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A relativistic, three-dimensional wave equation which restricts one of the two interacting
particles to its mass shell is applied to the study of nuclear forces. In the nonrelativistic
limit, the equation reduces to a Schrodinger equation with effective potentials composed of
two parts. One part, with longer range, is similar to nonrelativistic potentials obtained
from other theories, while a second short-range part, which arises solely from the rela-
tivistic nature of this equation, is repulsive and dominates over the longer-range part at
short distances. The resulting soft-core potentials are evaluated numerically for a simple
one-particle-exchange model limited to the exchange of x, p, ~, and a neutral spinless me-
son. By adjusting four of the parameters we obtain good fits to the Reid soft-core poten-
tials, especially in the S states. The couplings obtained are very reasonable, and the re-
sults are compared with other recent models. The general features of the theory and the
quantitative details of the model are thoroughly discussed.

I. INTRODUCTION AND SUMMARY

In this paper a relativistic wave equation intro-
duced previously is applied to the study of nuclear
forces. The equation can be used eventually to
calculate relativistic nucleon-nucleon scattering
amplitudes and relativistic deuteron wave func-
tions, but this paper is limited to an examination
of the behavior of this equation in the nonrelativ-
istic limit. Our prescription for obtaining the
nonrelativistie limit is to expand the momentum-
space kernels of the wave equation in powers of
P/M and retain the lowest-order terms, a pro-
cedure which is of doubtful validity at short range.
Vfe find that the effective potentials we obtain
are composed of two parts. One- part, with longer
range, is similar to nonrelativistic potentials
obtained from other theories while a second short-
range part is repulsive and dominates over the
longer-range part at short distances. The pre-
cise size of this second repulsive part of the
potential depends on the details of the dynamics,
but the existence of such a repulsion is independent
of the dynamics which govern the intermediate
and long ranges, and can be traced to the rela-
tivistic structure of our particular equation when

applied to two spin-2 particles. This new theory,
therefore, suggests that the short-range repulsion
in nuclear forces can be viewed primarily as a
relativistic phenomenon, and not as due to the
exchange of massive vector mesons as required
by most theories.

As a quantitative test of these general ideas we
examine a simple model in which the nuclear
force is represented by the exchange of four
mesons, the n, p, ~, and a fictitious n. The u

is an isoscalar-spin scalar meson intended to
represent phenomenologically the major contri-
butions of the two-pion-exchange potential and
the massive c meson. By adjusting some of the
couplings and taking the nonrelativistic limit we
achieve a satisfactory fit to the phenomenological
soft-core potentials obtained by Beid. '

This paper does not discuss how this theory can
be extended to the relativistic treatment of the
many-body problem, but such an extension is
currently under investigation and appears to be
complicated but straightforward. Nonrelativis-
tically, the connection with many-body theory can
be made in the usual way through the nonrelativis-
tic potentials.

In this section we present our major results
and give a detailed discussion of the theory. The
mathematical details and most of the specific
formulas are presented in the remaining sections
of the paper.

A. The relativistic wave equation

The wave equation we use together with physical
motivations for introducing such an equation were
presented in a previous paper. ' Briefly, we
employ a covariant integral equation in which the
full two-body Green's function is replaced by the
Green's function for the propagation of one free
particle (on the mass shell} and one virtual
particie (off the mass shell). The condition that
one of the particles be restricted to its positive-
energy mass shell eliminates the integration over
the relative energy, leaving only the three-dimen-
sional integration over the relative three-momen-
tum. Our equation is therefore a covariant three-
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dimensional equation and as such bears a re-
semblance to other quasipotential equations intro-
duced by Blankenbecler and Sugar' and Logunov
and Tavkhelidze' (BSLT) and also by Todorov. '
We will make a few comments on these other
approaches after we have discussed our equations.

In order to study the dynamics of our equation
without solving for the phase shifts, we took the
nonrelativistic limit (i.e., the adiabatic limit
where all momenta are assumed small compared
to the nucleon mass) and obtained a Schrodinger
equation with an effective potential which could be
compared with Reid's phenomenological potentials.
This limiting process is very well defined, but its
accuracy is certainly in doubt, particularly at
short distances. Hence, a more stringent test of
the ideas presented here must await a numerical
solution of the fully relativistic equations, which
we are encouraged to undertake by the success of
the nonrelativistic limit.

The relativistic wave equation and one-particle-
exchange potentials for the nucleon-nucleon sys-
tem are written in detail in Sec. II.' In Sec. III
we take the nonrelativistic limit. The equations
reduce to a coupled set of SchrMinger-type wave
equations for two companion wave function g' and

$, which in position space become

—+e g' x =-V" xg+ x-V' xP x',

(1.1a)

1= d'x g+ x '+ x

The potentials on the right-hand side (RHS) of
(1.1) can now be viewed as a matrix potential for
one large Schrodinger coupled-channel system.
Thus we see that V" and V are Hermitian and
the off-diagonal potentials are related by

=(V ') (1.4)

Note that in the asymptotic region where all
potentials are zero, the structure of the left-hand
side (LHS) of (1.1) forces g to be zero also.
Hence only the $' component contributes to the
asymptotic wave function, and if we can obtain a
Schrodinger equation for g+ alone, then the effec-
tive potential which enters that equation is the
correct one to compare with phenomenological
potentials. Now V (x) is local in our approxi-
mation, and hence P can be eliminated almost
trivially:

but coupled pieces, f' coming from the first term
of (1.2) and g from the last term of (1.2).

The relativistic normalization condition provides
a heuristic justification for the interpretation of
the wave functions g' and g as probability am-
plitudes and the equations (1.1) as coupled
Schrodinger equations. When the relativistic
potentials are independent of the total energy
(which is true for one-particle exchanges) this
reduces to

-2M( (x) = -V '(x)g'(x)-V (x)g (x) . (1.1b)
p =(2M-V ) 'V 'g', (1.5a)

We have suppressed two-component spin indices;
the potentials above are actually matrices in
two-eomponent spin space. The existence of the

wave function is due to the fact that one of the
particles (particle 2 in this paper) is off-shell,
and hence propagates as a mixture of a physical
(on-shell) particle and a physical antiparticle
(with the opposite momentum). This superposition
is expressed quantitatively in the following de-
composition of the one-particle Green's function:

M+ p' M u(p)s(p) U(-p)u(-p)
M'-P -i e Ep Ep -Po-ie Ep + Po-ic —

'

(1.2)

where 8&= (M'+ p')'~' and u and U are ordinary
Dirac spinors. ' The identity (1.2) shows that as
the energy of the off-shell particle approaches
+ E~ it propagates almost fully as a particle, while
if P, approaches -E~ the propagation is almost
fully as an antiparticle (with opposite three-mo-
mentum as required by conservation of baryon
number). The decomposition (1.2) is used in the
covariant integral equation to express the co-
variant wave function in terms of two noncovariant

Q2
— —+~ '= —V"+V' 2M V 'V '

(1.5b)

The correct effective potential includes not only
V", but a term quadratic in the off-diagonal
potentials. In the BSLT method there is no g
wave function and the V' potentials do not occur,
so that the extra term in the right-hand side of
(1.5b) is missing. But this extra term has some
very exciting properties, which we now discuss.

B. Dynamical origin of the repulsive core

Using (1.4) we see that the effective potential
becomes

V,~,
=V+'+ V' (2M-V )(V' )

=—v" + Iv' I'1

2M

(1.6a)

(1.6b)

where in (1.6b) we have used the fact that V «2M
in the intermediate region. Hence the quadratic
terms are repulsive. Furthermore, in the one-
particle-exchange cases discussed below, the
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matrix potentials are typically of the form

2 e-txx
V++ g&

4m " x
-g ' m„' e " 1

so that the quadratic term is of shorter range
than V" and more singular at smaJ. 1 distances.
This shows how these quadratic terms can domi-
nate at short distances, providing a short-range
repulsion which is present even for interactions
which are fundamentally attractive. Our fits show
that this attractive qualitative explanation of the
repulsive core can be made to work quantitatively
as well. It is not yet known how these cores will
be affected when the calculation is done relativis-
tically and when important two-pion-exchange
effects are included.

Perhaps the most interesting aspect of the
theory proposed in this paper is the possibility
that the repulsive core will be a natural conse-
quence of the Lorentz invariance of the two-
nucleon interaction. In this theory, potentials
calculated from the exchange of any single par-
ticle, no matter what its behavior at intermediate
distances, are always repulsive at short distances,
and the range of the repulsive-core contributions
from a particle of mass m are always (2m) ',
half the range of its contribution to the direct
potential V". Hence we conjecture that the
situation for the repulsive core may be similar to
that at intermediate range —the full potential is
a sum of particle exchanges, the lowest-mass
particles tending to be more important because
of their longer range but the details depending as
usual almost as much on the strength of the cou-
pling as on the range.

In our fits the one-pion exchange (OPE) dom-
inates the i epuulsive core, primarily because of
its long range. This is a new role for the pion.
To obtain these results we used a wNN coupling
of the form

(1.8)

where q =pz -p, so that gy' = 2M between positive-
energy spinors. Hence the coupling (1.8) is a
linear combination of pseudoscalar and pseudo-
vector couplings with X adjusting the relative
amounts of each coupling in such a way that the
coupling between positive-energy spinors is
indePendent of X. We fixed g„to agree with Reid'.

2

14 0
4m

so that the long-range part of the OPE calculated
from (1.8) is identical to that of Reid As i.t turns
out, the quadratic part of the OPE depends pri-

marily on the y' part of (1.8), the pseudovector
coupling making a very small contribution to the
V' potential. Hence by adjusting A. we can
change the amount of repulsion produced by the
pion without changing its long-range potential
V". In our final fits we took A. =0.41, although
there is some flexibility and A =0.5 could have
been used also. If one insists on A. =1, fits are
possible but the cores tend to be too tough, and
for X = 0 the cores would be much too soft. A

more detailed discussion of this point awaits care-
ful calculations of the two-pion-exchange (TPE)
contribution and numerical fits to low-energy
parameters using the exact equations in momentum
space. It appears that the nuclear-force problem
may give insight into the off-shell structure of
the AN coupling by determining A. .

Our discussion until now has ignored the poten-
tial V . This potential is also of the Yukawa

type, and at a short distance will exceed 2M.
Hence, the effective potential has singularities
at short distances due to the (2M-V )

' factor in

(1.6). It is in the spirit of our discussion to take
these singularities seriously, in which case our
potential is technically a haxd-core potential.
(The singularity turns out to be a double pole. ) We
have examined the singularities, and they present
no serious difficulties. However, the question is
really not very important because the singularities
are inside of the distance x = 0.3m, ', so that they
are masked by the soft repulsive cores which
reach considerably outside of this distance. As a
result we have felt justified in fitting the Reid
soft-core potentials. Actually, at such short
distances our adiabatic approximation is no longer
quantitatively reliable, and the detailed behavior
of the solutions at short distances must await a
numerical solution of the momentum-space equa-
tions. Here the singularities should offer no
serious difficulty because the individual matrix
potentials are regular.

Before we turn to a detailed discussion of the
fits to the Reid potentials we present a brief
comparison of our treatment with other current
work on the nuclear force.

C. Current status of theories of the nuclear force

Until now, the BSLT equation has received al-
most exclusive attention in modern relativistic
analyses of the nuclear force problem. It has
been used by Partovi and Lomon' and by Chemtob,
Durso, and Riska, ' both of which groups calculate
the important TPE contributions. It has also
been used by Gersten, Thompson, and Green" in
a recent one-boson-exchange fit to the phase
shifts, and a related equation has been used by
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Schierholz" for the same purpose. An equation
like ours has been discussed extensively by
Fronsdal and collaborators. "

A principal argument given in favor of the BSLT
approach is that it is covariant, depends on a
relative three-momentum only„and satisfies
tmo-body unitarity. However, these advantages
are common to all equations of the quasipotential
type, and are also enjoyed by the equation dis-
cussed in this paper and the one proposed by
Todorov' which me referred to earlier. In fact,
an infinite number of equations can be easily
constructed which enjoy these properties, ' '"
and it is not yet clear which of these equations
will ultimately give the best results for nucleon-
nucleon scattering.

This question is important because different
quasipotential equations do not give the same
result in any practical calculation. The reason
is that the kernel or potential is inevitably approx-
imated by the exchange of a finite number of
particles, and the solution of each equation there-
fore corresponds to a different approximation of
the full sum of all ladder and crossed ladder dia-
grams on mhich the dynamics is based. Only in
the event that the kernels were summed to all
orders could me expect different quasipotential
equations to give the same result.

This is already clear in the one-particle-ex-
change approximation. In this approximation our
equation includes off-shell effects not included in
the BSLT equation. Specifically, the V' con-
tributions are not present in BSLT, and as a re-
sult they contain no repulsive core. We con-
jecture that if the BSLT kernel included terms
involving the exchange of many pions, that the
combined effect of these terms mould eventually
create the repulsive term which me obtain in the
lowe st approximation.

In a similar fashion, the very important TPE
contribution must be recalculated for use in our
equation. Not only do we need to know the con-
tributions to the V' and V potentials, but the
V" potential is also different because of the
different form of the iteration of OPE, which must
be subtracted from the nucleon box in calculating
the TPE.

In addition to the possible dynamical advantages
already discussed, there are other virtues of the
approach developed in this paper. In the case of
the hydrogen atom, for example, putting the
proton on shell leads directly to the Grotch-Yennie
equation, "which is a Dirac equation with an
effective potential which does an optimum job with
the e-P system. Another advantage of the approach
described here is that it yields directly the vertex
function with one particle off shell. When the

two-nucleon system is in its bound state, the
deuteron, this dnp vertex function, first dis-
cussed by Blankenbecler and Cook, "is precisely
the one needed to discuss in detail the nucleon
pole contributions to backward P-d scattering and
electro- and photodisintegration of the deuteron.

One could object to the use of the equation de-
veloped here on the grounds that it places only
one nucleon on shell, and hence treats the two
identical particles unsymmetrically. However,
as one can see in what follows, this lack of sym-
metry introduces no inconsistencies, and may be
seen as a means of "ounting the most important
effects which come from the fact that the nucleons
are off shell. And Fronsdal" h3s argued that only
in the unsymmetrical situation mhere one particle
is taken as free ean one construct a relativistic
classical theory of tmo interacting particles.

We turn now to a brief discussion of the problem
of the TPE potential. As previously indicated, me
have introduced the e meson to represent phenom-
enologieally the combined contribution of the TPE
and the more massive e meson (950 MeV). We do
not wish to suggest that such a simple paramet-
rization does justice to this important contribution,
but rather we wished to investigate other aspects
of the nuclear force in this paper, and this is
impossible without rounding out the dynamics by
including some isoscalar attraction which is known
to come from the TPE. A calculation of the TPE
potential within the framework of this theory is
presently in progress.

Tmo results of this preliminary calculation will
be mentioned here. First, we have found that in
the static limit our TPE contribution reduces
largely to the exchange of a spin-scalar isoscalar
meson of distributed mass. We do not believe
that the static limit is very accurate quantitatively,
but this preliminary result helps provide justifica-
tion for the replacement of the TPE by the a, even
though calculations mithin the framework of the
BSLT theory suggest that the TPE is more
complicated 9, zo Our second remark is that a
correct calculation of the TPE contribution must
include the role of the d, (1236) nucleon resonance,
which in a simple pole model gives a large con-
tribution to the A.

' amplitude in m-N scattering
and thereby helps to satisfy the Adler self-can-
sistency condition. ' ' The & contribution also
cancels most of the contribution to the symmetric
m-N scattering length, a', which comes from
the nucleon poles in the y' theory, "so that it has
the effect of decreasing the contribution to the
TPE over what one mould get from the nucleon
box and crossed box. Because of these cancel-
lations we believe that a rather precise model of
m-N scattering must be developed before the TPE
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can be reliably calculated. Another difficulty
which we face is that we need to know something
about m'-N scattering with off-shell nucleons before
we can evaluate our V' potentials.

%'ith these preliminary remarks concluded,
we turn to our fits to the Reid potentials.

D. Fits to the Reid potentials

In the adiabatic approximation, V" and V
contain central, tensor, and spin-orbit terms,
while V' contain local spin terms (to be de-
scribed in Sec. III) and velocity-dependent terms
involving a single derivative. When the exact
IIuadratic term in (1.6) is calculated, many
complicated nonlocal terms are generated. In this
paper we neglected some of the smaller of these
terms (for details see Sec. III), but our final
effective potential still contained significant veloc-
ity-dependent terms. These terms were elim-

inated finally by the effective-mass transforma-
tion, "giving us an effective potential depending
on energy-dependent local central, tensor, and
spin-orbit (L 5) terms and a new L (o,-o,) term.
This interesting new term is discussed in some
detail in Sec. IV, but has not been included in the
fits presented in this section. Also, the energy
dependence of the potentials (which results from
the effective mass transformation) was not in-
vestigated, the total energy of the two-nucleon
system being fixed at its threshold value of 2M.
Thus, although the potentials presented here are
local potentials limited to central, tensor, and
L 5 components only, and as such cannot fit all
the phase shifts (because of the 'S„'D,splitting
for example), this is not a limitation of our
approach, and a more exact treatment will include
additional nonlocalities. The reader interested in
these details should read Sec. IV.

In Figs. 1(a)-1(e) and Figs. 2(a)-2(d) we com-
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FIG. 1. Isospin triplet states. The solid curves are theoretical potentials presented in this paper. The dashed
curves are the soft-core potentials of Beid (Bef. 1).
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in the text. The lines labeled 't are the complete result. The quadratic potentials ere defined in Eq. (3.42~ and {3.43).
The dashed lines are the Hamada-Johnston hard-core potentials given in Ref. 23.

tion paid to the fact that the P waves should be
very repulsive. Hence our fits to the P and D
waves are presented more to show that these
channels are satisfactory, and that the good agree-
ment in the 'S and 'S- D channels is not acciden-
tal.

The values of our parameters are presented in
Table I, together with values used in three other
recent one-particle-exchange models. "'"" Note
that we need fewer particles, a fact which we feel
is due to the helpful role of our quadratic poten-
tials. Furthermore, our p and ao coupling con-
stants are quite consistent with experimental
values, ""and we feel that they are more realis-
tic than the values obtained in Refs. 11 and 24.
The ratio R =(g /gz)'=9. 0 is in agreement with
the SU(3) nonet scheme, "and although this was
varied in some earlier fits, it was later fixed at
this value. The coupling of the q is not known but

a reasonable upper limit is g„'/4m= 1.3 for a
F/D ratio of 0.6. If the E/D ratio is 0.75, then
the coupling is zero. In any case, the p coupling
used in Refs. 11 and 12 may be too large, and if
the value 1.3 or less is used, the q makes little
contribution to the potentials. " Furthermore, we
require only one scalar meson, and no 5 meson.
Of course we have not yet fitted phase shifts, as
have the other authors referred to in Table I, and
an attempt to fit phase shifts with high accuracy
might very well require more parameters.

We now turn to the dynamical role of the different
particle contributions. These are indicated in
Figs. 3 and 4, where an exploded view of the
isospin-one and -zero potentials are shown.
These potentials are defined by

V„,=Vc+ V~~B, o, + Vr S„+V~~L ', (1.10)

where I=O or 1 is the isospin of the two-nucleon
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system, and S» is the tensor operator (see Sec.
III).

The solid curves shown in these figures give
contributions from different partial combinations
of particles. First, we show the n contributions
alone„ then the n+p contributions, then the w+p+e
contributions, and finally the total curves which
include m+ p+a+co and are labeled T.

It turns out that in some cases (Vc) the OPE
contribution comes entirely from the quadratic
term, while in other cases (Vzz and Vr) the quad-
ratic OPE term makes no contribution and the
entire OPE contribution is from the long-range
part. In still other cases (V~&) neither the quad-
ratic nor the long-range part of the OPE con-
tributes. In the first case, the OPE contribution
is labeled by X (instead of m) to remind the reader
that it comes entirely from the quadratic OPE
(and is therefore proportional to X'—see Sec. III).
In the latter case no pion curve is shown at all.

Because the quadratic terms are nonlinear
functions of the potentials, there are interference
terms and the contribution of the pion and the p is
not the sum of a pion contribution and a p con-
tribution alone. Hence the p contribution cannot
be determined by subtracting the w curve from
the p+n curve. At intermediate distances, where
the quadratic terms are negligible, such a sub-
traction is valid, but at short range it may be
very misleading.

We discuss the role of the four particle ex-
changes individually.

m: As in any theory, the pion contributes the
asymptotic long-range potential and the major
share of the tensor potential. A new feature of
this theory is that the pion also contributes much
repulsion to the spin-independent central potential
through its quadratic term (labeled X). This
repulsion gives a major contribution to the soft
core, explaining practically all of the repulsion
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TABLE I. One-particle-exchange parameters used in this paper are compared with those
used in Befs. 11, 12, and 24. The quantities are defined in Sec. II. Those parameters la-
beled with an asterisk were varied in the final fits to the potentials. The other parameters
and R = (g~/g p) = 9.0 were fixed. The left column gives the quantum numbers of the exchanged
particle using the notation I(J+), where I' is the parity. Masses are in units of the pion mass.
The couplings given for Befs. 11 and 24 are adjusted to go with form factors normalited to
unity at the boson mass.

1(0 )

This
paper

14.00
0.41

Ueda
and Green,

Bef. 24

14.95

Gersten,
Thompson,
and Green,

Bef, 11

14.47

Schierholz,
Bef. 12

14.4

0(0')

040 )

0{1 j

Cutoffs

g 2/4g g

Og Q

g, ~/4m

g„2/4~
m~

g '/«*
p

E
p

m
p

g, '/47(-

K~
Pl+

g ~ 2/4x
Pl

2.41
2.6

1.0
3.70
5.64

9.0
—0.12

5.64

no

1.89
3.0

18.05
5.64

1.51
5.06
5.5

23.87
0.0
5.64

2.35
5.5

9.92
4.1

4.28
3,96

0.86
6.38
5.5

20.63
0.0
5.64

1.14
6.9

1.4
2.88
6.8
5,03

8,05
3.96

0.605
4.78
5.11

9.05
-0.1

5.62

in the isosinglet case [Fig. 4(a)j and much of the
repulsion in the isotriplet case [Fig. 3(a)].

The quadratic OPE potential also explains
another very important feature of the spin-in-
dependent central potentials: The isotriplet V~

is less repulsive (or more attractive) than the
isosinglet V&. Of the particles listed in Table I
only the p and 5 will give a splitting between the
two V~ potentials, and the p splitting has the
wrong sign and the 5 probably does not exist. The
quadratic OPE potential introduces a splitting in
the right direction, and by making A. & 1 this split-
ting can be reduced to the point where, when

combined with the p, it is just the correct size.
But the OPE contributions could never give a

satisfactory theory by themselves, for they fail
in just about as many ways as they succeed. In
particular, the OPE gives negligible contributions
to the spin-spin part of the central potential, V»,
and these terms must be large if there is to be
attraction in the S states together with strong
repulsion in the P states. Hence the OPE provides
none of the attraction in the central potential
necessary to bind the deuteron and explain the
strong threshold 'So scattering. For these we
need other contributions.

p: The p makes very important contributions
to the V» terms, and in this way helps provide
some needed attraction in both the 'S- 'D and 'S
states and repulsion in the P states. In order to
fit all these states simultaneously a large term of
the form (7, r,}(c, a, ) is needed. The pion con-
tributes just such a term, but it is much too
small. The p contributes the term

2 2 ~fhpg

(~, ~,)(o, o, ) ', (1+K~)' ~ . (l.ll)

This is important only because of the large value
of Kp, which is enough to overcompensate for the
suppression introduced by the coefficient mz'/6M'.

The p also makes a major contribution to the
L 5 potential. Its contribution to the tensor po-
tential is unfortunately not very helpful, and this
deficiency is only rectified after other contribu-
tions have been considered.

When the p and m have been included, the picture
is reasonably satisfactory in all cases but the
spin-independent central potentials, V~, which are
much too repulsive. To rectify this situation we

need some central attraction.
e: The central attraction is provided by the n

meson. As we have repeatedly emphasized, the
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o. is meant to be a phenomenological representa-
tion of the TPE. Note hom it makes a decisive
impact on the V~ potentials, but that its contribu-
tions to the other potentials are very minor. The
fact that it contributes to the tensor and spin-spin
potentials at all is due to existence of the qua'dratic
potentials.

co: Finally, the ~ meson is added because it is
well known to exist, and it would be inconsistent
to include the p and omit the co. As one can see,
the (d does help the fits in a number of ways. It
makes some helpful contributions to the Vzz and

V» potentials, and its contribution to the tensor
potential is quite decisive in giving a good V ~.
However, its repulsive contributions to V~ are not
needed in this theory, and they serve primarily to
force us to increase g

' to compensate for the
repulsion. The reason mhy the ~ is a good deal
less important than the p is due primarily to its
small anomalous moment, K . This means that
even though its coupling is nine times as strong
as the p (which is important in Vc) the factor
g '(1+ K )' is only about -', of the corresponding
factor g~'(I+ K~)'.

%'e conclude this section with the following
comments:

(i) The fits would be improved by a longer-range
p type of contribution from the TPE. This mould

give us larger V» potentials, which mould in-
crease the P-wave repulsion and at the same time
increase the S-wave attraction. With such terms
a smaller p and au coupling would be acceptable
and the range of the a could be made shorter and
its coupling smaller. Vfe do expect such contri-
butions to be present in the TPE.

(ii) Examination of all of the partial contribu-
tions to Vc [Figs. 3(a) and 4(a)] show that every
curve is repulsive at short distances. This is an
example of the model independence of our re-
pulsive core, which me emphasized previously in
this section. The size and shape of the core does
indeed depend on the dynamics, but its existence
does not. In all of the cases we looked at while
we mere searching for a good fit, cores mere
present.

(iii) Although the over-all effect of the quadratic
terms is repulsive, these terms do not make re-
pulsive contributions to every potential. The
most striking example of this is the tensor po-
tential, where the quadratic terms are attractive
and make important helpful contributions to Vo~

[Fig. 4(c)] at short distances.
(iv) As we discussed earlier, the potentials

presented here do have singularities at short
distances. The singularity in the isotriplet po-
tential is at x~ =—0.26m„,mhile in the isosinglet
potentials it is at xz —= 0.23m, '. These singu-

larities are well inside the distances usually taken
for hard cores, and in any case the adiabatic
approximation breaks down at this distance, so
that the short-range behavior of the potentials and
wave functions must be determined by solving the
relativistic equations numerically.

The remainder of the paper includes a detailed
discussion of the relativistic equations and po-
tentials (Sec. II), the transition to the nonrelativ-
istic limit and the reduction of the effective po-
tential (Sec. III), and a discussion of some of the
more usual nonlocalities contained in this theory
(Sec. IV).

II. THE RELATIUISTIC THEORY

In this section we develop the explicit form of
the relativistic wave equations and potentials
discussed qualitatively in the previous section.
Our attention is focused on the bound-state equa-
tion, but the scattering equation differs only by
the addition of the inhomogeneous term describing
two free particles.

()'('), .(())=- J (,). &„... (((»))),
x G&i&to & i&ei (k W)(I C)& ~ e))re (0)

(2.1)

where i), and v are spinor indices, P= (W, |5)is the total
energy-momentum 4-vector, p and k are relative
4-momenta (P and $ are defined below), 'U is the
interaction kernel with particle 1 on the mass
shell, C is the charge conjugation matrix, andI'„„is the covariant deuteron-nucleon vertex
function. "'" %'e shall see how I'C is related to
the relativistic wave functions in what follows.
The equation (2.1), together with our notation, is
illustrated in Fig. 5. In (2.1) summation over
repeated indices is implied.

The tmo-body Green's function, G, is

G~r~a pi„i.(k) W)

mhere, since particle 1 is on the mass shell,

(2.2)

1 Iko=E~ -~R', PO=Ep-~S',

E = (M2 +k2)I/2

(2.3)

A. The wave equations

In momentum space our quasipotential equation
ls
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—+kP
2 —+pP

2 )"*'(p p )p)=( )","(p) .'t-p)

P——k
2

FIG. 5. Diagrammatic representation of Eq. {2.1).
The x on line {1)indicates that particle 1 is on its mass
shell.

x'Uqq. p p, (p, k, W)uq", (k)u, ', (-k},

(- )r rr) = ( ).-'"'(-)-"(--)

xv„„„„(P,$, W)u„'",'(k) v,(,' '(k),

Note that the energy of particle 2 is S'-Ek, so that
particle 2 is also on its mass shell whenever
W =2Ek.

Our first step is to reduce (2.1) to two coupled
integral equations by using the following identity
for the projection operator on particle 2 [see also
E(l. (1.2)]:

MV~'(p, k, W) = M("'(p}T( "(p)
p

xU)))) p '(P k W)M)I (k)Q ( k)

(M r (-,'p-p)1„, =-2M(p ~p(-k) p((-k)
k

-2M ' t) ' (k)v "r(k)
2Ek

(2.4)

where u ' and v ' are the standard Dirac spinors
and a sum over the repeated 2-component spin
indices is implied. The identity (2.4) enables us
to introduce two wave functions (the over-all
normalization of these wave functions is fixed by
the normalization condition discussed below)

M u„'(p) u „'(-p)(I'C)„„(P)
[2 W(2&)3] &IP g (2P W)

(2.6)

k

x 'U», „,, (P, k, W )up(" (k) v( ' '(k} .

On the LHS of (2.7) we have used the indices 1 and
2 as a shorthand notation for the 2-component in-
dices (r, r 'j and (s, s'], respectively. This will
also be employed in Sec. III.

So far all of our expressions are exa, ct insofar
as we have made no nonrelativistic approximation.
The individual matrix potentials V and the wave
functions g' and g are not themselves covariant,
but the entire system (2.6) is.

B. The normalization condition

The next task of this section is to write down

the relativistic normalization conditions for I'C.
Correcting the errors in Ref. 2, we have

(2 )
(ic)„'.(p) w. [G„„,„,(p, w)]

(-) -M u)" (p) U, '(p)(f' C},)P()
[2W(2v)']'i' g, W s

and write the two coupled matrix integral equa-
tions

(2 )rp)p; (p)=-7,', ",, (p;;,„.(p k )p)p;, (k)

+ V pp ~ pp r (p, k, W)gprp r(k}],

where
d3 3 /

f1= j "+)P (rc)„'„(p}c„.„(p,w)

x[&~n a() (p p' w)]

xG„„,,„,(P', W }(iC)„,, (P') . (2.9}

In what follows, we will assume that U is inde-
pendent of W, and therefore R =O. Using (2.4) we
obtain

d3k
(p}=—

( }p [V~ ~,pp'(p k W)(}' '8'(k}

(2.6)
M(p)p) = (z, (p)p, ,(p),

+ V„„r„r(p, k, W)(})„r,~ (k}] .

Hence the potentials are defined:

'u„"'(-p)u„'l'(-p) U„"(p}v„"'(p)
(2Ep —W)

(2.10)
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which is easily differentiated with respect to 8'.
The normalization condition reduces to

1 = d'p P' p) ' + g p)
'

, (2.11)

where sums over the two-component spin indices
have been suppressed. In one-particle-exchange
theories where t) is not a function of W, (2.11) is
an exact result. Note that it is a positive-definite
condition.

C. The one-partic)e-exchange potentials

Once the form of the interaction matrix 9 is giv-
en, the theory is completely specified. In this
paper we restrict the dynamics to the exchange of
m, o, , p, and ~ mesons.

m: For the OPE potential we take the linear
combination of pseudoscalar and pseudovector in-
teractions given in Eq. (1.8). Replacing the Dirac
indices of particle 1 by the subscript 1, and sim-
ilarly for particle 2, gives

this potential is again independent of energy,
As we emphasized in the Introduction, the a

used here is not necessarily to be identified with
the physical e meson with a mass of about 950
MeV and a. width of about 400 MeV. Rather, it is
thought of as a simple approximate form for that
part of the intermediate attraction which is iso-
scalar in nature. Hence m„and g are treated as
parameters, and the final values are listed in Ta-
ble I.

p and cu: For the vector-meson exchange poten-
tials we use a vector-meson-nucleon coupling of
the form

gpss, y", + 0,"'q„=gpss.,"Z~ q), (2.17)

where g~ is the AN coupling and K~ is the "anom-
alous moment" coupling —i.e. , it is the F,/F, ratio
of the p coupling constants. The same form with-
out the 7, is used for the ~ coupling.

Using these forms the p potential becomes
g„'(7,.r, )A, (q)A, (-q)

y (2.12)
(2.18)

where g, '/4v =14.0 as discussed in the introduc-
tion, q=P —k, and from Eq. (1.8)

A, (q) =y', l (q y,/2M)y;(1 -~), (2.13)

=(E, -E,)'-(k-p)'
=2M2-2EqEp+k p.

In the adiabatic limit where

fp f
and

f
k

f «M,
then

(2.14)

(2.16)

and we obtain the usual nonrelativistic form for
the OPE potential.

Finally, note that the exact form of the OPE po-
tential, Eq. (2.12), is energy-independent, so that
the assumption used to obtain the normalization
condition (2.11) holds.

e: For the e exchange potential we use the sim-
plest form for the coupling of an isospin-zero,
spin-zero meson to nucleons:

(2.16)

where g„is the ANN coupling constant. Note that

where X is an adjustable parameter which governs
the mixture of pseudoscalar to pseudovector cou-
pling. In our final fits X =0.41.

The squared momentum transfer, q' =f, takes a
special form when particle 1 is on shell. %e have

f =(k- j)'

and the (d potential is the same except for the
7~ ' 72 factor, which ls missing.

The p and ~ introduce six parameters. In our
final fits, five of these were fixed: The ma. sses
we set equal to the cv mass, the K~ and K factors
set equal to the anomalous moments of the iso-
vector and isoscalar nucleon form factors, re-
spectively, and the ratio E =g '/g~' =9.0 as sug-
gested by the nonet scheme. The only coupling we
varied was g~, and its value is given in Table I.

The theory is now completely specified. In the
next section we treat the difficult problem of taking
its nonrelativistic limit.

III. THE NONRELATIVISTIC THEORY

To obtain a simple picture of the behavior of
these equations and potentials in the nonrelativistic
domain, we go to the adiabatic limit. This is the
limit in which the external 3-momentum p, internal
3-momentum k, and e =—W —2M can all be regarded
as small compared to M. Of course one can always
restrict p and 8'to the nonrelativistie domain, but
the assumption that k is small compared to M re-
quires that the integrals in (2.6) will be dominated
by small values of k, which in turn will be true
only if the range of the force is large compared to

This latter a.ssumption is not really very
good, but should suffice at least to give much phys-
ical insight into the nuclear force. Ultimately, the
results must be checked by integrating Eqs. (2.6)
numerically, as discussed in Sec. I.
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(v.);;=-(v,);;= &~ (7, ~ ~,)D '. . ./q%

where q =p-k and

D, (q) = m„'+q'.

(s.l)

(3.2)

Note that the potential is local, since it depends
on q only. Also, the off-diagonal potentials V'
are large unless A. is small.

Since the potentials are local, we may define
position-space potentials in the usual way:

V(F)=, d'qe"q ' V(q) .
(2w)'

(3.3)

A. OPK potential

Using Eqs. (2.7) and (2.12) we calculate the OPE
potentials to leading order M '. %'e obtain

where S is the total spin operator, 8 =-,'(o, +o,).
To obtain the result (3.7) we have followed the
usual practice of keeping the leading terms of each
type of potential even if they are small. Thus we
neglected the M ' terms in the central spin-inde-
pendent part of the potential because there were
larger terms of order M present, while M ' terms
were kept in the L S potential because they mere
the leading terms. The rationale for this some-
what inconsistent procedure is that subsequent
adjustment of potential strengths and ranges might
be expected to compensate for smaller terms
omitted from a potential, but cannot be expected to
reproduce types of potentials which have been com-
pletely neglected.

The off-diagonal pieces of this potential are not
local, so that in position space they mill introduce
gradient operators. If the position-space wave
functions are defined according to

Fourier-transforming (3.1) we obtain

V,"(r) = V, (r)
= (7', 7',)[ V,'(r)o, ~ o, + V,"(r)S~(r)],

y(r) =( ),~, d'ke'"' 'y(k)

(and similarly for p), then we have

k--iv,

(3.8)

(3.9)
V', -(r) =- V (r)

=-i(~, 7.,) ' v;(r),
where if we let x=m, r

so, Fo, r

(3.6)

and similarly for p. Since p is the final momen-
turn, gradient operators which arise from p will
always operate on both the potential and the wave
function, while those from k operate only on the
wave function. In the V ' potentials we will always
express the nonlocality through k, and in the V'
potentials it will be expressed through p, In this
way, the general relationship V' = (V ')t is most
conveniently recorded.

In position space the u potentials become

V, , 1 = —V "(r)— —V,"(r)L ~ S,

Note that our V" OPE potentials are identical with
those obtained by previous morkers, while our V'
and V potentials are totally nem.

B. The e exchange potentia1s

and

V.'-(r, z V) =+ ' V", (~)+fo, V V, (r), —
r

(s.lo)

V '(r, f V) =- ' V, (r)+~V,"(~)io, V.r
A calculation of the n potential to leading order

in M ' gives
2 t

The V' operates on everything to its right. If we
define a = ma/m„ then

(V+ - ga o2'(2p —q)
D.(q)

(3.7)

2 Ctgx get 8
4&

(s.11)

-g„'o, (q+2k)
Da(@
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C. p and ~ exchange potentials

When making the M ' expansion for the p and &
potentials we again follow the somewhat inconsis-
tent policy of keeping the largest contributions to

each different type of spin term, even though in
some cases comparable contributions to the cen-
tral potential are being neglected. The p potential
gives us

(Vq')„=(Vp )„
1+, (~+ 2K~)8(qxk) +

12 2 (I +K&)'(8» —2', o, )

(3.12)

(V~')»= ', ', [-25, K+K,o, q+i(1+K~)q ox o].

In position space we obtain

T 2

=(r, 7;) Vf(r) — (&+2K&)V f(r)L 8+ 2(1+K&)'V~~(r)o, o, —(I+K&)'Vf(r)S»(r)

r r (3.13)

I

r r

If we let p =m~/m „,then

v po
—= m„

+ V'-(q, k)y-(k)],

y p 1f y.p

(3.14)

d'k
-2M/ (p) = — 3 [V '(q, k}g'(k)(2v)'

{3.15)

We obtain the same equations for the ~ contribu-
tion except that the factor (7, 7.,) is missing from
(3.12) and (3.13).

D. The coupled Schrbdinger equations

We now return to Eq. (2.6) and take the adiabatic
limit of both sides. This means, in particular,
that we will implement the assumption that the
internal k integration is dominated by momenta
which are small compared to I, so that terms
involving 0jM can be treated as small quantities.
We obtain

where each of the potentials is a sum of the
potentials (3.1), (3.7), and (3.12), and we have
indicated that in this approximation the diagonal
potentials V" and V are local (except for
L 8 terms).

These equations can be reduced to more
familiar form by casting the equation into position
space using (3.3) and (3.6). We obtain

——+& g'r =-V" rg' r-V' r i&)g r),

{3.16a)

-2M/ (r)=-V '(r, iV)f'{r)-V (r)g (r),
(3.16b)

where the potentials are
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2+, (1+K )'v„
Ur = (r, Vz)[v,'-(1+ K~ )' V f]

-(1+ IC~)'V~z,

(3.17)

U~q = — [V",+(z, w, )(1.5+ 2K') V~~
Mx

+ (1.5+2K~)v, ],

V"(r) = Uo+ Uz~o, *o, + Ur S„(r)+U~~L 8,

U, =-V",+ V, +(7, z, ) Vt,
m 2

Uz ~
= (r, ~ v, ) V o +, (1 + Kp )'V 01'

approximation.
We now turn to the details of using Eq. (3.16b)

to eliminate the g wave function from Eq. (3.16a).
As long as V is local, the formal solution was
given in Eq. (1.5}, with the effective potential
defined in Eq. (1.6a). To obtain a practical form
for this potential we must reduce the complicated
second term, which we have referred to as the
quadratic potentials and will denote by V.

V =V' (2M V ) '(V' )

The algebraic details of this reduction will be
given in Sec. IIIE, and the reader not interested
in these details may skip directly to the final
answer in Sec. III F.

and

zo, r zo&r
z ~ 2

r ' 0'
z X O'2

+ V 3 + s ct'2 ' V5),2r

V i = -('i'&z) V i'

V, =-(&, &,)(1+K'}v ['-(1+K~)v
„

(3.16)

E. Reduction of the quadratic potential

In order to simplify the algebra we introduce
some convenient spin-projection operators, al-
though with the simplification (3.19) this technique
is not really necessary. However, these operators
will be very useful in the future if we wish to in-
clude crz cr, and S» terms in V, such as would
come from the OPE.

We may define the projection operators

o, = —[v, +(~, 7, ) v, ~+v,],

V =V"+(r 7 )V~+ V~ (3.19}

which makes V a local, spin-independent poten-
tial. The terms we have omitted are the OPE and
the o'z 02 Sz2 and L Sterms from the e, p, and
u contributions. Since all these terms are down

by M ' from the terms given in (3.19), and this
potentia1, contributes very little to the details of
the intermediate-range force, the approximation
is justified within the framework of the adiabatic

and V ' =(V' ) . The expression for V will
undergo further approximations, and the final
expression is given below.

The reductions of these equations to a single
Schrodinger equation was sketched in Sec. I. If
one includes all the terms in V, this reduction
is tedious, but offers no difficulties in principle.
The final effective potential one obtains is an
Hermitian, velocity-dependent potential which
contains many nonlocal terms. These terms are
very interesting, but they are small and their
complexity tends to obscure the main features of
the result. These small terms are probably also
more sensitive to the errors in the adiabatic
approximation. For these reasons we eliminated
most of these terms by approximating V by the
leading terms from the a, p, and ~ contributions.
W'e took

So = 4(1 —oi 'oz) ~

T, = '($+v, , -s„),
which satisfy the relations

(3.21)

x, x, =0,
Jl rh

where x; represents any of the S„T„orT, .
These are complete in the sense that

~ =So+ T, + T„
Vz '0'2 = -3SO+ Tz + T2 ~

S„=2T,—4T, .

(3.22)

(3.23)

These operators can be regarded as odd operators
in the sense that products of even numbers of R's
always give the even operators (3.21), while odd

powers of R's reproduce themselves. Note that

With these operators we can easily compute the
operator (2M- V ) in the event that V depends
on the invariants in (3.23).

To simplify the treatment of the spin functions
which make up the off-diagonal potentials V' and

V
' we introduce the spin operators

R, = —(o, ~ r + o ~ r),
1 7 I'' VP 0'

R = —(o ~ r -o r)+ — ' ' =R, , (3.24}
4~
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R.R. =R,R.=S„ (3.25)

but the second term requires knowledge of how
o, ~ V commutes with the R's. We use the relations

cr, ~ VR, = (R, +R )cr, ~ V + —(r V + T, + 2T,},r
while all other products involving the R's are
zero. When the even operators multiply from the
left we have

r22
.VrR, = , (R-, R,-+R, )o2

1——(r V -cr L+4S }2. 0

cr2 VR2 = 2(R, +R, —R2}cr2 '&
(3.33)

T2R, =R„ (3.26)
——(r ~ V+cr ~ L+2T }2y

R RR =R

which holds for any R.
These operators are also complete in that

(3.27)

~ r =R, +R, +Rq,y

all other left products are zero. The right prod-
ucts (the results of multiplying the R's on the
right-hand side by the even operators) can be ob-
tained from (3.26) by taking the Hermitian conju-
gate of both sides, being careful to remember that
R, =R, . Note the relation

cr2 ~ V = —
2cr2 r(r V -cr2 L).

Doing the algebra, we obtain a reduced form for
the quadratic potential:

Q Q ~ ~ Q Q
VQ = Uc+Uqq(r, @2+U2, S,2+ Uq~L a

1 d r ~ V+Ue L ~ D —U ————(U )LB r dz

(3.34)

where we have a new spin invariant

L D=--, L ~ (cr, -cr, ), (3.35)
(3.28)

z r ' 0'~ x 0'2
o

= -iU+ ia ~ Ve, , (3.29)

In terms of these operators, the off-diagonal po-
tentials are

V' = -i( Rv, + Rv, +v, R,)+i crV2vr

which seems to violate isospin conservation. This
is not the case, however, and an understanding
and discussion of this term will be put off for the
next section. The potentials U will suffer one
more transformation, and their final form will be
given below.

The equation (3.34) exhibits the velocity depen-
dence of the quadratic potential through the terms
proportional to U~, where

V '=~U +~or 0
where

U, =v, 2/(2D}. (3.36}

v, = —V, +2K~V, +(2', 2'2)(V,
'

v, = P,'- (1 + 2K~)V, + (&, ' 22}[

+ —', Kp V,),
V, —(1+2K')V 22],

(3.30)

To compare our effective potential with static po-
tentials we transform this dependence away using
the effective-mass transformation. " If we intro-
duce a new wave function g~ according to

v2 = V, + (1 + 2 K )V, + (7', ~ 2 2)[ V,
' + (1 + 2 K 2 )0 f'], 4r(x)

( ) (1 U )2/2 (3.37)

=1 — [ V2 +Vo +(2, 22)Vf],

we obtain

2MV =UU — -rr ~ V ~U~1 v
Q D 2

(3.31)

(3.32)

The first term of (3.32) is reduced using (3.25),

and v, was previously defined in Eq. (3.18). Intro-
ducing

D =1- V--1

D " ' Mr 4MB 2M

(3.38)

where the prime on the U~ refers to differentiation
with respect to r and

then P~ and g' have the same asymptotic behavior,
so that the phase shifts and binding energies are
unaffected by the transformation. The Schrodinger
equation for g~ will contain no velocity-dependent
terms. The new effective potential differs from
the old, and we have



10 NEW THEORY OF NUCLEAR FORCES. RELATIVISTIC. . . 239

D T
= D(1+ Us) = D + 2v, (3.39) tion. The potentials are all of the form

The new effective potential has an energy depen-
dence introduced by the transformation.

F. Summary of final equations

We collect together the final expressions for the
potentials. After the effective-mass transforma-
tion we obtain a, Schrodinger equation for a trans-
formed wave function

D QVc= Uc +Vc

D
Q

USS —
D USS+ VSSy

r
D

Vr=D ~r+V r

D
VI. s =

D
—

UJ. S +VI, sr

(3.42)

—+c g =-V (3.40) ULD= VLD
Q

where the relation between gr and P' is given in
E(l. (3.37). The transformed potential has the form

VT Vc Vsscl c2 VT 12 Vss L ~ + VID~,
(3.41)

where the new spin invariant L ~ D was defined in
E(l. (3.35) and will be discussed in the next sec-

where the U potentials have been given in Eq.
(3.17) and come from the long-range V" poten-
tial. The factor D/DT which modifies these con-
tributions was defined in E(ls. (3.39), (3.18), and
(3.31). This factor arises from the effective-mass
transformation.

The quadratic contributions to each potential
are

I

8MDTVoc =2v, ,'+v, '+v, ' — ' (2v+ —v, —v2) -D ~(2v, —v, —v, )

2v] I vgD Bv) I D v) DI 2
v, D"

+4MEv, — v,
' — + v ' — +4 v ' — ' +4v v

Dr 2D r ' 2D

I
Q 2 2 1 2 2 ~j 2 1 ~s8MDSVss =-, v, +;v, —v, — —(Sv, — v, Sv +) —2D —(Sv, —;v,+v, )y'

12MDTV T=v, ' —v, '+ ~(v, +v, ) D~(v, -+v, )

(3.43)

2

2MDTrVT v =v, (v, —v2) -DQ v)

where the v's are defined in E(ls. (3.18) and (3.30).
In these equations the prime refers to differentia-
tion with respect to r.

The potentials (3.42) are the ones presented in
Figs. 1-4. In those figures and in the discussion
we ignored the presence of the potential V». This
potential has some very interesting properties,
and we now turn to a discussion of these proper-
ties.

IV. SOME SPECIAL NONLOCAL INTERACTIONS

There are many nonlocal interactions present in
the theory presented in this paper. The easiest
one to deal with was the velocity dependence,
which we eliminated by the effective mass trans-
formation. Other nonloealities at short distances
were neglected when we simplified V [Eti.

(3.19)]. lt turns out that many of these which we
neglected are of the same type as the new nonlo-
cality which results from the L ~ D potential.

The existence of the L ~ D term defined in Eq.
(3.35) means that our potential is not symmetric
under interchange of particles 1 and 2, which
might at first glance seem to be either a violation
of charge independence or the indistinguishability
of the particles. Actually, it is not really a mani-
festation of either, but is due to the fact that parti-
cle 2 is off shell and particle 1 is on shell. There
is no symmetry between the two particles, because
we are working in a dynamical region where sym-
metry is not expected. In this language the Pauli
principle means simply that the sister equation
for particle 1 off shell and particle 2 on shell con-
tains no new information.

Because the off-shell nucleon is close to its
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mass shell except at short distances, one expects
V~D to be of very short range, and this is indeed
the case. As Fig. 6 shows, V» is comparable to
the quadratic contributions to V~s, and as one can
see from Figs. 3(d) and 4(d) these are of very
short range compared to the full potentials.

To study the behavior of L-D, we first assume
that the nucleons are nonidentical particles, but
that isospin is still conserved. The states are
specified by the total angular momentum J, the
orbital angular momentum I., the total spin S, and
the isospin I. The fact that the particles are non-
identical means that the states do not have to have
antisymmetric wave functions, and hence both iso-
spin states exist for each J, I, S. Nom, one can
easily show that L ~ D commutes with 3, I.s, and I,
but does not commute with S'. Hence L ~ D ean be
expressed as a matrix in block diagonal form, di-
agonal with respect to J, I., and I. Since S can
only be 0 or 1, L ~ D is a 2~2 matrix, and its ma-
trix elements are easily shown to be

L D= (4.1)

(4.3)

The antisymmetry now becomes a relation between
two different wave functions rather than a condi-
tion on one wave function. Equation (4.2) becomes

(4.4}

If we were using the BSLT theory (or the Todorov

Hence, L ~ D changes triplet states into singlet
states and vice versa. In the usual nonrelativistic
theory the Pauli principle fixes S once J, L, and
I have been chosen, so that only the diagonal ele-
ments of (4.1) would occur, and hence terms of
the form L D are absent from the potential.

In our theory the particles are still identical,
but the wave functions are not required to be anti-
symmetric because only particle 1 is on shell. To
see why this is so, we restrict our discussion to
the hypothetical case of spin-zero fermions, and
return to the vertex function, I, for two off-shell
particles, which is a function of the relative ener-
gy and relative 3-momentum. The Pauli principle
would require that this function be antisymmetric
in its relative 4-momentum:

(4.2)

When we put particle 1 on shell, we fix pp Ep
--,'W, while if particle 2 is on shell Pp=-E~+-', W.
Hence, there is a different wave function to de-
scribe each case:

1=—,'[ 1+(-1)s 's] (4.6)

are virtual. In this sense they are like the wave
function P, which affects the dynamics even
though it does not contribute asymptotically.
These mill be referred to as odd states.

A way to write the partial-wave expansion for
I', which includes these restrictions is

2Ep —W
ri(P} = Q rats(P}+ reer, s(P) JJ, E, S

(4.7)
where

(4.8)

In a similar way [from (4.4)],

J, L, S

(4 9)

The factor 2E~ —W ensures that the I" contribu-
tion will vanish on shell. It is also suggested by
the requirement that if I' is even in p it must be
odd in P,-E~--,'W. Note that the wave function in
momentum space is (His a normalization constant)

— re

so that only the antisymmetric part has the (phys-
ical} singularity at Ee=-,'W.

It is nom clear that the role of the L ~ D term in
the potential is to couple the odd states to the even
states. Without this term the odd states w'ould be
present but uncoupled, and as such would have no
influence on the dynamics. The only states which
are affected are those with J = I.~ 1, for only in
this ease do S=0 and 1 states both exist. Hence
the dynamics of four states are affected: the iso-

equation}, then P, = 0, and there would be only one
wave function like the nonrelativistic theory, and
we would still have the antisymmetry.

Losing the antisymmetry means that all possible
J, I., S, and I states contribute to a partial-wave
expansion. However, the states that are totally
antisymmetric (as p- -p) and hence have isospin
I satisfying the relation

(4.5)

are the only ones which can contribute to real
physical scattering. This is because when both
particles are on their mass shell, E~=-,'W, and

I, = I'„and only antisymmetric states are allowed.
These will be referred to as even states. Hence
the symmetric states with isospin given by
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I I t
I I according to

i.p— 0.(P) = — ' 4.(p) .2Ep —5'
(4.12)

0.5 In position space in the nonrelativistic limit we
obtain

yS gS

=-IZt& &)l'"
2M (

—~ )y*.',

x (m& ~I

I

i.p ——-&+Vs —+e

(4.13)

FIG. 6. The potentials VI,& are compared with the
quadratic contributions to VL &.

-xr'(p)
2&p —S' (4.11)

This odd wave function has an asymptotic part just
like an even wave function, and is related to the
odd part of the wave function defined in (4.10)

triplet 'P, and 'D, and the isosinglet 'P, and 'D, .
The fits shown to these potentials in Sec. I will
therefore be modified by coupling to unphysical
virtual states, This additional coupling can be
thought of as an additional nonlocality which enters
the theory. As Fig. 6 shows, in the present ap-
proximation the coupling only becomes effective
inside of X=0.6m„'.

The equations for these coupled states can be
obtained from (4.1) and (4.10). For the odd states
it is convenient to introduce

= -[Z(2+1)j"'Vl,~g, ,

where S and S' are spin quantum numbers and are
either 0 or 1, and S t S'.

These equations can only be solved numerically.
Such a study should not be undertaken until the
other small terms of this type have been included.
But the best way to handle this problem is to re-
turn to the original momentum-space equations
which can be solved numerically with less diffi-
culty.
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The 3-quark component of the proton's wave function is extracted from deep-inelastic proton
and neutron scattering data. We employ theoretical results based upon a theory of the hadronic
wave function which is consistent with the interchange theory of fixed-angle and high-transverse-
rnomentum processes.

INTRODUCTION

In this paper we describe a theoretical extraction
of the quark distribution functions of the proton,
using the deep-inelastic scattering data for neu-
trans and protons. ' The present analysis differs
from those previously given' in that the Porneron
and Hegge contributions are assumed to have spe-
cific, theoretically motivated, threshold damping.
This enables us to subtract these contributions in
a mell-defined manner, isolating those portions of
the distribution functions most closely related to
the simplest three-quark component of the proton's
wave function. Among other results we find that for
this component the g-quark distribution function is
a single power of (1 —x) (x is the fraction of the
proton's momentum carried by the quark) times
that for the 6' quark, for all x.

I. THEORETICAL CONSIDERATIONS

We begin by considering the probability u, (x) for
finding a quark i of a given type, carrying a frac-
tion x of the proton's total linear momentum (in a
frame in which the proton's linear rnornentum is
large). In general each such probability function

may be thought of as having three contributions:
(i) It has a contribution u, (x) arising from the

simplest possible quark state consistent with the
nucleon's (or meson's) quantum numbers: for
instance, 6'6'g for the proton, 6'g for a m', etc.
The wave function (which when integrated over
transverse momentum gives the probability distri-
bution function) for this simplest constituent
state might, for instance, obey a relatively simple'
Bethe-Salpeter type of integral equation. Such a
component will not exhibit either Regge behavior
or Pomeron behavior [u,(x), , 1/x, with o. =-,' or
1, respectivelyj. It should exhibit a maximum
when the quarks present have approximately equal
shares of the hadron's momentum (x- ~ for a nu-
elean) and should, of course, be absent for quarks
not required to be a part of the szmplest quark
state of the given hadron (e.g. , (PRAT for a proton).

(ii) It also has a contribution which exhibits non-
Pomeron Regge behavior. In general, both this
contribution and the Pomeron contribution (iii) will
be present provided the quark-proton scattering
amplitude exhibits these respective types of high-
energy behavior (this connection is discussed in
Ref. 3, for instance), as expected of a strong-in-
teraction amplitude. In general, however, the


