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Based on the V -A interaction, a finite, unitary theory of pure leptonic weak interaction is
formulated in the framework of the finite quantum field theory with shadow states. A pertur-
bative series, originated froxn the conventional expansion, is obtained. This new perturba-
tive series converges in the high-energy region where the original one does not. The differ-
ence between the prediction of this theory and the universal V-A theory is negligible in low-
energy regions but becomes significant in high-energy regions.

The universal V —4 theory of weak interaction'
is well established for low-energy processes as
long as one treats the interaction Lagrangian as a
phenomenological interaction to be used only in the
lowest order. It is also well known that the matrix
elements calculated from the lowest-order pertur-
bation violate unitarity at high energies. One

might take this as an indication that the higher-
order calculation should be included. However,
the V-A, theory 3s it stands is not renormalizable;
i.c., to renormalize all divergent amplitudes in-
volves an infinite number of arbitrary constants.
It is therefore, if not meaningless, at least aes-
thetically unappealing. The modification of the
universal V -A. theory has been discussed quite
extensively in the past. ' Recently great progress
in the experiments on high-energy neutrino weak
interactions has been made. ' The construction of
a workable theory of weak interaction is thex"efore

becoming more urgent. There has been some pro-
gress in the effort to unify the weak and the elec-
tromagnetic interactions such that the weak-inter-
action amplitudes become renormalizable. '

%bile the general approaches to modifying the

V —A. theory have been concentrated in the direc-
tion of introducing new heavy particles following
certain symmetry schemes, one might adopt a
quite different approach by, instead of introducing
new "physical particles, " changing the dynamical
law of the theory. This is the main idea of the
theory of shadow' states. ' In this note we present a
finite unitary theory' of pure leptonic weak inter-
action within the framework of the theory of shadow
states.

In the V -A theory, the interaction Lagrangian
for pure leptonic interaction is given by

where J~ is the leptonic current,

g„=[&„Y&(l-)',)q, +g. »(1 —y, )q&].

Following the idea of shadow-state theory, we
introduce two shadow fields for each of the leptonic
fields, ' and rewrite the current as follows:

+ Q c,"~g„' yq (1 —y5) Q c( |)'»

[q' (x), g '(x')] = iS(x' —x), -

the shadow fields g' and g' satisfy the commutation
relations

[g'(x), q '(x')] = iS(x' —x), (5)

Here p' is the field of the physical lepton e with
mass I", and g' and p' are the corresponding sha-
dow fields with masses m, and m, . The shadow
fields are quantized with the wrong" sign for the
commutation relations. In other words, in contrast
to the physical fields g' which satisfy the commuta-
tion relations
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[q,'(x), q,'(x')] = i S(x' -x) .

The c,. are weight factors to be chosen in such a
way that the theory is finite. Re may choose the

c,. as follows:

jcnj2= I

Lcr
j

aj2 1 ™3'= '2 =I -m3 2

m~-m~
2 3

The interaction Lagrangian in terms of the current
J'„has the same form as (1).

Here we see that the parameters involved in the

theory are the coupling constant and the eight sha-
dow masses. From the theoretical point of view,
there is no a pro~i reason that the shadow masses
for different leptons have to be the same. How-

ever, since the shadow-mass parameters are con-
sidered as, instead of masses of "physical parti-
cles, " dynamical parameters similar to the cou-
pling constant, we may follow the principle of
simplicity and choose the same masses, say, m,
and m„for all four different lept:ons. The nine

parameters in the theory are then reduced to three
parameters. With this choice of shadow mass, the
weight factors c,. become more simply

m'-m m»-m
Cf 1 C» ™3C» 2' m3-m2' ' m2-m3'

gf» 1 CI» 3 Ct»
I & 2 y 3 )m3 ™2 m2 m3

where the C» are the weight factors for the massive
lepton fields and the C,'. » those for the massless
lepton fields. The superscript X=1 is for e or v„
and I= 2 is for p, or p„.

The space defined by the state vectors of this
system is a vector space with indefinite metric.
The physical states are defined as all the states
without any excitation of shadow quanta. The S-
matrix operator describing physical processes is
defined in the physical subspace formed by the
physical states. In order to make this S-matrix
operator unitary, the boundary conditions have to
be properly altered. These boundary conditions
are different from the Feynman-Dyson theory. In
the interaction representation, the S-matrix oper-
ator for the finite quantum field theory with shadow
states can be written in the following simple form'.

G"S„,

with

n

S„=— ~'zl (t') [e(t' t" ) &'+ ,&(t' ——t")~']z—,(t") [t)(t" t")~~+
& &(t"-' t")~']Z, (t")-~~dt' dt", (11)

G

where n~ and m' are respectively the physical and

the shadow-state projection operators.
%ith the S matrix given above, one may proceed

to compute the scattering amplitudes in the per-
turbative manner. The scattering amplitudes so
computed are all expected to be finite. The main
question here is how we obtain the better-approxi-
mated amplitude. In the V-A theory, even though
in low-energy processes the predictions of the
lowest-order term agree with experiment so well,
it is apparently not a good approximation in the
high-energy region where higher-order terms are
expected to be important. However, as we will
show later, the perturbative series with the inter-
action Lagrangian in Eg. (I) does not converge,
since part of the series, corresponding to those in

Fig. 1(a), diverges there. In order to avoid this
difficulty, we will rearrange the perturbative se-
ries in the energy region. where it is convergent.
The resulting new series is then analytically con-
tinued into the region where the original series
diverges. The first-order diagram in the new se-

ries is the sum of all the diagrams in Fig. 1(a).
In this note, we shall concentrate on ep scattering
and muon decay.

Consider first the electron-anti-electron-neu-
trino scattering. The diagrams contributing to the
first-order terms of the new perturbative series

P-q
k'

+ 0 ~ ~

+ ~ ~ ~

(b)

FIG. 1. Two sets of chain loop diagrams which are the
two first-order diagrams in the new perturbative series.
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to be defined are shown in Fig. 1(a). Let us denote
the four-momenta of the incident (outgoing) elec-
tron and antineutrino by p (p'} and k (k'). The scat-
tering amplitude for the first diagrams is given,
as usual, by

i~ -Z~(k) y„(1—y, )u(p)u(p' ) y, (1 —y, )u(k'}g"'. G

&M@ lVo~ (12

where the usual conventions' have been adopted and
8',"' =g"". The tensor M„,represents the part of
the four external lines of the first diagram which is
in fact the common factor for all the diagrams in
Fig. 1(a). In contrast, the tensor W,"" is the inter-

nal part of the first diagram varying from diagram
to diagram. The total contribution M'" of those
diagrams in Fig. 1(a) to the amplitude can be
summed:

,4"(P) = iles-„, g (-i)"W„"',
yf -0

(13)

where S'„""is from the n-loop chain diagram. Each
loop involves an electronic or muonic line. In the
present model, there are totally eighteen combina-
tions, half of them for the electronic loops and the
others for muonic loops, because of the presence
of two shadow states accompanying each physical
particle. The one-loop contribution W',"' can be
immediately written down:

2

Q 2

fit Tr
)

if 1 )
l P j )

/= 1

P etc,.'D, , ,
l~ j

1y" (1 -&5) q y'(1 -y, )

(14a)

(14b)

where p (=p +k =p'+k') is the total four-momentum
of the system. For definiteness, we have taken the

following assignments:

p/Jh, V

W"" =i g""—,AQ') —i , B-Q'}, (16a)

m =m
1 m, =O, m, =m„m,=m, . (15)

The integral f &
means that its analytic structure

is specified according to the shadow-state theory.
In fact, its imaginary part vanishes if one or both
of the two internal lines are shadow states. The
integral D, j obviously has quadratic divergence.
However, this divergence in 8'", ' can be removed
if the conditions in Eqs. (8) and (9) are satisfied.
By standard technique" and by making use of Eqs.
(8) and (9), one can calculate the one-loop part

For convenience, we separate it into two
parts, the s-wave and p-wave components:

A. Q') =V 2ll'G Q
I= I

B(p') = v 2 m'G g
g c'c"w, ,y'),

glgtlB $2)

(16b)

(16c)
1=1 i, j

The p-wave and s-wave form factors, AQ'} and

BQ'), depend on the combination of the masses.
The zero-mass case, where one of the two inter-
nal lines in the loop is a neutrino, cannot be ob-
tained by analytic continuation in mass from the
cases involving no neutrinos. Therefore, we ex-
press them separately: One has, for the neutrino
casey

, ') lt2l*-,*~(l," )
~ ("' & )".-l*(l *)'

2-m 2

-q(4p' —Sm,.') —,' +@(2p' —3m, ') lnm, '+ l~m, ',
~2 2 2 2 2 ' —ng 2

B„Q2)=2™2 ' ln ~ —2 ' +lnm ' —1
p2 Pl p2 i )

in the domains' ~ m,.', and for the other cases (j & 1),

(17a)

(17b)

6 12 4 t l & l p2 m 2 m&2 II/2 m 2 mt2}) j

ln „+rl(2p —Sm, —Sml )ln(m, m'. ) + ', ' + —,'(m '+m") (18a)
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'(m, ' —m,")' (m, ' —m,.4) m, ' (m, ' —m,")'
(18b}

U(p', m,. ', m,")= [(p'-m, '+m,"P —4m, p2']"',

in the domain 0 «p' «(m, - m,")'.
The form factors A„.Q') and B,&(p') are real in

the aforementioned regions, respectively. Below
the threshold involving shadow states, they are
real analytic, Hence, once the cut structure of
the form factors ls specified, they are defined ln
other regions by analytic continuation, with the
prescription in accordance with the shadow-state
theory. The logarithmic cut of the form factors
A„(p-'}and B«Q') is extended from m, to infinity.
The cut structure for A, ,Q') and B„.g) is similar
to that of the lowest-order self-energy diagram in

quantum electrodynamics. Its square-root cut
from UQ', m, ', m,'2) runs from (m, -m]) to

(m, -m,')', while the logarithmic cut runs from
(m, -m,')' to infinity. Whenever one or both of the
internal lines are shadow states, their imaginary
parts (if any) must be discarded in the formulation
of the sl'adow-state theory. This is explicitly indi-
cated by the integration notation J&~~. The above
analytic structure is valid for the equal-mass
cases also. It is interesting to note that AQ') and

Bg') have a.n unwanted pole atp'=0. However, we
will later show that in the new perturbative series
(to be defined}, the pole atp'=0 disappears.

One can also calculate the n-loop contribution
WPQ'} for n &1. It turns out to be the tensor pro-
duct of X one-loop functions 8'",":

(19a}

~f1 Pll P P off I'+2) + ~
ff gP 2}

(19b)

where we have used the orthonormal relations for
the s-wave and p-wave projection operators, p"p "/
p' and Q"" —Q~p" jp')]. From Egs. (16b)-(18b),
one can easily show that in the physical region

where'' is the total energy,

A Q') —— G w'p'iW

when p' is larger than some constant q. Since the
coupling constant C is expected to be small, the
infinite sum P (-i)"W„""with proper choices of sha-
dow masses converges in some region of p', par-
ticularly near the physical threshold. In this re-
gion, we shall express the sum in terms of a
closed-form expression, so that the latter can be
analytically continued into the region where the
former is divergent, The closed form corresponds
to one of the two first-order diagrams [see Figs.
2(a) and 2(b}] in a new perturbative series. This
new perturbative series can be diagrammatically
represented by all the Feynman diagrams with no
chain loops, which we call dressed diagrams. It
is due to the fact that any Feynman diagram with
chain loops is contained in the corresponding
dressed diagram in the new perturbative expansion
obtained from the former by suppressing the chain
loops.

From Eqs. (13) and (19b), the first-order ampli-
tude M" in the new yerturbative series is given by

(21a)

1 1

I +BQ') 1 -AQ')

(21b)

The above expression is one of our main results.
It means that the contribution of all the chain dia-
grams in Fig. 1(a) is represented by the two form
factors, E,Q') and F,Q'), depending only on the
square of the four-momentum of the system. As a
prescription, the scattering amplitude for any
dressed diagram in the new perturbative series can
be obtained by replacing g"' in the corresyonding

and (20)

BQ'}- -f G v3(m'+ g'),

as p' ~, where m and )4 are respectively the
masses of electron and muon.

From FAIs. (13), (19b), and (20), one can easily
see that the original perturbative series diverges

(b)

FIG. 2. Diagrammatical representations of the two
lowest-order diagrams in the new perturbative series.
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Feynman diagram in the original series by

p p
PvF g2) +P 2 F Q2)

The new amplitude M'~ vanishes atp'=0, since
&(p') and B(p') approach infinity there. As men-
tioned before, the amplitude M&') does not have a
pole at p' =0 @bile each n-loop amplitude for n
~ 1 has. From Eqs. (20) and (21b), one can easily
show that

1
1 —i(v 2/2)Gw'(m'+ p. ') '

as p'- ~. Hence, the amplitude M '~ can be contin-
ued into the region where the original infinite sum
diverges.

From Eq. (21a), the differential cross section
for e v scattering is given by

(4[(s+m')' —(s -m')cos 1}]'IF,(s) I' -2m'(1 —cos 8) Re[F,(s)F,*(s)]—m' IF,(s) I'j (23a)

s 2&' 1 6v~[1+2G v (m +0 ) ]
(23b)

as s-~, where 6) is the c.m. scattering angle and
s=P'= (p+h}'. Partial-wave unitarity puts a bound

on do/dQ:

~- If.+3f, co«l'/s, (24}

where f, and f, are the s-wave and p-wave ampli-
tudes with Ifo I, If I

c 1. Since the weak coupling
constant G is expected to be smail (-10 "Me1t '),
we can see from Eqs. (23b) and (24) that the dif-
ferential cross section in Eq. (23a) satisfies par-
tial-wave unitarity irrespective of what the shadow
masses are. In a similar manner, the electron en-
ergy spectrum of polarized muon decay can be cal-
culated.

We have shown explicitly that the first-order
amplitude M" of ev scattering satisfies unitarity
and has no unwanted pole at p' =0. These behaviors
are independent of the choice of shadow masses.
However, further properties of the amplitude de-
pend on the choice of the coupling constant and the
shadow masses. For presently available data, " "
this choice might not be unique. With t" = 1.0129
t"~ ", m, ='785.41 MeV, and n, =224.00 MeV, the

deviation of the present model from the universal
V-A theory is within several thousandths, in the
low c.m. energy region up to 10' MeV. Hence, the
electron energy spectrum of polarized muon decay
and its decay rate ate in good agreement with the
experiments within experimental error. The elas-
tic cross section for ep scattering in the energy
region from 3.6 to 6 MeV is about 2% larger than
that from the universal V -A theory. In these low-
energy regions, the difference between the two
theories is negligible. In high-energy regions the
former deviates from the latter significantly, as
is manifested by the fact that one violates partial-
wave unitarity while the other does not. When the
c.m, energy of incoming neutrinos increases to
10' MeV, the differential cross section for ep scat-
tering drops to one quarter of that calculated with
the V-A theory. It is interesting to see whether
the high-energy behavior of ev scattering predicted
by the present model can be confirmed by experi-
ments,
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EA'ects of possible anomalous Lorentz structures in the neutral weak interaction in neutrino-electron

scattering, deep-inelastic neutrino-nucleon scattering, and pion production in the Na region are
discussed.

Evidence' has been accumulating that the weak
interaction contains a neutral current which cou-
ples to neutrinos. While current theoretical
thought heavily favors the proposition that the
neutral current consists of a linear combination
of vector and axial-vector currents, the ultimate
verdict should be left to experiment. In this note
we would like to work out the form of experimen-
tally measurable distributions while assuming a
general Lorentz-invariant structure for the neu-
tral current. This question has already been com-
mented upon by Hosen' and by Sakurai' for various
special cases. Indeed, even the cherished V -A
structure of the charged current should be put to a
rigorous experimental test, as discussed in detail
by Cheng and Tung. '

Let us first consider the processes' v„(k}+e(P)- vv(lp')+e (P') and v„e —v„e . We write down
the most general local Lagrangian without deriva-
tive coupling':

t =gvvv&cf~~ e+gww&c(75iN-'Y 75e

+34V&cfY5~7 e+gvWWa~'Y 'Y5&

+gss vie +gs~ yysveyse

+ 'Lg~s ~5PCe + sgsp v Ve/58'

+ gz&Vgct~v8g e + ggy. zpg„~y V(f.o'

Hermiticity implies that all the g's are real. Note
that CP invariance would imply g»= g~ =g~~=0.
We do not assume CP invariance in what follows.
Experimentally, the incoming v„is left-handed

and so the amplitude for v„e —v„e becomes

3m= vy (l —r, )~~ (g» -ZA~, )s

+ v(l -y, )ve(A-gP&2)e

+ gr vo„s(1—y, )veo' e,

gV 2(SV'Y SAY) ~

1
gA 2(gAA RFA) ~

gS 2( ASS 2gPS) ~

A = 2 ( gPP —&k"SP ) ~

gr 2(8TT 2gf'T) '

Hence, CP invariance would correspond to reality
of all the quantities in Eq. (3). Note that the only
terms which may violate P invariance without also
violating CP invariance are the V and A terms.

A straightforward but somewhat tedious calcula-
tion gives, in the laboratory frame, that

2% do' 2 2

mE dy
—(v e -v e )=2(g +g~) +2(g -g~) (&-S)

+ (I A I'+
I rP I')y'

+ 32 I grl'(l —ly)'

-& Re[g (gi+g$)]x(i - 2y),

(4)
where y ~E(recoil ele tcr no)/ E(incoming neutrino).
Of course, one may also equivalently express this


