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that resonance production could swamp the g's and
K's with pions. While particle-production ratios
thus lose some of their appeal for measuring the
average quark-charge leakage , we have suggest-
ed more general properties of the Pomeron that
may be related to such leakage.

One helpful experiment would be to measure the
production of resonances directly (for example,
via their leptonic decays. ) While one could not

check whether these resonances were produced
"directly" or as decay products of some other
resonances, one would at least expect the produc-
tion of (say} P and p to be much more comparable
to one another than that of (say) q' and v if the
ideas presented here are valid.

One of us (J. R. ) is indebted to Dr M.. Einhorn
for an enlightening conversation.

*Work supported in part by the U. S. Atomic Energy
Corrirriission under Contracts Nos. AT(11-1)-68 and
AT (11-1)-1764.

B. P. Feynrnan, Caltech report, 1972 (unpublished);
in Neutrino '72, proceedings of the Europhysics Con-
ference, Balatonfured, Hungary, edited by A. Frenkel
and G. Marx (OMKDK-TECHNOINFORM, Budapest,
1973);Photon-Hadron Interactions {Benjamin, Reading,
Mass. , 1972).

2G. R. Farrar and J. L. Rosner, Phys. Rev. D 7, 2747
(1973).

3John Kogut, D. K. Sinclair, and Leonard Susskind, Phys.
Bev. D 7, 3637 (1973); 8, 2746(E) (1973).

4A tujo-dimensional picture for the cascade process has
been constructed by A. Casher, J. Kogut, and Leonard
Susskind, Phys. Rev. Lett. 31, 792 (1973); Phys. Rev.
D 10, 732 (1974). To our knowledge, this model has
not been generalized to four dimensions.

5This is a special case of the more general treatment
by Cahn and Colglazier, Ref. 6, in which one takes
a = b = c in their Eq. (7).

6Robert N. Cahn and E. William Colglazier, Phys. Rev.
D 9, 2658 (1974).

~A. H. Mueller, Phys. Bev. D 2, 2963 (1970).
Robert N. Cahn and Martin B. Einhorn, Phys. Bev. D 4,
3337 (1971).

~B. P. Feynman, Photon-Hadron Interactions (Ref. 1),
pp. 271-275.
R. Carlitz, M. B. Green, and A. Zee, Phys. Rev. Lett.
26, 1515 (1971); Phys. Rev. D 4, 3439 (1971); 4, 3501
(1971); C. Lovelace, Phys. Lett. 34B, 500 (1971).
J. D. Bjorken and G. R. Farrar, Phys. Rev. D 9, 1449
(1974); V. V. Anisovich and V. M. Shekhter, Nucl.
Phys. B55, 455 (1973);V. V. Anisovich and M. N.
Kobrinskii, Phys. Lett. 46B, 419 (1973).

PHYSICAL REVIEW D VOLUME 10, NUMBER 7 1 OCTOBER 1974

Factorization and shielding of hard Regge surfaces*

Rcinhard Oehrne and Sudhir Paranjape
The Fnrico Fermi Institute, and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

(Received 13 May 1974)

Hard branch-point trajectories require shielding cuts in order to be compatible with elastic unitarity.
For coupled channels like m% and NX, shielding of the two-pion threshold is required for all

amplitudes if the hard branch point factorizes. Explicit examples are given, for the shielding of the
lowest as well as the higher thresholds.

I. INTRODUCTION

In previous papers, ' one of us has shown how a
Hegge trajectory j =a(t} can be made compatible
with two-particle t-channel unitarity in case it is
not a simple pole surface with the appropriate
branch point at the threshold t = t,. Shielding cuts
were introduced, which make the limit j- a(t) and
the continuation of the partial-wave amplitude
E(t,j }around the branch point t = t, noninter-
changeable. These shielding cuts may well be im-
portant phenomenologically at medium high ener-

gies. In Ref. 1 the discussion was restricted to
elastic amplitudes like mTr- m~, but it is of interest
to extend the shielding mechanism to sets of cou-
pled amplitudes.

It is the purpose of this paper to discuss the
shielding problem in cases with two or more cou-
pled channels. In order to restrict our consider-
ations to the essential points, we assume that the
same singular surface j =a(t) is present in all of
the coupled amplitudes, and that it has a l-inde-
pendent character. We are mainly interested in
the lowest threshold (e.g., t, =4m„') of a set of
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coupled amplitudes like, for example, ni-msgr, mn- NN, and NN- NN. %e find that it is always nec-
essary to have a shielding cut for this threshold in
the amplitude rm- NN, but the requirements for
NN- NN depend upon the factorization property of
the coupled amplitudes in the limit j- n(t). We
show that for complete factorization an appropriate
shielding cut must be present in all amplitudes,
and we give an explicit model which satisfies the
coupled unitarity equations. %e also consider
briefly the shielding of higher two-particle thresh-
olds.

From our considerations it is apparent that the
factorization of a hard singular surface j =n(t) in
the complex angular momentum plane should be
discussed in connection with the threshold proper-
ties of the function n(t) and with the shielding re-
quirements.

II. SINGLE CHANNEL

It is quite possible that the Pomeron is not an
ordinary Hegge-pole trajectory n(t) which inter-
polates physical particle states and/or resonances
for positive values of t. Ordinary Regge-pole sur-
faces generally become complex above the lowest
threshold in the t channel at t = t,. This property
of a trajectory n(t) is related to the fact that sin-
gle-particle *'states" with t ~ t, are unstable. They
are resonances described by complex poles in the
secondary Riemann sheets of the partial-wave am-
plitude E(t, j).

The existence of appropriate branch points in
the pole trajectory n(t) makes it possible for the
amplitude F(t, j) to be compatible with the unitarity
condition in the t channel. In particular, the two-
particle unitarity relation

E» '(t, j)-F '(t, j) = 2i p(t ),
with

(2)

is satisfied if n(t) has a branch point correspond-
ing to"

n(t) =n(t, )+const &(t, -t} " "0"+ ~ ~

at t = t,. The power n(t, ) is due to the fact that
E(t, j)0- (t —t,) for t- t, .

If the Pomeron is not directly associated with
resonances in the t channel, it is possible that it
does not implement t-channel unitarity in the same
may as an ordinary Begge pole. In fact, if it is not
a simple pole trajectory but, for example, a hard
branch-point surface, then compliance with the
unitarity condition becomes a more complicated
problem. Usually, it is then no more possible to
satisfy unitarity and analyticity requirements by
simply introducing a branch point into the function
n(t), as was the case for a pole trajectory. Super-
ficially, whenever n" (t)cn(t) for t «t„ there ap-
pears to be no violation of the continuity theorem
of functions of tmo or more complex variables' if
we continue the amplitude F(t, j) into the second
sheet around t = t,. However, a closer examination
of the unitarity conditions (l) and the analytieity
requirements of F(t,j) shows that there are diffi-
culties and that a branch point of n(t) is not enough.
%e mill discuss these problems elsewhere. ' Here
we concentrate on the shielding-cut method, which
may mell be more natural for the Pomeron.

In this paper me restrict ourselves to trajecto-
ries with n»(t) =n(t), although we may, of course,
have a mixed situation, where there are hard
branch-point trajectories with branch points at t
= t, a.nd in addition shielding cuts in order to pre-
vent a contradiction with unitarity. Care must be
taken in these examples to maintain the correct
analytic properties of the amplitude, which should
not inherit the branch point of the trajectories at
t =to.

In previous papers, ' me have considered several
examples of shielding cuts. ' A rather general
ansatz for the amplitude E(t, j) satisfying the uni-
tarity condition (l) is given by

(4)

where n, (t) and n, (t) are two crossing trajectories
like n, , =n, + (at)'", and

n~ = (n) +na)s

n, (t) = n, (t)+c(t —t,),
with c being a positive constant. The trajectories

n, ,(t}have no branch point at t =t,: n,",=n, ,
Although we have written Eq. (4) with a pair of
crossing trajectories, it is applicable to all other
types of singular surfaces for which I'(t,j - ac', t)}

The functions p and y are regular as re-
quired and satisfy the conditions
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p(t, a, (t)) =p(t),

lt(t, j; a, (t)) = (t —t,)'.
Explicit examples have been given in Ref. 1, where
also the mathematical features of representations
like Eq. (4) are discussed.

also in Q and N.
According to the assumptions made, the limit

lim ' . =g(t, e(t))G(t, j)
~- (~~~~&

is finite. But then it follows from Eq. (7) that

III. COUPLED CHANNELS
G" '(i, a(t))=»pg '(i, a(t)), (10)

I - I' "= 2i pI'I' "

Q —G = 2gpgg»

N - N» = 2ipGG",

(7)

with p as defined in Eq. (2). Solving for the ampli-
tudes in sheet D, we obtain'

1+2I,pI' '

11 G
1+2ipI' '

Let us consider the amplitudes for ~~, ~N, and
NN elastic sca.ttering in the s channel. %e can
ignore spin and charge variables, and we are in-
terested in the high-energy limits of these ampli-
tudes as described by the leading singularities in
the complex angular momentum plane of the
crossed channel. There are three coupled a,mpli-
tudes which are relevant,

F(vv- vv) =F(t, j),
G(vv- NN) =G(t, j),
N(NN- NN} =N(t, j).

We assume that the Pomeron trajectory j =a(t) is
a singular surface which is present in every one
of these continued partial-wave amplitudes, and
we are interested in the shielding of the lowest
two-particle threshold at t = f, = 4e „'. Let us de-
note by the superscript II the continuations of I',
G, and N through the two-pion eut in the interval
t, ~ t &t, , where t; = (4m, }' is the next higher
threshold. written in an analytic form, the exact
unitarity relations in this interval are then given
by

2~ G ll

G G

n(t, a(t)} 1,. N (t (t))
g(t, a(t)), „G (12)

In general, the ratio N "/G may approach a finite
limit for j- a(t) Then N. "(t,j}could have the same
singularity as N(t, j), with

N ll

llm

and there would be no difficulty with the continuity
theorem. But we see that the finiteness of the ratio
N "/N is directly related to the question of the fac-
torization of the singular term proportional to
(j—a) in the limit j- a(t). Exact faetorization
at the branch point or pole requires

while G(t, j-a(t))-~. Hence, as in F(t, j), we
would have a sudden change in the singula. r char-
acter of the surface a(t) as we continue G into the
second sheet. Since this behavior is not compati-
ble with the continuity theorem, a shielding cut is
certainly also required for G(t, j}. Actually, this
result is independent of the character of the singu-
larity in G. Since G/G" =1+2ipF, the functions G
and G" behave differently for j-a(t) if F-~ in
this limit.

Next we consider N(t, j), the partial-wave ampli-
tude for NN- NN. By assumption, the limit

lim ' = n(t, a(t))N(t, &)

i n(&) ti J

is again finite. With Eqs. (9) and (11), we find
then from the unitarity relation

N» N
2&pG

1+2ipP ' g'(t, a(t)}=n(t, a{t)), (14)

where we note that FG" = GF" as required in (7).
As we have reviewed in Sec. II, a hard singular

surface j=a(t), with a" (t) = a(t), of the amplitude
F(t,j }necessarily requires shielding in order to
be compatible with the first relation in Eqs. {7).
For simplicity, we make the natural assumption
in this section that the character of the surface
j =a(t) is the same for the three amplitudes. The
question then is to what extent the coupled unitarity
equations (7) require shielding cuts to be present

and implies N "/N- 0 for j- a. In this ease, we

have a sudden change in the character of the sin-
gular surface j =a(t) as we continue N(t, j), and
hence a specific shielding cut is then called for.
Of course, since we know already that G(t, j) must
have a shielding cut, it is expected from the uni-
tarity relation (7) for N that the discontinuity of N

along the two-pion cut has an additional branch
point a, {t), with a, {t,) =a (t,), regardless of fac-
to rlzatlon.
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As an example of a set of amplitudes E, G, and

N which satisfy the unitarity equations (7}, we may
make the ansatz

G(t, j)= g (t, j)F(t,j ),
N(t, j)=n(t, j)F(t, j),

where F(t, j}is given by an expression like Eq. (4)
with a hard singular surface j =a(t) and a corre-
sponding shielding cut. The functions g and n are
assumed to have no singularities in the neighbor-
hood of the points j =a(t). Since the ratio t /F has
no unitarity branch point at t = t „ the same must
be true for g(t, j); hence g" =g. For the function
n(t, j), the unitarity relation (7) implies

is singular for j-a(t), where a(t) is a hard branch
point or pole.

We write the coupled amplitudes in the matrix
form

T= '

G~JC K GKN

(o., o,„o
where F(t, j), K(t, j), and N(t, j) are the amplitudes
for mm- F77, KK-KK, and NN NN, respectively,
and G„~, G,„, G~„correspond to wm-KK, mm

—NN, KK- N¹ In view of our assumptions, we
write the restricted unitarity condition in the in-
terval t„«t «t, in the form'

n" (t, j) -n(t j ) =2tp(t)F(t j ) [n(t, j} g'(t, j-)], (18) T III 2i T p TIII (18)

and we see that choosing n =n" requires complete
factorization: n(t, j) =g'(t, j) in our example. Note
that the functions n and g must contain the kine-
matic threshold factors appropriate for G and N.

The model described above is, of course, not
meant for the complete amplitudes, but it may be
used as an ansatz for E, G, and N in the neighbor-
hood of j = o. (t), and hence for the description of
the high-energy limits of meson-meson, meson-
nucleon, and nucleon-nucleon scattering ampli-
tudes. Phenomenological calculations using these
expressions wil1. be reported elsewhere by one of
us (S.P.).'

IV. HIGHER THRESHOLDS

In the previous section we have considered only
the lowest branch point at t = t „using the exact
unitarity condition in the interval t, « t & t;, where
t, is the next higher threshold. The shielding
mechanism we have described can, however, be
generalized to higher thresholds. As an example,
we consider here briefly the mn and KK thresholds.
We ignore, a Priori, all other branch points in an
interval tp «t &t;, where t; +t~, t „=4m,', t~
=4m+, at least in that part of the amplitude which

where

with

(o„o 0)
Px

(o o oj'

(20)

The general unitarity condition in this interval
contains additional multipion thresholds, but we
define by the superscript III the continuation into a
secondary Riemann sheet with respect to the mm

and KK branch points only.
A simple solution of Eq. (18) with a singular sur-

face j =a(t) is obtained by assuming complete fac-
torization. We write it in the form

Mo

T= l Mk k v'nk
I

F

n v' nk n

(21)

In the neighborhood of the hard branch point j = o.(t),
the amplitude E is given by

x.(t j'~)F-'(t, j)=[j-~(t)]' c(t, j)--lj-~(t)l"
Jl d~p. (t, ~) [, ,«',',],8..

jp „~ca X«(t. jo~).——[j—a(t)]" dz p«(t, x) [~ (t)
'. ]'(. ) )g, ~ (22)

u„(t,) =a(t, ), a,«(t «) =a(t «), (23)

Here v and p, are positive constants. The functions
k(t, j}and n(t, j) contain the appropriate kinematical
threshold factors, but they are regular for j =a(t).
We have two shielding cuts with branch-point sur-
faces ct„(t) and a,«(t). They must satisfy the con-
ditions

and may be chosen to have the form

n„(t) = n(t}+c,(t —t „),
n, (t)=n(t)+c, (t-t, ). (24)

The functions p, (t, X) and p«(t, X) reduce to p, (t}
and p«(t) for X- o. (t), respectively, and we require
here
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For example, p~ and g~ may be of the form

(25)

(27)

a,„r(0)= (a0) - „ctr„r, (28)

it is plausible that it is the two-pion threshold
which may be most relevant for diffraction scat-
tering.

In more general models, the functions X, as well
as k and n, may also contain multipion and other
thresholds.

The ansatz (21) can be generalized to more com-
plicated many-channel situations, but here we do
not intend to go into further details. Since the
shielding branch points have intercepts

V. REMARKS

We have seen that for singular surfaces of cou-
pled amplitudes (like F, G, and N in Sec. II) which
satisfy a "(t)= a(t), the unitarity condition does not
imply factorization, even if a(t) is a pole trajecto-
ry Fo.r ordinary Hegge poles with a" (t) xa(t) and
no shielding cuts, we know that factorization is
implied by the equations (8)."The surface a "(t)
is then a zero of 1+2tp(t)F(t, j), or corresponding-
ly, a(t) is a zero of 1-2tp(t)F" (t,j). Even if the
surface a(t) does not have the appropriate branch
point at the threshold t = t „as we have assumed in
this paper, we still have 1-2tpF"-0 for j-a(t)
Hut this does not imply factorization unless N" jN
-0 for j-a(t). On the other hand, if N" /N-O, it
becomes necessary to introduce an appropriate
shielding cut also for N, and hence all the coupled
amplitudes are required to have one. We then ob-
tain a certain universality of the Pomeron together
with its associated shielding surface.

The examples we have considered in this paper
can be generalized in many ways. We have re-
stricted our considerations to more simple situa-
tions in order to exhibit the principles rather than
list all possibilities.
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