e.,"

where F(Z) = 5(t —t')/[8- L(t)]. In this operator
formulation, all the algebraic manipulations of
PST go through unchanged. However, for corn-
pleteness, we will repeat them again in the pres-
ent context. First we construct a generating
function

DF J zGF J "D

(2.2) 1
F(Z)-' —zG

(2.4)

and we have one trajectory being exchanged along
the chain.

If we now change [4 —l(t)] ' to I)(t —t')[J- /(t)] '

and introduce a fictitious integration over t', we
can cast this equation for Z(so„„(s))in the follow-
ing operator form:

Q(Z} = Q (z —I)"&„(8),
n=0

(2.5)

This generating function can also be constructed
starting from the MRM, in particular:

Z(sc„„(s))= Q„(Z)

=DF(J)[GF(J)]"Dt (2.3)

P„(Z) = Z(so„'(s)). (2.6}

&x„'"'(s) is the inclusive n-particie cross section.



Its Laplace transform can be written as follows
in the MBM, where we have explicitly taken into
account poles and cuts:

To ensure the reality of (2.7) we write complex
conjugate on the left (6*), and assume I' is
Hermitian, I"(A „A., ) * = I'(X„X,}. The sum extends
over the poles at A. ;, i=1, . . . , +, while the integral
extends over the cuts. Again, we can cast this
into an operator form by introducing a 6 function,
5(A, A') and an additional sum-integral over P. '.
The notation 5(X, A') implies

&&Or —I}G[E(J) ' —G] '~"D. (2.10)

This formula for Q(J) almost has the form re-
quired by (2.5) and (2.9), except that the operator
[F(Z) ' —G] ' which should correspond to 4(Z) is
not, in general, diagonal. The problem, there-
fore, is to diagonalize [E(Z) ' —G] ' in a way that
will not introduce J dependence elsewhere in the
expression for P„; that is, we must find an in-
vertible and, as it turns out, unitary operator
which is independent of 4 such that

(2.11}

Then the equivalence is complete and

(2.12)

I5, ~ for poles,
5t, A. , h'j =;

I 5(X —X') for cuts.

Now we introduce the diagonal operator

5(/I. , / ')
(2.8)

A. Transformation from MPM~MRM by 5

Now we turn to the search for S. Formally 8
is the solution of the following integral equation:

[F(d) ' —G]S=S4(,/}-'.

and P„(/) becomes

P„(J)= a*4(J)[I'4(J)]"&. (2.9)

Our explicit demonstration of equivalence now

involves casting (2.4) in the form of (2.5), with

P„(J) having the form (2.9): The on/y Zdependence
occ tel s 2&z /hc df ggong/ oP8tQ/0 J' 4(J).

Now from Eq. (2.4), we obtain

%hen writing out the operators explicitly, it is
convenient to introduce a matrix notation, which
separates the continuous and discrete channels.
Therefore, S(t, A) will be a row vector since in
the exclusive channel which corresponds to the
variable t„we assume only a cut, while in A. there
may be poles in addition to the cut. In A. , the poles
will be the upper entries. In an obvious and con-
venient notation, we express (2.13) as

d/'/&(/ —/'}[J-/(/') J-G(l„/'))(s(/', x, ), s(l', x})= P s(l, /, ), d&'s(/, x'} (d- ~,.)5,,
0

=((J- x,)s(t, X,), (4- x)s(/, z)). (2.14)

(2.15}

We see that the 4 dependence of (2.13) drops out, so that S satisfies a J-independent integral equation,
which of course ensures that 5 is J-independent:

dl'G(l, l') [s(l', x, ), s(l', ~)]= [(x, —/)s(l, z, ), (x —/)s{/, x)].

%e have changed variables from t to L and ab-
sorbed the Jacobian in t". It is important to note
that this is not a Fredholm equation, so that
completeness and orthonormality are not guaran-
teed for S(L, A. ) considered for different X as func-
tions of /. We assume that G(/, l'} is square inte-
grable and symmetric, and can therefore be ex-
panded in terms of a complete orthonormal set of
functions for which G is the kernel":

s(l )
/I'(/)&y&

x, —L
(2.17)

Substituting (2.1'/) into Eq. (2.15), we find the
following condition on the location of the discrete

where g(i) is a vector of the eigenfunctions and E
is the diagonal matrix of the eigenvalues. When-
ever G is real, g(/) will be real; for simplicity we
assume G real in what follows.

The solution of (2.15}that corresponds to dis-
crete values of ~ has the following form:
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eigenvalues (poles):

[I-f(&(+']y( = 0

where f(A) is the operator

(2.18}

For i=j, this is

sf(~()
y jv gy, —$ (2.22)

The ic prescription used to define f(A.) for & real
and less than l, will turn out to be important in
order to prove the completeness of S(l, &) [(l.v.
(2.52} below)). The location of the poles is de-
termined by the (generally infinite-dimensional)
determinant equation

det[I- f(X)E)=0. (2.19)

The y; can be determined up to a normalization
by standard eigenfunction techniques. The normal-
ization is fixed by orthonormaiity of S(l, l(.). That
is,

d)S ), A. ;)S I,, X)

.E „, g(f)g'(&)
P. , —f)(z, —t)

(2.20)

This condition fixes the normalization of y&.

The solution corresponding to the continuous
spectrum or cut is

S(&, ~)= . +b(~)5(~- f},
X —L+sr

(2.23}

where we define the integrals for A. and / real
using the ie prescription. Substituting (2.23) into
Eq. (2.15) we see that the 5 function only con-
tributes if X & l, = l(0). Therefore, we only have a
cut for X& /, . Then

f (X)Zy(X}+g(X)b(X) = y(X) . (2.24)

Since y(A) and b(X) are free functions, this can
clearly be satisfied for any ~ ~ 1„ that is to say,
there is a continuous spectrum or a cut in X from
-~ to /, . The orthonormality condition on S(l, X)

along with (2.24) determines y(X) and b(A. ); i.e. ,

For i j, this is

i@f(4)-f(~()
@ (2.21)

f~c

dl S (l, P.)S(l) )(.') = 5(X —P ') .

Hence,

(2.25)

(2.26)

Usi~ (2.24) for b(A)g(X), it is easy to show that
the left-hand side of (2.26} reduces to

l b(&)l'5(& —X'); we take therefore b(X) =1, yield-
ing the following e(luatton for y(x):

[f-f(&}E]y(&)=g(&) .

B. Transformation from MRM~MPM by S~

(2.27)

Let us calculate the single-particle inclusive
density from the MPM, assuming that the inverse
exists and is equal to S~:

(" ')=l, ' lh(y(") '('))(y ~(z, )l
(y'(~) )

y "(~,)Ey(~,') y'(~, )Ey(~') t 2.30)

~ ~

~

y'(x)zy(x, ') y "(x}zy(x') )
The end coupling has not yet been specified but it
is usually taken as follows in this type of model:

D(f) =g(f)'5.

J',(J) =D"SS [F(J) ' —G] 'SS GSS

&[E(J) ' —G] 'SS D

=D SC(j)S GS4(Z)S D.

Now

(2.28) ~(X,) =y(~, )'5,

and to the cut they are

a(Z) = y(Z)'5.

(2.32)

(2.33)

Therefore, the end couplings to the pole in the
inclusive amplitude are

(2.29)

Therefore the central Mueller-Regge coupling has
the form

For example in the case where G(l, /') is separa-
ble, there will be one pole at A. = A., and a cut
starting at /, . Therefore the single-particle in-
clusive cross section integrated over I', ' is
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do'
= —r y (X,)e ' "' '+ d&ly(&)l'e& "i' 'i&" & y'(g )e&'x'"i'& "0+

dewily(y

}l2 ~~i+r/»&' 6
F 2- 0

j. «oo «oo

(2.34)

Similarly, the total cross section is given by

o, = —„y2P,)e""0+ d~l y(h) l""" . (2.35)0
«oo

I

We see that this almost has the required form
(2.4); however, it still must be diagonalized in
a Z-independent way. From (2.12}and (2.13)

These inclusive processes display all the expected
properties.

Let us now reverse our procedure, start with
the MHM, and find the MPM. From (2.5) and
(2.9), we see that the generating function is

C(g} '+ I"=S [E(Z) '-G+G]S
=S'F(d}-'S,

so that S must satisfy

S[4(d) -'+ r]s' = F(z) -'

(2.38)

(2.39)
1

4(J}-'-(z -1)r (2.36)

= Q &*[4(Z) '+ r] ' $z 1 [4(J) '+ I'] ')"6 .
n=O

(2.37}
I

Consistency of our scheme requires that S satisfy
the following equation'.

S[C (J} '+ r] = F(J) 'S,

or

- (5;,(d —~,)+ r(~„~,}
S(1,X,), dh'S(l, A. '}

E~

dl'(d —/')b(l —f') [S(l', X;), S(i', y}7. (2 40)

The 4 dependence of (2.40) cancels out and this equation reduces to

r(z„x,) r(h„x) = [(h, —l)s(l, X,), (A. —Os(l, h)].
r(h', ~, ) r(h', h)

(2.41)

If we assume that I' is square integrable and
square summable and Hermitian, then I' can be
uniquely expanded in terms of a complete ortho-
normal set of eigenfunction for which I' is the
kernel. The general form is given by (2.30),
where y(X) will, in general, be complex. Now

using the notation of (2.30), we find the discrete
and continuous solution for ~ to be

Equation (2.42) along with the orthonormality con-
dition on 8 will be sufficient to determine b and

h, namely,

s'(i', ~,.)
gs(i, ~,. ), f '~iso, i|

s'(i', z}

(2.44)

( )
h'(f)zy,

x»- E
(2.42a)

(2.45)

which implies, by arguments analogous to those
following (2.26},

lb(i)l'6(f i')=6(f- f').

h lE
S(f, ~)= . +b(X)*6(z-f).

A, —1+jc (2.42b) Choosing b(l}=1, we can now solve for h(l):

h(l) = [I- g(l) E] 'y(l) . (2.46}
Substituting (2.42) into (2.41), we find

h(i) = y(i)zh(f) + b(i)y(f),

where

~(,) ~ye(, "dh y(&}y'(&)
g» —l & —l-i& (2.43)

C. Equivalence between MPM and MRM

For consistency, we must have h(l) =g(l).
Therefore, using (2.27) the following must be
an identity:

[I-f(f)E]-'=1- 4 (f}E. (2.47)
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The proof of this identity will be equivalent to the
proof of the completeness of S(l, A), and will
complete the proof of the equivalence between
MPM and MRM for models of the form (2.1).

Let us consider

Therefore,

(2.52)

(2.53)

Q(l)E=- -[I-f (l)E]-'f(l)E. (2.48)

Consider the function on the right-hand side;
clearl. y, it has poles at l = A. ;, and a cut starting
from l,. Let us write a dispersion relation for
Q(l)E. Consider the pole at X;, where &j&(l)-R/
(),; —l); in general we have

[f-f(~,)E]R =o. (2.49)

The operator R, which is the residue of {I) at X;,
is real, symmetric, and can in general be ex-
panded in a (possibly infinite) sum of separable
terms:

R= gr. r'.} .,
m

where the vectors r are orthogonal, r ~„=6 „.
This implies

(2.49')

is identical to Q(l), Eq. (2.43). This proves
(2.47) and completes the proof of the equivalence
between multi-Regge and Mueller-Regge models.

D. Example

As an example of the above method, we com-
ment briefly on the calculation of Webber and

Green. " They have calculated the implications
of a hard cut and a pole at J= 1 in the inclusive
channel, on the couplings in the exclusive channel.
In particular, they have found that the internal-
cut coupling exclusively is soft (i.e. , vanishing
at the branch point). In their model, a. specific
cut is chosen: We carry through the calculation
assuming only that in the inclusive picture y(1)
is finite and nonzero.

Now the inclusive coupling matrix in the sepa-
rable approximation is

using (2.49) for each r which contributes to R.
This is precisely Eq. (2.18), and hence each r
is proportional to y;. We therefore denote R by
rr, where r ~y;. To obtain the over-all normal-
ization, we note that (2.48) implies

(2.50)

Left-multiplying (2.50) by r E and right-multiply-
ing (2.50) by r we obtain, after simplifying,

8-r E Er =11
ax,.

which is the normalization equation (2.22) for y;.
We therefore have the result

I'(~, X'}= ' (e){y„y{X')),
y(~) *

where A.0= 1. Then

S(1, ~ )
g(I)ey.
z, -l

for the discrete channel and

s(I, x) = ~ ' 'y(
A. —i+sr

for the continuous channel. Then

~(,) y.', '
d, , Iy(&')I'

&0 —l „A.' —l —ie '

(2.54)

(2.55)

(2.56)

(2.57)

W(I)EI (=~, = (2.51) (I) y(I)
1 —Q(l)e ' (2.58)

Next we compute the discontinuity across the cut:

Disc y(~)E = -[I-f(~)E]-'[Dtscf (~)]

x[1-Ef(y) ] 'E
G(I, I') =g(I)*eg(I')

y(I)*ey(I')
[1 —Q(l)*e][1—Q(l')e]

'

Hence the internal exclusive couplings are

(2.59)

(X, —l)y(l)*ey(l')(X, —l')

0X —I —y 'e —(A —I) dA' . e l( —I' —y 'e —(l(. —I')0 0 pl l + jq 0 0 0

(2.8o)

Since both the pole and the branch point are at the same point, namely I = A, =1, we see that G(l, I') vanishes
at that point, making the exclusive cut soft when co&pled internally.



EQUIVALENT EXCLUSIVE AND INCLUSIVE MULTIPEHIPHEHAL. . . 2248

It is interesting to note that if one starts from
the above MHM, then the MPM coupling G(l, I') is
not necessaxily real and symmetric. To insure
positive cross sections, it is sufficient for 6 to
be Hermitian, which follows if I' is Hermitian,
which is true in this case. The MPM's requiring
6 real are those, for example, mhieh ignore
"cross graphs" in computing the erose section.
There exists, therefore, at least one interpreta-
tion for a nonreal but Hermitian 6; but if me
insist (as is usual) that 6 be real, then we must

require that y(l)/[1 —(j)(l)e}be real for l & I,. This
is of course a strong constraint on y(l).

HI. MODELS NrrH THRESHOLDS

Any attempt at making a more realistic model
will, of course, lead to more complicated be-
havior than the model illustrated above where the
only J' dependence occurs in a simple propagator.
The equivalence principle can also be proven for
more complicated types of models. To illustrate
this, me will consider in detail the J-plane com-
plications introduced by attempts to treat energy
thresholds correctly. While the effects of thresh-
olds have been discussed previously in the litera-
ture, "'me feel they deserve some additional
attention.

A. Muktiyeriyleral threaholds

When calculating Im A„(s) through unitarity
from o„(s), clearly the s-channel thresholds of.

o„(&) must have significant effects. Consider first
the thresholds in o,(s). There is clearly some
value of s below which o,(s) is zero. That is

o,(s) ~f(s)8(s -s,).

b„-ng, (3.1)

where b is determined by the thresholds of the
kernel. Since J is dual essentially to rapidity
Y=ln&, (8.1) implies a cutoff when Y=nb. An
instructive example of this threshold has been
given by Chem and Snider. " In the ABFST model,
the iterated kernel is the off-shell wm cross sec-
tion: Let N, and v denote the off-shell pion masses,
and &(u, u, &) denote the integrated cross section.
The ABFST model diagonalizes in the J plane; the
partial-wave projections are formally O(2, 1) pro-
jections

K(g, s, Jl= f d e ~~'" ')((v, s), ",
Sp

with the "boost angle" P defined by

(8.2)

-J' )II(S& /Sp)-f(s, ) J
This illustrates horn this mismatch of scale vari-
ables introduces additional complications in the

dependence. The additional factor e is a
general property of o,(Z), with I) being crudely
the logarithm of the ratio of the scale parameters.

If one considers a model mith only pions and
assumes that the (s/s, ) behavior comes from the
asymptotic behavior of P~(cos8, ), then s,=2m'.
In addition, s2 is the tmo-pion threshold; that is,
s, =4m' and therefore b=ln2. This is what might
be naively expected in an ABFST model. A better
estimate is computed below.

The same threshold effect occurs generally in
the 2-n amplitude, mith the cutoff b„being de-
termined by the -particle threshold and a scale
parameter. In multiperipheral models a special
relation holds, namely

Therefore the Mellin transform of o,(s) is of the
form s —u-v

cos4P—
2(NV)

(3.8)

This expression has tmo scale parameters s,
and s,. s, sets the scale for the Mellin transform,
while s, i.s the threshold. In the simple models
considered in Sec. II, these are taken to be the
same. In general, this is not the ease. The mis-
match of these tmo pax'ameters introduces an ad-
ditional complication into the J dependence of the
problem. %bile different models choose these
scales differently, they all have this property.

Consider the dependence of o,(J) in the limit of
J large. The large J dependence is cLearly dom-
inated by the dependence at small values of the
complementary variables lns. That is,

The essential structure of.the total cross section
for our purposes is given by the trace approxima-
tion"

TrE
o( 1 TK (3.4}

0
Tr& = du &(u, u, J)E(a), (8.5}

where E represents the pion propagators, form
factors, off-sheB factors, etc. %e can now derive
the Chem-Snider formula for the multiparticle
thres holds.

For large values of 8, (3.2) has the behavior
e ~ "" "'~, but by (3.5) this must be integrated
over u = v to obtain the cross sections. Let 4'
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be the effective cutoff due to E(u) in (3.5); the
largest -u gives the smallest I3, so we expect

T g -g(so -Q -Q )z

as J-~. Thus the 5 cutoff for the kernel is

1 C+& oo -bl

J 2v, ;„l(J —l) i

for ReJ & c and c & 0. Then

(3.6)

We can rewrite the propagator in the following
form:

or equivalently (3.6)
"'"dl d L„A(J) = ~" —"D(l }i i ' J-l,

coshb = 1+

Because of the structure of (3.4}, we see that the
n-particle cross section behaves as

o„(J)-e "' as J-~,
where

D(l) = g(i)d

1
& G(l„ l, ) . D(l„), (3.9)

which is the result (3.1}. We shall take (3.6) as
a general guide for all MPM's even though strictly
speaking we have obtained this only in the trace
approximation to a class of ABFST models.

The actual magnitude of b will depend upon the
average mass ~&, of produced particles along
the chain, and upon the strength 4' with which the
momentum transfer damps out. For a model
producing pions, and a cutoff at 4' =1(GeV/c)',
we obtain b- mc/(1 GeV/c) =0.14; if s, -M&' such
as in ABFST models producing p's and if ~'-M p',
then we see that b=cos h'(1. 5) —= ln2. 6=0.96.
(This agrees with estimates by Dash'. ) We spec-
ulate that the MPM cutoff (3.1) may be more gen-
eral, and may depend only on the existence of a
transverse-momentum cutoff in the problem. Then
b would still depend upon the average I'& and the
average mass of the produced particles.

It is interesting to consider the situation where
particles occur in clusters. To see the effect of
this, consider the case where there are & parti-
cles per cluster. Then the threshold in the sub-
energy channels is (f)lm +})lm)' =4N'm', and since
we do not expect an appreciable change in &' for
clusters made up of pions, we see from (3.6) for
large & that

-bl/2

(2 l) 1/2 (3.10)

-b&1/2 -b&2/2

(2vl )"' (2@i,)"' ' (3.1 1)

Now A(J') has formally the same algebraic struc-
ture as (2.1}, the difference being that now the
contour is parallel to the imaginary axis. All of
the manipulations of Sec. II can be carried out
on (3.9).

The operator S(l, A) that diagonalizes the prop-
agator in a J-independent manner satisfies the
equation

(3.12)

The solution for 8 corresponding to the cut, that
is, for l on the contour of integration, is (2.23}
rotated by 90'.

(3.13)

where an e prescription defines the singular inte-
grals which will occur when A. and l are on the
contour. The equation for y(X) is

5„„„„=In(4¹m'/6').
B. Equivalence for threshold models

g(&)
y( )

1 fP)E (3.14}

-b J'

A(J)=d E E' ' ' d. (3.7)

Now let us consider the proof of equivalence for
models of the above general type. Vfe note that
the proof given here of this equivalence is not
limited just to models with thresholds, but rather
is a proof of equivalence for models with a rather
general form of propagator.

As an example of a model with thresholds, con-
sider the case where the propagator is e ' /J and
the vertex functions are t-independent. " Then

where

f( ) J dl g'(I)*""
A. —k+6

Reh. +e &c

Oy Rek. +E &c.
(3.15}

For Reh. + ~ & c, there may be discrete values of
X that satisfy Eq. (3.14) which correspond to poles.
In that case, S(l, A;} is given by
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8(t ~ )
g(t)Ey&SI, X,. = (3.16)

The condition for the existence of such a solution
'is

1=f(~,)E. (3.17)

Those poles that would be exposed for a smaller
choice of c are absorbed in the background inte-
gral.

The value of y; is, as before, set by the normal-
ization condition [cf. (2.22)] on &(I, X,):

y, 'E' = — —(X)
8 (3.18)
a

As in (2.33) and (2.32), we compute the coupling
in the Mueller model to be

= g(sor(s)). (3.23)

Now consider pushing the contour to the left so
that the poles can explicitly appear. To do this,
we use our identity (3.22) to rewrite this as

~ J d
"'"g'(I) dt, "'"Eg'(I}dt -'
, ,„J-ti, ( J —l i

ment v~ as calculated from the MPM using the
techniques in this section. %e may take the con-
tour far enough to the right so that no pole solu-
tions explicitly appear. Then the total cross sec-
tion is

'""Ch y(z)y(x) „
, ,„ i

n.(~}= y(~)d (3.19)
df (J)f

1-f(J)E' (3.24)

and

4]=ygd ) (3.20}

for the central vertices we obtain in analogy to
(2.30)

I'(X, X') =y(X)Ey{~'),

N~, ~,) =y(X)Ey, , (3.21)

"'-«y(I)y(t)E
i l —A —e ~A. ; —X

One proof of this identity parallels that of (2.48)
and will not be given here. In carrying out this
proof it is important to note that the analogs to
the discontinuity formulas are DiscF(x) =F(x+e)
—F(x —e) when x is on the complex contour. A
simple proof of (3.22) is as follows. Without loss
of generality we choose the contour such that no
explicit poles appear on the right-hand side of
(3.22). Then for Rek+c &c, the identity is proved
by performing the contour integration and using
the definitions. For Rek+e&c both sides of (3.22)
are unity and the identity is trivial.

%e now make some general comments on the
"threshold" models. Let us consider for a mo-

NX;, X,) =y(Eyg.

Here (in analogy to y ) y is the transpose of y,
with e replaced by -e; in particular this means
y(&) =g(&) due to (3.15). It is a straightforward
calculation to show that if 8 takes us from MPM
to MBM, then S defined by 8 transposed with
~ - -& takes us from the MRM back to the original
MPM. The proof of this as well as the complete-
ness of 8(l, ).) relies on the truth of the following
identity:

'""g'(l)E dt
t)(. - l+E

The method that we have illustrated above can
be used for large classes of models having the
form

0
A(J) = dt, dt„D(t,)F(J, t,)G(t„ t, )

x F(J', t, ) D(t„) . (4.1)

To apply the method of Sec. III, we first write
D(t) and G(t, t') in terms of the eigenvectors and
the diagonal matrix of eigenvalues of the kernel
G(t, t'} as in Sec. II:

G(t, t') =g'(t)Eg(t'),

D(t) =d g(t)

= g'(t)'d .
(4.2}

0

A(J}=d' dt,g(t, )F(J, t,)g'(t, )

0
XE dt's(t, )F(J, t, )g (t,)E

x E dt~ t„}EJ, t„g~ t„)d

Clearly as c decreases, f (J}E can take on the
value 1, and P,(J)develops'a simple pole. If, for
example, we take E to be e', following Chew and
Snider, the model will have its first pole at 4=1.
If we were to take c slightly below 1, the pole
appears explicitly in (3.23). The residue of the
pole at 1, of course, agrees with that in (3.24).
It is straightforward now to push the contour fur-
ther to the left and pick up the additional complex
poles.

IV. GENERALIZATIONS
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or

A(J) =drF(J)EF(J) ' 'd

where now F(J) is the operator

(4.3)

(4.4)

in addition to the fictitious channel used in Sec. II
to distinguish the pole from the cut contribution.

To be somewhat more explicit, after the par-
tial-wave [for forward scattering, this is an
O(3, 1)] projection is taken, the ABFST equation
ls

We have A(J) in the same form as (3.7). Analogous
to (3.8) we can represent F(J)by a'n integral over
a complex contour c —i to c + i~ provided that
there is a contour to the right of which F(J) has
no singularity and also provided that F(J)falls'
rapidly enough to zero to allow the closiag of the
contour at infinity. Since F(J') is in general a
(possibly infinite-dimensional) matrix, it may
be convenient to define G(l„ I,) in a somewhat un-
symmetric fashion in obtaining a form for A(J')
analogous to (3.9) [note that to preserve an earlier
notation, we use the symbols &,g, and D below
to denote different quantities than in (4.1)-(4.4)):

G(I, I') =F(I)E/2vf,

Agu, v) =I~(u, (&}

0
+ dM p(M )Ig(B, tl )Ag(1C, V),4+1

(4.8)

where the off-shell pion masses are u and q, p(t)
contains the pion propagator squared times con-
stants, and lz(u, v) is the projection of the off-
shell ~~ elastic cross section. The elastic cross
section has even G-parity exchanges, whereas the
factor 1/(J+1) originates from rr exchange. By
formal devices, we can reexpress (4.8) in one of
the forms we have previously discussed. First
note that we can write

D,(I)r =d',

D,(I) = I(I}d/2vf

Then (4.3) is identical to

(4.8) 1~(u, v) =g(J, u) E(J)g(J; (&), (4.9)

which allows us to express (4.8}as the series

A&=g Eg+g EF.„Eg+g EE,F.E,Eg+ ~ ~ ~,

(4.10}
where

(4.8) (4.11}

For nonsymmetric G(l, I'), the proof of equivalence
can be formally carried out as in Sec. II, or as
above for e ' /J. The main changes are that in
general G(I, I') wiII have two sets of eigenfunctions
g(I) and k(l') corresponding to operations on the
left and on the right, and a corresponding expan-
sion"

G{f,I') =g(I)'Sa(I') . (4.7)

Moreover, S will no longer be unitary (or rotated
unitary): S and S ' can be separately calculated
and to prove equivalence is to prove the existence
of 8' and ~ ' separately. Although this method is
more cumbersome, its advantage is that it does
not require one to take square roots of complex
functions [as was done in (3.10) and (3.11)]in
order to prove equivalence for threshold models
and more general models.

We close this section by remarking on what ad-
ditional complications can arise if one considers
models of the ABFST type. First we note that
such models contain quantum-number exchanges.
For example, models which iterate nn scattering
must alternate odd and even 6-parity exchanges.
This implies that one needs a two-channel formal-
ism to describe both kinds of exchanges. This is

The series (4.10) is formally equivalent to g Ag,
where A satisfies the coupled set of equations

(4.12)

Let us define

(w(z& a(z& & (z(z& 0

)
$(J}=

i

(a(J) C(J)f ( 0 Z.(J)

(4.13)

then Eqs. (4.12) are contained in

6(J) = ~(J}+0(J}9I2(J).

Indeed (4.8) is obtained from

A~(u, v) =& (2(J}B,

(4.14)

(4.15)

where S =(g(J, u), 0). But a general term in the
expansion of (4.14) is of the form (4.3). Therefore
ABFST models contain only one new feature, the
addition of quantum-number channels. This com-
plication has been treated by PST, and in principle
presents no difficulty in showing equivalence.
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The technique of the proof involved the observation
that in general G(l, I'} has the representation

G(f, ~') =g(~}'~g(&'),

so that if 8 exists we expect

I'(x, x') =y(x}'Ev(x'),

where

(5 2)

(5.3}

y(zl-=f dlgls(tx). ,

The end coupling is treated analogously:

D(f) =g(I}'6,

d.(X) = y(X) '6.

(5.4}

(5.5)

An intuitive motivation for the existence of a
unitary ~ is the observation that the equation
[q.v. Eq. (2.23)]

S(l X}=5(l X), g(l)'Ey(X)
& —I+ i&

(5.6)

has an analog in nonrelativistic quantum mechan-
ics. If we consider g(l) to be the noninteracting
wave function, y(X} to be the outgoing interacting
wave function, E the potential, and l the analog
energy, then (5.6} is equivalent to a Lippmann-
Schwinger equation for y(&) (Hef. 18):

1(x) =g(x)+ . Ey(x),
1

(5.'I)

where & is the (diagonal) free Hamiitonian,

By considering successively more and more
complicated classes of models, we believe we
have shown the complete equivalence of MHM's to
MPM's and the converse. In Sec. II, the multi-
Regge models considered are characterized by
some end couplings D(l) and an internal coupling
matrix G(f, I'); the Muelier-Hegge models are
characterized by end couplings b(X) and an internal
coupling matrix NX, &'). The proof of equivalence
involved showing the existence of a unitary matrix
S such that [Eq. (2.12)]

I =S'GS,
(5.1)

(If+E)y(~) = ~y(X).

We recover (5.6) by multiplying (5.7) by g(l}, and
use g(I) g(X) =5(l —X), and g(l) y(X) =S(l, X). If
the noninteracting wave functions g(l) provide a
complete set of states, then physically we expect
the y(X}, supplemented by the bound- (and partially
bound-) state wave functions (y, ) to form a com-
plete set of interacting states. When this is true,
~ will exist, have an inverse, and be unitary.

In Secs. III and IV we generalized the proof of
equivalence to include a much larger class of
model. s than multi-Regge. One new point was that
because of s-channel thresholds for multiperipher-
al phase space, we expect an exponential decrease
of the partial-wave projections as J-~. Such
models can be treated by using a complex contour
from c —i~ to c+i~ to represent the J-plane prop-
agator. The arguments from Sec. II then apply
after allowance is made for the 90 rotation of the
contour. An additional point was also made that
ABFST models could be treated by the techniques
described here, generalized to include quantum-
number channels (q.v. PST). There is no difficulty
proving equivalence for such generalizations, nor
indeed for any model whose rapidity structure in-
volves no more than a fixed number of nearest-
neighbor interactions.

It is possible to make the proof of equivalence
even more general than has been done here. %e
have discussed models after integrating over
transverse momentum (or Toiler angles}. We con-
jecture that a generalization is possible for the
differential cross sections. Perhaps the functional
techniques of Brown" would be helpful in such a
computation.

In conclusion, it is our belief that every multi-
peripheral (exclusive or inclusive) model can be
treated by one of the methods discussed here, or
by their generalization. The essential physics of
such models is their (partial-wave projected)
structure; this structure is inherited by the in-
clusive cross sections if it is assumed for the ex-
clusive cross sections, and conversely. It is
in this sense that we prove equivalence between
MPM and MRM.
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A proof is given for the Reading-Bassichis conjecture in the Xth-order Born approximation for
high-energy potential scattering at backward angles. The conjecture states that under the
stationary-phase approximation the hard scattering acts in such a way that "the radius vector bisects
the angle through which the particle is scattered. "

Reading and Bassichis' reemphasized' the im-
portance of stationary-phase contribution to the
backward scattering in the Born approximation.
By an Nth-order scattering process is meant a
particle undergoing N-step "hard" scattering
while all the "soft" (essentially forward) scatter-
ings to all orders are summed to an eikonal phase.

Reading and Bassichis have made a very interest-
ing observation. Under the stationary-phase ap-
proximation, the hard scattering acts in such a
way that "the radius vector bisects the angle
through which the particle is scattered. "' That
is, the radius vector r& (connecting from the or-
igin to the jth vertex) bisects the angle between
the two vectors (r&- r, ,) and (r&- r&+, ). An equiv-
alent statement is that all the perpendiculars
drawn from the origin to r, —r~+, and to (momen-

turn) k are equal in distance. This suggests that
the particle when turned by the potential somehow
manages to maintain its impact parameter. Read-
ing and Bassichis have verified the above state-
ment in quotation marks for %= 2 and 3, and con-
jectured that this holds in general.

The purpose of this note is to give a proof of the
RB conjecture for arbitrary ¹ Since the essen-
tial ingredient in the RB conjecture pertains to the
N-step hard scattering, the soft (eikonal) scatter-
ing part, which does not really affect the outcome
of the conjecture, will be suppressed. Thus we
shall simply work in the ordinary Nth-order Born
approximation. For spherically symmetric poten-
tials (which are the cases treated by RB), we have
the scattering amplitude


