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The transformation between current and constituent quarks is discussed as it applies to real
photon transitions. The general algebraic structure of such transitions is presented, and a
resulting set of selection rules is derived. Many specific amplitudes for both mesons and
baryons are worked out, and both their magnitudes and signs are compared with available

experimental data.

I. INTRODUCTION

A complete knowledge of the nature of the trans-
formation from constituent to current quark states,
together with the identification of the observed
hadrons with simple (constituent) quark-model
states, would permit one to calculate all current-
induced transitions between hadrons. A major step
in this direction has been taken by Melosh,' who
was able to formulate and explicitly calculate such
a transformation in the free quark model. While
the details of such a transformation certainly de-
pend on strong-interaction dynamics, it is possible
that certain general algebraic properties of the
transformation abstracted from the free quark
model may hold in nature.

We shall assume that such a transformation does
indeed exist, and that some of its algebraic prop-
erties can be abstracted from the free quark mod-
el. For the case of the axial-vector charge, the
many consequences of this for pion transitions
have already been extensively worked out and
compared with experiment.?** Here we report the
results for real (¢2=0) photon transitions.

In the next section we present the origin and the
basic properties of the theory along with the as-
sumptions involved in applying it to actual hadrons.
The general algebraic structure of photon ampli-
tudes is discussed, as well as the method of cal-
culating specific matrix elements. We derive a
set of selection rules which include, and general-
ize, the old result* that the transition from the
nucleon to 3-3 resonance should be magnetic dipole
in character. This general discussion of the the-
ory is completed by a comparison with other the-
ories with a related algebraic structure.

In Sec. III the photon transitions between meson
states are detailed, along with a comparison of
the predictions with the available experimental
data. Then we turn to a detailed exposition of
baryon electromagnetic transition amplitudes in
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Sec. IV. A comparison of the predicted ampli-
tudes with experiment, in both their magnitude
and sign, is found in Sec. V. The signs are test-
able through a multipole analysis of pion photo-
production y N= N* -7N, where the signs of the
previously calculated pion decay amplitudes?®
also come into play. As reported in a previous
paper,® consistency of experiment and theory is
found, including agreement with the relative signs
of pion decay amplitudes obtained from analyzing
7N - N*-7A. A summary and some conclusions
are found in Sec. VI. The general outlook is very
good, encouraging further study of the underlying
dynamics and the extension to the ¢2+#0 region.

II. PHOTON AMPLITUDES AND THE TRANSFORMATION
FROM CURRENT TO CONSTITUENT QUARKS

As we shall be concerned with current-induced
transitions between hadrons, let us first consider
the algebra formed by the 16 vector and axial-
vector charges, Q%(¢) and Q%(¢), which are simply
integrals over all space of the time components of
the corresponding currents measurable in weak
and electromagnetic interactions:

Q)= [a*xV§&, 1), (1a)

Q30 = [a’xAsE,1). (1b)

Here «a is an SU(3) index which runs from 1 to 8.
At equal times these charges commute to form the
algebra abstracted from the quark model by Gell-
Mann®:

[Q¥(2), QB(1)]=if*B7Q(¢), (2a)
[Q%(2), RE()]=if*B7QIU¢), (2b)
[Q2(2), Q)] =if*B7QY(¢). (2¢)

This is the algebra of chiral SU(3)xSU(3), for it
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can be easily shown that Eqs. (2) are equivalent to
the statement that the right-handed charges, Q%
+QF, and the left-handed charges, Q% - @F, each
form an SU(3), and that they commute with each
other—hence, chiral SU(3)xSU(3). For @=1,2,3
the Q%’s are the generators of isospin rotations;
for «=1,...,8, they are the generators of SU(3).
The last of Eqs. (2), sandwiched between nucleon
states moving at infinite momentum in the z direc-
tion, yields the Adler-Weisberger sum rule.”

Taken between states at infinite momentum,® the
Q%’s and Q¢’s are “good” operators, i.e., they
have finite (generally nonvanishing) values as p,
-, These values are the same as those of space
integrals over the z components of the respective
currents. If we adjoin to the integrals of the time
component of the vector currents and the z com-
ponent of the axial-vector currents® (which com-
mute like 30 and 3A%0,), integrals over certain
“good” tensor current densities, the SU(3)xSU(3)
algebra between states at infinite momentum can
be enlarged still further. Letting the index a cor-
respond to an SU(3) singlet when a =0, we have 36
charges which commute like the products of SU(3)
and Dirac matrices: 3\%, 31x“Bo,, 3A%Bo,, and
2% ,, where a=0,1,...,8. These act as an
identity operator plus an SU(6), algebra of 35 gen-
erators. We refer to this algebra, introduced by
Dashen and Gell-Mann® in 1965, as the SU(6),, of
currents. We denote these generators collectively
by Fi, and use them to label the transformation
properties of our states and operators. Note that
Bo,, Bo,, and o,, which commute with z boosts
and are “good” operators, are not the same as
the spin components o,, o,, and ¢,. The appro-
priate algebra to use is that of SU(6), and not
SU(6). For quarks, §=+1 and quark spin and “W
spin” are the same; but for antiquarks, g=-1, we
have -o,, —0,, and o, instead of the antiquark
spin components o,, ¢,, and o, .

In what follows we will label states and operators
by their transformation properties under this
SU(6),, algebra of currents. For this purpose we
shall often use just the SU(3)xSU(3) subalgebra of
the whole SU(6),, algebra of currents, as this sub-
algebra has elements which are known to be direct-
ly measurable in weak and electromagnetic inter-
actions. The over-all SU(6), representation will
either be obvious or be made explicit. We will
write

{(A9 B)Sz ’ Lg} y

where A is the SU(3) representation under @+ Q¢
B is the representation under Q% - @Z, and S, is
the eigenvalue of @I, the singlet axial-vector
charge.® The quantity L, is then defined in terms
of the z component of the total angular momentum

J, as L,=J,-S,. The “ordinary” SU(3) content
(under Q%) of such a representation is just that of
the direct product AXB.

All representations of chiral SU(3)xSU(3) can be
built up from (3,1),,,, (1,3)_,,,, (1,3),/,, and
(3,1)_,,, which we define to be the current quark
andcurren! antiquark states with spin projection
+73 in the z direction. The quarks form a 6 and
the antiquarks form a 6 in the full SU(6),, of cur-
rents.

Consider next combining three current quarks
to form a baryon. If we take L,=0 and a symme-
trical quark wave function, then we find that the
states with net spin S=3 and S=% transform as

S=3, S,=5: {(10,1),,,,0},
5=3, S,=3: {(6,3),/,,0},
S=3, S,=3: {(6,3),,,,0},
S=3, S,=—3: {(3,6)_,,,,0},
§=3%, S,=-3: {(3,6)_,,,,0},
s=3%, §,=-% {(1,10)_,,,,0},

and they all lie in a 2@ of the full SU(6),, of cur-
rents. In particular, if a nucleon at infinite mo-
mentum with J,=3 acted under the algebra of cur-
rents as if it were simply composed of two cur-
rent quarks with S, =3 and one current quark with
S,=—§ in a symmetrical wave function, we would
have

IN>: |_5_§; {(Gy 3)1/270}> . (3)

However, the SU(3) content of (6, 3),, is justthat
of an octet (including the nucleon) and decuplet [in-
cluding the A(1236)]. Since Qg is a generator of
SU(3)xSU(3), it can only connect this representa-
tion to itself, i.e., for @ =1,2,3 it can only con-
nect the nucleon to the nucleon or to the A(1236).
Furthermore, such a classification of the nucleon
gives g, =%. Both these results are in glaring
contradiction with experiment. The nucleon cannot
be in such a simple representation. This is al-
ready apparent from the Adler-Weisberger sum
rule’ itself, for it shows that the nucleon is con-
nected by a generator of the algebra of currents,
the axial-vector charge Q¢ (in the guise of the pion
field) to many higher mass N*’s. Thus the nucleon
and these N*’s must be in the same representation
of SU(3)xSU(3). Conversely, the nucleon state
must span many different representations'® of the
SU(3)xSU(3) and SU(6),, of currents.

Therefore physical hadron states like the nucleon
are not simple in terms of current quarks, i.e.,
they are not in the irreducible representations of
the SU(6),, of currents prescribed by the naive con-
struction of baryons out of three current quarks
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(or out of quark-antiquark for mesons). As the
next simplest possibility, let us assume instead
that there exists a unitary operator, V, which
transforms an irreducible representation (I.R.) of
the algebra of currents into the physical state:

|hadron) = V|IL.R., currents) . (4)

The state |I.R., currents) corresponds to baryons
being built from just three current quarks and me-
sons from quark-antiquark. Thus, for example,
the complicated nucleon state is written as

[N)y=V|56,{(6,3),,,,0}). (5)

All the complicated mixing of the real hadron
states has been subsumed in the operator V.

In the following we will be interested in evalu-
ating the hadronic matrix elements of charge or
current operators, 0. Using Eq. (4) we have

(hadron’|©%|hadron)
=(L.R.’, currents|V~'0“V|L.R., currents) .
(6)

The complexity of hadronic states under the alge-
bra of currents has been transferred to the effec-

J

tive operator V-'0*V which may be studied as an
independent object. Moreover, if the operator
V-l0*V has definite and simple transformation
properties under the algebra of currents, the way
is open to systematically evaluate the matrix ele-
ments of ©% between any two hadronic states.

The operator V can be viewed in another way.
It is easy to see that if we define a new set of gen-
erators

Wi=VFiv-, 7)
then the W' also form an SU(6), algebra. Further-
more, from the definition of V in Eq. (4), hadron
states transform under the W' as those irreducible
representations which correspond to the naive con-
stituent quark model of hadrons. We therefore
call the quark states of this new SU(6),, constituent
quarks,'! and identify this new algebra with that of
the SU(6),, of strong interactions.'? Equation (4)
can therefore be rewritten as

|hadron) = |L.R., constituents)

=V|LR., currents), (8)
while Eq. (6) becomes

(hadron’|©®% |hadron) =(L.R.’, constituents|®“|LR., constituents)

=(L.R.’, currents|V-'@*V|LR., currents) . 9)

From this standpoint the operator V just takes one
from one set of basis states to another, or alter-
nately, from one set of generators to another.

In the present paper we are interested in cur-
rent-induced transitions between hadrons at ¢%=0.
For the axial-vector current, which is not con-
served, the axial-vector charge induces nontrivial
transitions and one wants to know the algebraic
properties of the transformed charge, V™'QgV.
For the vector current, however, the correspond-
ing charges Q“ generate SU(3), which is taken as
exact, so that V is an SU(3) singlet and

VRV =Q%. (10)

The first nontrivial operator involving the vector
current is

D‘i‘:;‘fd%[%ﬂ)}vg(i,t). (11)

Matrix elements of DS between states at infinite
momentum are proportional to vector current
transition amplitudes where the ¢?=0 current car-
ries J,=x1, and we will then want to know the al-
gebraic properties of V™'D{V. Taken between
states at infinite momentum, commutators of Q;"

r

lead to Adler-Weisberger sum rules,” while com-
mutators of DI lead to Cabibbo-Radicati sum
rules.®

The algebraic properties of the untransformed
operators are that

Q% transforms as {(8, 1), - (1, 8),, 0}, (12)
D% transforms as {(8, 1), +(1, 8),, 1} . (13)

For guidance on what might be the algebraic prop-
erties of V7!QZV and V™DIV, we turn to the free
quark model where a nontrivial transformation is
already needed. There Melosh® has been able to
construct an explicit form of the operator V. Ina
free quark model, both V~!'Q7 and V 'DJV must
connect only single quark states to single quark
states; they thus have the general form

V'lQ?V

or (14)
vtV [dixa ()F(0, e,

where § is some function of the derivatives (d)

and the gamma matrices (y). An explicit form of
& was originally determined by Melosh, ! while
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Eichten et al.' argued that a large class of such
functions exist. More recently, Melosh has re-
stricted this class by imposing angular momentum
transformation properties on the “rotated” cur-
rents and obtained a form of the transformation Vv
which is just that found by Dashen and Gell-
Mann'! for free quarks in connection with attempts
to find representations of local current algebra.

It is from the free quark model that we abstract
only the algebraic properties of V~'Q¢V and
V-'D$V. What is most important for us in such a
model is that these transformed operators are
“single quark” operators; i.e., they depend only
on the coordinates of a single quark and they do
not create connected ¢g pairs.

It is this property that we abstract from the free
quark model and assume to hold in nature. In gen-
eral, we assume the following: The operators
V-1QSV and V™D V have the algebraic transfor -
mation properties under the SU(6), of currents of
the most geneval linear combination of single
quark operators consistent with SU(3) and Lorentz
tnvariance.

This is verified in the explicit free quark model
calculations. The operator V™'Q¢V, with J,=0,
contains two terms which transform under SU(3)
xSU(3) as {(8,1),-(1,8),, 0} and {(3,3),, -1}
-{(3,3)_,, 1} and behave as components of 35’s of
the full SU(6), of currents. To apply this to ob-
served hadron transitions in the case of QF, as
few axial-vector weak decays are measured, one
needs to relate matrix elements of QZ between
states of infinite momentum to matrix elements of
the pion field via the partially conserved axial-
vector current’ (PCAC) hypothesis. One then has
an approximate theory of the algebraic structure

J

: € b
I'(hadron’~hadron +y) = T 31 Z

where e is the proton charge, py is the photon mo-
mentum, and the sum extends over all possible
helicities A. Matrix elements of D_ have been
eliminated from Eq. (15) by relating them to those
of D, via parity. Note that although the definition
of DY in Eq. (11) involves only a first moment of
the current, between states at infinite momentum,
all multipole amplitudes consistent with the spin
and parity of the states enter matrix elements of
D$. Equation (15) may also be obtained from con-
sideration of the narrow-resonance approximation
to the “hadron’” contribution to the Cabibbo-
Radicati sum rule®® on “hadron” states. We have
no arbitrary phase-space factors.

For the present we shall use the narrow-reso-

<hadron’, A |D3 +<—\/1-§:>Di

of pion amplitudes.'®

As matrix elements of D3 +(1/vV3)D% are directly
proportional to photon amplitudes, no additional
assumption is necessary. Furthermore, matrix
elements of D¢ are equal, up to a sign, to those of
D% via parity conservation. We need then only con-
sider the properties of DS. Algebraically, the op-
erator V-'D$V, with J,=1, is slightly more com-
plicated than V~'QS'V. In general, as pointed out
by Hey and Weyers,'” there are four possible
terms: {(8, 1), +(1, 8),, 1}, {(3,3),,0}, {(3,3)_,,2},
and {(8,1),~(1,8),,1}. It appears that all four oc-
cur in the operator V~'D$V in the free quark mod-
el.!"'* However, the last term, which corresponds
to ¢g in a net quark spin $=0, unnatural spin-
parity state, has no analog with any natural spin-
parity (in particular, vector-meson) state of the
quark model. Moreover, under a generalized
parity transformation, Pe~i""y, which takes
{,B),, L.} ={(B,A)_s,,~L,}, the first three
terms do not change sign while the last one does.
For the longitudinal (J,=0) component of the cur-
rent this would eliminate the possibility of such a
term. Therefore the {(8,1),-(1,8),, 1} term in
D¢ has no correspondence with any natural spin-
parity meson state and cannot occur in the longi-
tudinal component of the vector current. In the
past we have therefore neglected such a term.2+3+%
While we will carry all four terms in the remain-
der of this paper, we will at various times indicate
experimental limits on the size of the {(8, 1),
- (1, 8),, 1} term’s contribution to various transi-
tions and indicate what situation ensues if it is
totally absent.

For photon decays, we have directly that in the
narrow-resonance approximation,

hadron, A—1>‘2, (15)

nance approximation expression, Eq. (15), for
photon decay widths in order to make a comparison
of the theory with experiment. For broad reso-
nances in the initial and/or final state, or for de-
cays of resonances where the physically available
phase space is small, such an approximation in-
troduces non-negligible errors. However, we view
the present comparison as being sufficiently ac-
curate as a first test of the theory, particularly in
view of the experimental errors on values for pho-
ton (as well as pion) decay widths. When the situa-
tion eventually warrants it, the values of
[¢hadron’|Q%|hadron)|? and |{ hadron’|D|hadron)|?
should be determined irrespective of any approxi-
mation in terms of contributions to Adler-Weis-
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berger and Cabibbo-Radicati sum rules, respec-
tively.

Thus, in spite of the enormous complication of
V itself, we abstract simple algebraic properties
of V™'Q¢V and V™DV from the free quark model
and postulate them to hold in the real world.
Namely, we assume that in nature V~'QZV trans-
forms as {(8,1),-(1,8),, 0} and {(3, 3),, -1}
-{(3,3)_,, 1} while V-'D3V transforms as
{(81 1)o+ (1, 8)01 1}’ {(3’ §)19 O}! {(5.’ 3)-19 2}, and
{(8,1),-(1,8),,1}, all components of 35’s of the
full SU(6),, of currents.

We are now almost in a position to apply the the-
ory to actual decays. Recalling that, for example,

(LR.’, constituents [D%|LR., constituents)

=(LR.’, currents |V™'DSV|LR., currents),
(16)

we see that with the assumed algebraic properties
of V-1D$V (as abstracted from the free quark mod-
el), we know the transformation properties under
the SU(6),, of currents of all quantities in a given
matrix element of DS between quark-model states.
To make contact with experiment we make one
physical assumption: Namely, we assume that we
can identify the observed (nonexotic) kadrons with
constituent quark states. In other words, we as-
sume that there is a portion of the physical Hilbert
space which is well approximated by the single-
particle states of the congtituent quark model. For
baryons, composed of gqq, we have candidates'®
which fit very well into the SU(6),,xO(3) represen-
tations 56 L=0, 70 L=1, and 56 L=2. For me-
sons we have correspondingly the ¢7 states 35
L=0,1L=0, 35 L=1, etc. As we assume that

states with different values of the quark spin as
well as L, and S, are related as in the constituent
quark model, i.e., by the SU(6), of strong inter-
actions, we relate different helicity states of a
given hadron to each other.

With this physical assumption, we know the al-
gebraic properties (under the algebra of currents)
of all terms of a transformed matrix element of
the current operators taken between physically ob-
served states. Therefore we may use the Wigner-
Eckart theorem and tables of Clebsch-Gordan co-
efficients to carry out the calculation from this
point onward. Note that SU(6), invariance of the
transition operator under either the algebra of
currents or that of strong interactions is notf as-
sumed—only the transformation properties of the
various terms are needed in the calculation.

More explicitly, for a given matrix element of
DY we write the initial and final hadron state with
J,=A -1 and A, respectively, in terms of states
with definite quark L, and S,. This involves cou-
pling internal L and S to form total J for each had-
ron. After transforming to an SU(6), of currents
basis using V, the matrix element of any particu-
lar term in V-'D{V can then be written, using the
Wigner-Eckart theorem applied to representations
of the SU(6),, of currents, as a reduced matrix ele-
ment times the product of quark angular momen-
tum, SU(6),,, SU(3), and W-spin Clebsch-Gordan
coefficients.!®'2° For example, suppose we were
calculating the matrix element of the {(3, 3),, 0}
piece of V™'D$V between initial and final states
with helicity A — 1 and X, total angular momentum
J and J’, internal quark orbital angular momen-
tum L and L', quark spin S and S’, SU(6), repre-
sentation R and R’, and SU(3) representation A
and A’, respectively. Then we have that

(R',A',L'",S’,J’,A, currents |{(3,3),,0} |R, A, L,S,J,x~1, currents)

= Z (LSL,S,|Jx=1)(L'S’L.S:|J'A) (R'|35|R)

(A’18]4) (wiw, |w'w})

Ly, L, .S, .S, quark angular momentum SU(6)y Clebsch-  SU(3) Clebsch- Ww-spin Clebsch-
Clebsch-Gordan coefficients Gordan coefficient Gordan coefficient Gordan coefficient
x(R', L', L}[{(3,3),,0}IR,L,L,). (17

reduced matrix element

The W-spin Clebsch-Gordan coefficient follows
since the (3, 3), operator has W=1 and W,=1. For
any state, W, =S,. For baryons, W=§, while for
mesons we have the conventional correspondence
(W - S flip),*

|W=1, Wz=1>:|8:1? 5‘:1).
lw=1, w,=0)=-|S=0, S,=0),
|lw=1, W,==1)==|S=1,5,==1),
,W:O, W':O>=._IS:1‘ S'=0>.

(18)

r

The signs which result from using Eq. (18) to con-
vert states from quark spin to W spin are under-
stood to be included in Eq. (17) in the SU(6),,
Clebsch-Gordan coefficient.

The reduction of the other terms in V~'D$V pro-
ceeds just as above, and we need only recall that
(8, 1), +{1, 8),, (8,1),~(1,8),, and (3,3)_, trans-
formas W=W,=0; W=1, W,=0; and W=1, W,
=-1 objects, respectively. Pion decays (matrix
elements of QF) are handled in an analogous man-
ner, except, of course, the initial and final states
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have J,=\. Note that since total J, is conserved
for either hadron’-hadron + 7 or hadron’

~hadron +y decays, and since the net value of W,
=S, must also be the same by the W-spin Clebsch-
Gordan coefficient in Eq. (17) and its analogs, it
follows that L,=J,~ S, must also be additively con-
served between the initial and final state (including
the pion or photon operator).

The general structure of the results is now ap-
parent. A matrix element of D$(Qf) between had-
ron states will be equal to the sum of four (two)
terms, each of which is a product of Clebsch-
Gordan coefficients and a reduced matrix element
which depends on the SU(6), multiplet (and L, val-
ues) of the external state components and the par-
ticular term in V='D$V (V'QFV) involved.

If L is zero, as is the case in essentially all
cases of physical interest at the present time,
then of course L,=0 and the L] dependence of the
SU(6),, reduced matrix element becomes trivial
due to conservation of L,. In such a case (L=0),
all photon decays from one SU(6), multiplet to an-
other are related to the same four reduced matrix
elements (dropping the trivial L, labels):

(R',L"||(8, 1),+(1,8)| R, 0),
(R',L'||(8,3),]Rr,0),

(R's L'" (3-’ 3)-1 "R’ O) ’
and
<RI, L’”(89 1)0- (1) 8)0 "R, 0) )

some of which may be zero or have zero coeffi-
cients due to selection rules. All pion decays (ma-
trix elements of QF) similarly depend on two re-
duced matrix elements

(R’y L," (8’ 1)0"‘ (1’ 8)0 "R! 0> ’
(Rly L," (39 §)1_ (§9 3)-1 ”R9 0)

for given SU(6),, multiplets R’, L’ and R, L =0.

This algebraic structure of photon matrix ele-
ments already leads to interesting and powerful
selection rules. Consider the {(8, 1),+(1,8),, 1}
term in V-'D$V, which has W-spin zero. The W-
spin Clebsch-Gordan coefficient in the analog of
Eq. (17) implies

Wr=W, (19)
which is the same as
§'=8§. (20)

Now, for the hadron’ and hadron states we have

J=T+8 (21)
and
j=r+8, (22)

while angular momentum conservation for the total
decay demands

J=3+3,, (23)

where j, is the net angular momentum carried by
the photon and determines the multipole character
of the decay. Combining Eqs. (20)-(23) results in

[L-L'|<j,<|L+L'], (24)
and in the case L =0,

Jy=L'. (25)
Thus decays through the {(8, 1),+(1, 8),, 1} term in
VD3V to L=0 baryons or mesons always have
jy =L’ of the decaying hadron. As the parity
change is (-1)%'~L = (=1)%" =(-1)%y, this always
corresponds to an electric 2L’-pole transition in
the usual multipole notation.

For the {(3,3),,0}, {(3,3)_,, +2}, and
{(8,1),=(1,8),,1} terms in V=DV, all of which
have W-spin one, Eq. (20) is modified to?!

§'=8+1 (26)
and as a result one finds in place of Eq. (24) that

lL-r|-1]<j, <l|L+L"|+1]. (27)
For L =0 this simplifies to

[L'-1|<j, s|L'+1], (28)
so that

jy=L'=1,L",L"+1. (29)

As the parity change is again (- 1)’" , these corre-
spond to magnetic 2(L’ - 1)-pole, electric 2L’-
pole, and magnetic 2(L’+1)-pole transitions, re-
spectively.

The actual correspondence between reduced ma-
trix elements and a set of multipole amplitudes can
also be proved using Racah coefficients to rewrite
Eq. (17) and its analogs. For example, baryon
transitions from R, L=0to R’, L’ are describable
in terms of multipole amplitudes

M(j,=L")=(R’,L'||(8,1),+(1,8), IR, L=0)
(30a)

and

M(j,=L'-1,L',L'+1)=(1L"10|j 1XR’, L'[|(3,3),| R, L=0)
+(12701(j , 1XR’, L'[|(8, 1)— (1, 8), | R, L=0)
+(1L'-1 2], 1XR", L"(3,3).,[R, L=0). (30Db)
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Note, of course, that one only has iy2 1. Thus
for L’=0~L=0, only j, =1 is allowed. This is
just the old result* that the nucleon to 3-3 reso-
nance transition is magnetic dipole in character in
the case of baryons.

For pion decays a parallel analysis®*? leads im-
mediately to the rule

lL-L'|-1]<si<||[L+L"|+1], (31)

where [ is the angular momentum carried by the
pion. For L=0, this reduces to

[L'-1]<l<|L"+1], (32)

and parity conservation forces the nontrivial re-
sult that

I=L'-1or L'+1. (33)

Note that for values of L’> 3, not only does the
theory forbid values of j, or [ larger than L’+1,
but it also nontrivially forbids® values of j, or I
less than L’-1 which are otherwise kinematically
allowed, and even favored by angular momentum
barrier arguments. The transition of a J¥=3"
baryon resonance in a 70 L’=3 multiplet into a
nucleon plus a photon with j, =1 is forbidden, for
example, even though this is the lowest allowed
multipole on spin-parity grounds.

The algebraic structure of the theory of photon
transitions presented above is closely related to
various quark-model calculations, both nonrela-
tivistic®® and relativistic,?* done in the past. They
may be put into one to one correspondence if the
(8,1), +(1,8), term in V~!DJV is identified with
the photon interacting with the quark convection
current, and the (3,3), term identified with the
photon interacting with the quark magnetic mo-
ments. The (3,3)_, and (8, 1), - (1, 8), terms in
V™DV do not appear in these quark models.? %¢
Therefore one can make a complete algebraic cor-
respondence with the identification of certain
combinations of parameters there with the reduced
matrix elements discussed here. However, the
assumption of a “potential” and the resulting wave
functions for the bound states in the quark-model
calculations yield definite predictions for the re-
duced matrix elements themselves as they depend
on masses and other parameters of the model.
This is something we do not obtain, since we con-
sider only the algebraic structure.

A similar correspondence occurs for pion decays.
The results of the nonrelativistic quark model®*
(no recoil) correspond to keeping only the (8, 1),
-(1,8), term in V~'Q¢V while the relativistic quark
model?* yields amplitudes corresponding to the
presence of both the (8, 1),- (1, 8), and (3, 3),

- (§, 3)_, reduced matrix elements discussed here.

Closely related to the quark-model results are

those following from various versions of SU(6),,
(of strong interactions) invariance.? The results
of agsuming SU(6),, conservation for pion transi-
tions are reproduced in the present theory by re-
taining only the {(8, 1), - (1, 8),, 0} term in V™'QSV
and using PCAC. The assumption of SU(6),, con-
servation plus vector dominance is equivalent to
keeping only the {(3, 3),, 0} term in V™'D$ V.

As we will soon see, this is totally contradicted
by the data. As a result, various broken SU(6),
schemes were developed.?® Some of these are very
similar to the present theory in algebraic struc-
ture, particularly for decays to L =0 hadrons.

The relation of such schemes for pion decays,
and in particular [-broken SU(6),, to the present
theory is discussed in detail in Ref. 27. For vec-
tor-meson decays, and via vector dominance for
photon decays, one such scheme?® corresponds in
algebraic structure to the one presented here if
the reduced matrix element of the {(3, 3)_,, 2} term
in VD¢V vanishes and those of the
{(8,1),+(1, 8),,1} and {(8,1),~(1, 8),, 1} terms
are equal.

III. PHOTON TRANSITIONS OF MESONS

Now that the basic properties of the theory and
the manner of its application to actual hadrons
have been spelled out, we begin the discussion of
detailed predictions with radiative meson decays.
We limit our listing of amplitudes to those corre-
sponding to nonstrange mesons; the extension to
transitions involving strange mesons is easily ac-
complished using SU(3).

Let us begin with the photon transitions from L’
=0 to L =0 mesons, i.e., among the members of
the SU(6),, 35 and 1, whose nonstrange members
are the p, w, ¢, m, n, and (presumably) X°. As
L/=L,=0 for the external states follows from L
=L’=0, only the term with L,=0 and transforming
as {(8,3),,0} in V"'D$V can contribute. The selec-
tion rule in Eq. (28) immediately gives the result
that j, = 1 only. This is already nontrivial, as j,
=2 transitions are possible from p* to p* in gen-
eral, and the theory then predicts zero electric
quadrupole moment for the p meson.

Since W-spin zero octets and singlets belong to
the 35 and 1 representations of SU(6),, respective-
ly, d—ecays —involving meson states which are mix-
tures of W =0 SU(3) octets and singlets may be
used to fix the ratio of the reduced matrix elements,

(1L'=0](3,3),[135 L=0)
and
(35 L7=0]|(3,3),[135 L=0).

In particular, for this purpose we use Zweig’s
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rule® to forbid the decay ¢ —ym, where the ¢ is
assumed to be the usual ideal mixture of singlet
and octet so as to be composed of purely strange
quarks. All amplitudes are then multiples of a
single magnetic dipole amplitude, or alternatively,
are proportional to the single reduced matrix ele-
ment,

(85 L’=0]|(3,3),[135 L=0).

One observed transition then fixes all the other
decay rates.?® The results of the computation of
transition matrix elements are given in Table I
where the n and X° are assumed to be SU(3) octet
and singlet, respectively, while the w and ¢ are
ideal mixtures of octet and singlet:

= (1) : (8)
=cosf +siné
w w W, (34)
¢=-sinfw'? +cosfuw®,
where

sing=+(3)'/2.

Table II contains the corresponding predictions
for all the L'=0~ L =0 radiative decay widths
using I'(w —y7) =890 keV as input.>! The sparse
experimental data® ' are also given. Note that
the predictions in the first column are for unmixed
pseudoscalar mesons. Taking a mixing angle3?
6,=-10.5° as suggested by a quadratic mass for-
mula, gives the second column. The predicted
width for ¢ —yn is reduced to 170 keV, agreeing
with experiment within errors.?* The correspond-
ing prediction in this case for I'(X°-yp) is 120
keV. Assuming that X°—yn*7~ is dominated by
X°~yp, and taking the branching ratio*! for this
mode to be 26%, we find a total X° width of 460
keV. This is also consistent with the X° width ob-
tained from the branching ratio® for X°—yy plus
SU(3) and the new value® of I'(n—~vy). The over-
all situation for L’=0- L =0 decays is thus quite
satisfactory, although many pieces of information

TABLE I. Matrix elements for photon transitions
among 35 and 1L =0 states. The w and ¢ are assumed
to be ideally mixed, while the n and X° are taken as the
SU(3) octet and singlet pseudoscalar mesons (see text),

Coefficient of

Transition (35L" =0|| 3,3)4l135 L =0)

)

|.— D
3 <
w] @

w=—yT

p—yT

|
=3
<.

o —ym
p=¥7
w—yn

D e ol o

NS

¢ —vn
X0—~yp

5= ope

X' —yw

O

¢ —vX’

are absent in comparing theory and experiment.

When we go to L’=1 to L=0 decays, there is no
experimental information available, although there
are both many amplitudes and many predictions.
Of the four terms generally present in V™DV,
only {(8,3)_,,2} cannot contribute (since it changes
L, by two units). The selection rules of Sec. II
show that the {(8, 1),+(1, 8),, 1} term in V-'D%V
leads to purely electric dipole (j y= 1) transitions,
and only j =1 and 2 can arise from the {(3, 3),, 0}
{(8,1),-(1,8),,1} terms. In fact it is possible to
express linear combinations of their reduced ma-
trix elements as electric dipole and magnetic
quadrupole amplitudes, multiples of which occur
in all decays from L’=1 to L =0 mesons.

All possible radiative decay amplitudes for non-
strange L’=1 mesons® to L =0 mesons are given
in Table III in terms of the reduced matrix ele-
ments

TABLE II. Predicted and experimental widths for radiative transitions among 35and 1 L =0

mesons.
Decay Predicted width (keV) Predicted width (keV) Experimental
(no mixing) (6p=-10.5°) width ? (keV)
W=y 890 (input) 890 (input) 89090
p—yT 94 94 <730
d—=ym 0 0 <14
p=Yn 317 57 <160
w—Yn 5 7 <49
6—vn 230 170 126+ 46
X'—yp 160 120 0.26 (X" — all)
X —yw 15 11
¢ —vXx° 0.5 0.6

2 See Refs. 31 and 32.
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(35 L'=1]/(8,1),+(1,8),/135 L=0),
(85 L'=1[/(3,3),[135 L=0) ,

and
(85 L'=1//(8,1),~(1,8), |35 L=0).

Matrix elements of SU(6),, singlet states are re-
lated to those in the 35 by using Zweig’s rule,*® as
was done above for L’=0 to L =0 decays. The 7
and H are assumed to be purely octet members,
while the f, D, o, and w are all taken to be ideal
mixtures of singlets and octets, so as to be com-
posed of only nonstrange quarks. Note that in the
decay 2* -y1~, e.g., A,—~yp, an electric octupole
amplitude could be present in principle, as well
as electric dipole and magnetic quadrupole ampli-
tudes. However, the selection rule limiting j, to
1 or 2 eliminates the octupole amplitude and re-
sults in the linear relation

Ay=p(A;~yp)=2V2 A, (A, ~vp)

- \/EA)‘W(Az "“/p) ’ (35)

among the three helicity amplitudes for 2* -y1-,
Almost any experimental information on these de-
cays would be helpful in sorting out the relative
importance of the various (3) possible amplitudes,
and in testing the theory.

IV. PHOTON TRANSITIONS BETWEEN BARYONS

The electromagnetic transitions of baryons pro-
vide a second and very rich area of predictions for
the theory. As before, we restrict our attention
primarily to nonstrange baryons decaying into L
=0 states, this being by far the main area for ex-
perimental comparison. In this section we will
enumerate the possible decay amplitudes, deferring
an experimental comparison to the next section.

The case of transitions from 56 L’=0 to 56 L
=0, i.e., within the L =0 baryon multiplet, is par-
ticularly simple. As for mesons, only magnetic
dipole transitions are allowed by the theory and
all amplitudes are proportional to a single reduced
matrix element, that of the term transforming as
{(3,3),,0} in V"'D$V. The results are presented
in Table IV for the three possible transitions N
-N, N-A, and A~ A. It can be explicitly checked
that all the transitions are magnetic dipole in char-
acter, as demanded by the selection rule [ Eq.
(28)], including those for A - A where both electric
quadrupole and magnetic octupole transitions are
also possible in principle.

For decays from the next identified baryon mul-

TABLE III. Photon transition amplitudes from non-
strange mesons (Ref. 36) with L’ =1 and J, =X to those
with L =0 and J, =A—1. The w, f, D, and o are as-
sumed to be ideal mixtures of singlets and octets, so
as to be composed purely of nonstrange quarks; the 7
and H are purely octet, and the X" a pure singlet.
Zweig's rule (Ref. 29) is used to relate SU(6)y 35 and 1
reduced matrix elements (see text), and forbids decays
like Ay, Ay, 6, f, D, 0 —~7vy¢, and f' —yp or yw. (a)
transition, (b) coefficient of (35 L’ =1]| (8,1),+ (1, 8),l/ 35
L =0), (c) coefficient of (35 L’ =1| (3,3)/|35 L =0), (d)
coefficient of (35 L’ =1[| (8,1),~ (1,8)y]/35 L =0).

(@) (b) (c) d)

Af —yrt,  A=1 0 iv3 =6

Af—yrt, A=l 0 -3 Ve
B —ym, A=1 V6 0 0
B—vy7, A=1 Wz 0 0
B —~¥X", A=1 T 0 0
H—ym, A=1 -;-«/-2_ 0 0
H—yn, A=1 -58 0 0
H—yX, A=1 +3 0 0

A=y,  A=0 * - %2
A=1 3 -5V 0

A=2 V6 0 =3

A= 7P, A=0 V3 0 -%v6
A=1 =3 V3 0

6=, A=0 w2 % -f
B —yp, A=0 0 34 6 0

A=1 0 0 3

Ay [Ay—yw] =3A,[4;—7p]
Axf —vp]=3A,[4;—vp]
Ay [f =yw]=A,[4; —~vp]
A\ =79l =—24,[4;,—~vp]

A\ [A1—~yw] =3A4,[A(—Vp]
A,\[D—vp]=3A,\[A—vp]
Ay\[D—~yw]=A,[A;—vp]
Ay [6—yw] =3A4,[6—vp]
Ay o —=7vp] =34,[6—vp]
Aylo —=yw]=A,[6—=p]

tiplet, the 70 L’=1, to the ground state 56 L=0
we have the three possible reduced matrix ele-
ments

(_7_9 L,=1”(8’ 1)0+(158)0"_@ L=0> ’

(70 L'=1J/(3,3),156 L=0),

and

(7_0 Ll:l”(89 1)0_(118)0”2§ L=0> .



10 PHOTON AMPLITUDES PREDICTED BY THE TRANSFORMATION... 2203

TABLE 1V, Photon amplitudes for transitions from
56 L’ =0 states with J, =\ to 56 L =0 states with J,
=A-1.

Coefficient of

Transition (56 L’ =0](3,3)56 L =0)
o1 v =1
N G y—=yNT, =g -45
N )—=yN®,  A=% &5
A*@E)—yN*, A=t -£/10
r=% -%30
A\[AT = yN*|=A, (A"~ yNO)
A G ) —yatt, A=—g -4V15
=1 2
A=t -5
=3 ~-4./15

2 45
A)\[A““YAL]=%Ax[A*+_"YA**]
A\A =AY =0
A AT =yAT = —F A (AT —yATT)

The matrix elements of D} for decays into both yN
and yA are enumerated® in Table V in terms of
these reduced matrix elements.

By the selection rules of Sec. II, the (8,1),
+(1, 8), term in V"!DSV acts as an electric dipole
transition operator, while the two remaining terms
act as a combination of electric dipole ( j7= 1) and
magnetic quadrupole (;j 7=2). According to the dis-
cussion around Eq. (30) in Sec. II we can in fact
write amplitudes,

E1'=(70 L'=1](8,1),+(1,8),]56 L=0),
E1=(3)"%10 L'=1]|(3,3),]|56 L=0)
- (3)"/3(170 L'=1](8,1),~(1,8),]56 L=0),
(36)
M2=(3)"*10 L'=1]/(3,3),]/56 L=0),
+(3)V/%10 L'=1]/(8, 1), - (1,8), 56 L=0),

which are electric dipole and magnetic quadrupole
amplitudes in terms of which all the helicity decay
amplitudes given in Table V may be alternately ex-
pressed. Note that N¥(J¥=%")~yN, for example,
could in general go via j,=2 or 3, but only j 7=2
(magnetic quadrupole) is allowed by the theory.
Similarly, N*(37)~yA could proceed with j,=1, 2,
3, or 4 in general, but only j,=1 and 2 are allowed
by the theory. Note also that the Moorhouse quark-
model selection rule® forbidding yp = N**, where
the N* has quark spin S=3%, is reflected in Table
V.

For 56 L’=2 decays to 56 L=0 we have reached
a high enough value of L’ that all four terms in
V-1D$V can contribute to the decay amplitudes. In
this case the (8, 1),+(1, 8), term is electric quad-
rupole (j ,=2) in character, while linear combina-

TABLE V. Photon amplitudes for transitions from
70 L’ =1 states with J, =A to nucleon and A states in
the 56 L =0. States are labeled by J% and [SU(3) multi-
plet]?3*! where S is the quark spin. (a) Transitions; (b)
coefficient of (70 L’ =1]|(8,1)+(1,8),l56 L =0); (c)
coefficient of (70 L’ =1/ (3,3){]|56 L =0); (d) coefficient
of (10 L' =1]| (8,1),— (1,8),/156 L =0).

@) ) © @
) =4 1 1
N*} )}——yN*, A=4 -4z iz +2
8y A= -6 0 -4V
—~yN°, A= 2 V2 -E2
A= 6 0 =6
—ya*, A== 0 13 0
=1 1 1
A=y 0 7 -3
r=% 0 0 —é\/?T
17)) . =1 1 1 1
Nxz )} YN, A=7 % T 3
2 N0 =1 1 L .
(8] YN, A=y T i 8
~ya', A== 0 w0
A=t 0 -3 -ivz
) =1 1 1 1
A ~¥N*, A=} -4 +4 -1
nop f—yat, a=—} 0 S
)\=-;- 0 #w@ %\/E
37 — =1 41 -1 _1/5
AE ) <YNT A=g 2 2 V2
2 = 1 1
10z § A= -1V 0 +V8
—~yat, A=—% 0 -5V 0
=1 1
A=z 0 ) ¥
A=% 0 0 V3
N*GT)| —¥N', A=g 0 0 0
[CI A=} 0 0 0
0 =1 1 1
—~yN°, A= 0 45 VB
A=} 0 L0 VT
=1 1./30 1 1
—~yAa*, A=-3% -45v30 530 V30
A=+ -&V10 VIO =/10
-3 -5 S -1
r=4 15 L5 4V5
)‘:.g. -4v3 0 -iv3
N*@)| —yN*, A=4 0 0
() —YN", 7 0
s ! A=} 0 0 0
ey NO -1 4 2 /F
YN, A=7 0 55 =5
=3 1 1 /T
A=¥ 0 —a—aﬂ/ﬁ +EV15
- =1 L L L
YA', A==-3 730 V30 V30
A=4 B VL J S 1
= 1 1
A=% -5v30  ~3v30 V30
N*G)| =yN*, A=% 0 0 0
4 N 1 L L
B ) —yN, A=t 0 L +L
=1 1L/ 1./6 1
—yAa*, A=—g -5V6  —4VE +/6
=1 1 1 1
A=} w2 32 %2

Ay (A%t —~yN*)=A, a0 —~yN°)
A\ (N¥* =A%) =A, (N =y 4")
A\ (A¥ =y AT =24, A —yAY)

A"~y =0
A\ (AFT =y AT) ==A, (A*T —yAY)
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tions of the other three terms act as j,=1, 2, and
3 transitions:

E2'=(56 L'=2[/(8,1),+(1,8),[56 L=0),
M1=(3)/%56 L'=2]|(3,3),]56 L=0)
-(&)V/%(56 L’=2](8,1),- (1, 8),]/56 L=0)
+§)'/%(56 L'=2(3,3)_,[/56 L=0),
E2=(3)"/%56 L'=2]/(3,3),]56 L=0) (37)
-(#)/%(56 L'=2]|(8,1),~(1,8),[56 L=0)
- (3)"/%56 L'=2(3,3)_,1/56 L=0),
M3=(£)"%56 L'=2](3,3),]56 L=0)
+(#)'/%56 L'=2](8,1),-(1,8),[/56 L=0)
+(@&)/%(56 L'=2]/(3,3)_,[[56 L=0).

The various amplitudes for resonances in the
56 L’=2 to decay into yN are listed® in Table VI.
The yA amplitudes are straightforward to work
out,? but at present add little of interest. Again,
the selection rules derived in Sec. II have clear
and direct consequences: A(}*)~yN, for example,
which could go by j, =3 or 4 is restricted to be
purely magnetic octupole ( j7=3).

Decays from higher L’ multiplets are easily
computable, but little in the way of experimental
tests is available at present. For the 56 L'=0,

70 L'=1, and 56 L’=2 photon transition amplitudes
to gf_i L =0 which we have enumerated, however,
photoproduction data permit many direct experi-
mental comparisons. To these we now turn.

V. EXPERIMENTAL TESTS OF BARYON AMPLITUDES

The predictions for transitions within the 56 L
=0 multiplet are already testable using the mag-
netic moments of the neutron and proton, for a
direct evaluation of DS between nucleon states at
infinite momentum gives

wam+(Fg)NAsdiDE N =D @

where u, is the anomalous magnetic moment of
the nucleon. However, a careful calculation of
V-D?V between one-nucleon states at infinite mo-
mentum gives a result which has the transforma-
tion properties of the four terms discussed in Sec.
II minus a term proportional to the charge.
Melosh! claims that term is exactly the Dirac mo-
ment. While this has been challenged by Osborn,**
we note that if it were the Dirac moment, then the
ratio of matrix elements in Table IV should be
interpreted as predicting for the total moments of
the nucleon

Mr(n)/llr(i))=—§, (39)

TABLE VI, Photon amplitudes for transitions from
56 L’ =2 states with J, =A to nucleon states in the 56
L =0 with J, =r—1. States in the 56 L’ =2 are labeled
by JP and [SU(3) multiplet]*S*! where S is the quark
spin. (a) transition, (b) coefficient of (56 L’ =2| (8,1),
+(1,8)0l 56 L =0), (c) coefficient of (56 L’ =2l (3, 3),]/ 56
L =0y, (d) coefficient of (56 L’ =2|(3,3)_,[56 L =0), (e)
coefficient of (56 L’ =2|[(8,1),— (1, 8),//56 L =0).

(@) () () (d) (e)
5* — + -1 2 NGy —_
N*(y‘ )( YN, >\~2 % \5\? 0 —125—
2 _3 2 5 P 2
18] r=% vz o0 + v
~yND. A=1L Ay 4
YN, A=} 0 L3 0 L
A=3 0 0 - -2
N*G) —yN*, A=} =6 HT 0 ]
p ~v e 4 ING)
s | r=% -7 0 L -1z
0 -1 4 5 2 7
—~yN°, A=% 0 -2 0 )
-3 _& 273
A=q 0 0 s B2
7° " _1 4 = Ny & 5T
A = YN, A=% -7 —5 A2 T
4 -3 4 77E VNG 8 _AE
oyt r=2 —T05 370 —£T5
5%)) —yN*. A=L 2.7 -4 A7
AXF)| YN A=] 0 T2 AT V17
4 -3 4 .57 8 4 i_ 7
o § A=1 0 AT BT T
3907 e 51 4 s =
A*E ) =yN", A=5% 0 &2 =3 0
4 =3 2.7 4 4 5
oy | r=% 0 56 -+ iz
a* iz ) —=yN", A=% 0 -52 -&3 %

o !

A\ [A¥ = YN =A [ —~yNO|

the SU(6) result,*® which is within 5% of the experi-
mental value of —1.91/2.73=-0.70. Thus we find
from experiment that the extra term is quite close
to the Dirac moment.

For the transition from A to N the ratio of V3
between the x =% and A =3 matrix elements corre-
sponds to a pure magnetic dipole transition, as
we already know must occur from the discussion
in the last section. All photoproduction analyses®!
agree that the electric quadrupole amplitude is at
most a few percent of the magnetic dipole ampli-
tude for excitation of the 3-3 resonance. The
strength of this transition, p*, is conventionally
defined so that

p*x=v2{a,r=3|DS|N,x==3) . (40)
The results in Table IV then translate to
IL*/HT(P)=+§‘/—2— . (41)

An older phenomenological analysis* of the data
for pion photoproduction gave a result for p*/
wr(p) which is 1.28 +0.03 times the right-hand side
of Eq. (41) by finding the residue at the A pole in

y N =7N. By considering the contribution®® of the
A to the Cabibbo-Radicati sum rule we find a value
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of u*/up(p) which is 0.9+0.1 times the right-hand
side of Eq. (41), and in quite satisfactory agree-
ment with the theory. While the sign of u*/u.(p)
cannot be measured, the product of the yN and 7N
couplings of the nucleon can be compared with that
of the 3-3 resonance in pion photoproduction. As
the theory®'® also predicts the relative sign of the
7N couplings, it makes an unambiguous prediction
of the sign of the resonance excitation amplitude
relative to the nucleon Born terms. This sign is
correctly given by the theory.*

For the transition from A to A, which is also
purely magnetic in character, we should again in-
terpret the results in Table IV as being for the
total moment. The relation between matrix ele-
ments of D, and the conventional anomalous mag-
netic moment of the A, u%*, is

From this we see that we have from Table IV,
pEH (AT uep) =2,
pEx(a”)/up)=1, (43)
pFX(A%)/u(p) =0,
p3*(a7)/ up(p)=-1.

As with Eqgs. (39) and (41), all these are standard
SU(6) results,?® as is to be expected since the
{(8,3),,0} term in VDSV has the same transfor-
mation properties as the magnetic moment opera-
tor used in SU(6).

The transitions from the 70 L’=1 to the ground
state 56 L =0 provide a much richer set of ampli-
tudes for comparison of theory and experiment.
Rather than carry out a statistical “best fit” to all
the data, in Table VII we have fixed the possible

wi*=—(3)2(a,x=2|D% A x=1). (42) reduced matrix elements allowed by the theory in

TABLE VII. Comparison of matrix elements of D3+ + (1/s/’§)Di for 70 L’ =1— 56 L =0 photon transitions with experi-
ment (see Ref. 48). Nucleon resonances are identified as in Ref. 18 with the quark-model states, which are labeled by
their quantum numbers J¥ and [SU(3) multiplet]*S*!, where S is the quark spin. The signs of amplitudes are those in
yp —r'n and yn —77p, with the S and D amplitudes at the TNN* vertex taken to have opposite sign (see text),

(N*,AD,|N,A=1)
experiment (Ref. 48)

(N*,A|D,|N,xA=1)
predicted with

(N*A|D,IN,A-1)
predicted with

Transition (1/GeV) (7011 (8, 1)y — (1, 8)11 56) =0 (70l (8, 1)y — (1, 8)y1 56) =0
D3(1520)) —vp, A=7% -0.10+0.04 —0.10 (input) ~0.10 (input)
7,80 A=} +0.91+0.06 +0.91 (input) +0.91 (input)

—yn, =% +0.41+0.03 +0.32 +0.23
A=3 +0.64+0.05 +0.91 +0.64 (input)
S11(1535)| —vp, A=% +0.30+0,10 +1.18 +0.07
3 .81 | —yn, A= +0.27£0.03 +0.89 +0.30
531(1650)| ~vp, A=7 +0.16£0.07 +0.59 +0.53
1~ 2
17, 10p% )
Dy (1670)| —~vp, A=1 +0.36%0.04 +0.73 +0.36
37,109 r=4 +0.32+0.04 +0.91 +0.38
D5(1670)| —~yp, A=} +0.06=0.07 0 0
et A=} +0.07:+0,04 0 0
—yn, A=7 +0.200.03 +0.20 +0.13
A=% +0.33+0.14 +0.28 +0.19
D3(1700)) —vp, A=3 -0.07£0.18 0 0
37,8t A=% +0.14£0,18 0 0
—vyn, =% +0.16+0,18 +0.07 -0.19
A=% -0.11£0.11 +0.34 -0.19
511(1700)| —~vp, r=1 +0.26+0.08 0 0
1,8 ) —yn, A=t +0.0720.16 -0.15 +0.12
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terms of some relatively well-determined am-
plitudes for the process yN - D,,(1520) =7 N.

The quantities in the table are the matrix ele-
ments of D3 +(1/V3)D taken between identified
resonant states'® in the 70 with J, =X and nucleon
states with J,=x - 1. The signs are those found in
the specific processes yp — N** =7*n and yn - N*°
-~7"p. To make a theoretical prediction of these
signs we need a theory of both the yNN* and 7NN*
vertices. The yNN* couplings are taken from
Table V while for 70 L’=1~56 L=0 pion transi-
tions we may express the reduced matrix elements
of the two terms in V™'QZV as linear combinations
of amplitudes S and D, corresponding to /=0 and
215;

(mv LI:I”(S, 1)0—(1’8)0”§§’ L‘—‘O):%(S-*ZD),
(44)
(10, L'=1]/(3,3),~(3,3)_,1I56, L=0)=3(S- D).

Then S=+D if only the (8,1),-(1,8), term in

V™ 'QYV is present, while S=-2D if only (3,3),
-(3,3)_, is present. While an earlier phase-shift
solution®® to the TN —~mA data disagreed with the
signs predicted for pion transitions, a new solu-
tion agrees completely*” and shows that the signs
of S and D are opposite, i.e., it appears the (3, 3),
- (8, 3)_, reduced matrix element is dominant for
70 L’'=1-56 L=0 pion decays. In constructing
Table VI we have taken the TNN* couplings from
Table V of Ref. 3 and have assumed that the signs
of S and D are opposite in calculating the TNN*
vertex sign. Mixing between the two S, or two D,,
states in the 70 has been neglected in calculating
the predicted amplitudes.

The “data” are taken from a very recent analy-
sis*® of electromagnetic couplings of N* resonances
from single pion photoproduction data. In terms
of amplitudes A, for yN - N* of that analysis,*®
matrix elements of D3 +(1vV3)D? are related by

1/2
<___‘_v_l____> Ay,

" 3 8 —_ =
(N* A DS+ (V)DL [N,x - 1) (27701M,mb7

(45)

where p, is the photon momentum in the N* rest
frame, and A can take the values ; and 3. The re-
sults of Ref. 48 generally agree well with those of
another recent* analysis, although the “errors”
on the amplitudes quoted in the latter are much
larger. Judging from the differences between suc-
cessive or independent analyses, we would opt for
larger “errors” than those of Ref. 48, which are
reproduced in Table VII.

As a first comparison, we set the reduced ma-
trix element (70 L’'=1]|(8,1),~(1,8),]/56 L=0)
equal to zero,_so that we are left with aly the two
terms in V~'D$V which are present in quark-model

calculations.?®'?* The well-determined amplitude
for yp -~ D},(1520) with X =3 then determines

(70 L"=1[/(8,1),+(1,8),]56 L=0) directly and
fixes an over-all free sign. The x =1 transition to
the same resonance then fixes

(70 L'=1[/(3,3), 56 L=0).

In fact, the smallness of the A =3 amplitude means
that
(70 L'=1[(8,1),+(1,8),[56 L =0)

~2(170 L’'=1]/(3,3),[/56 L=0). (46)

The signs of the resulting amplitudes are exactly
those discussed by us previously.® All the well-
determined ones agree in sign with experiment
(nine in addition to the input). However, the mag-
nitudes of a number of the predicted amplitudes
are not in such great agreement with experiment.
The A =3 amplitude for yn —D%(1520) is too large.
Mixing, at least with the small mixing angles
otherwise suggested,®® will not cure this, although
it could well help improve the situation with regard
to the poorly known D,;(1700) amplitudes.

For the two S, states, a fairly large mixing
angle is known to be necessary from other con-
siderations,®® and would give S,,(1700) amplitudes
which agree with experiment in sign. The predict-
ed S,,(1535) amplitudes would still be much too
large, however. The amplitudes predicted for the
S;; and D,, also are all too large, and no mixing
(within the 70) is possible in these cases. A fit to
all the data would of course scale down the re-
duced matrix elements, making the agreement
better for the magnitudes of the S;,, D;,, and S,
amplitudes, at some cost to those of the D ,(1520).

A second comparison of the theory with experi-
ment is also found in Table VII where all three
possible reduced matrix elements are allowed to
be nonzero, and fixed by the transitions yp
—~D;,(1520) with A =3 and 2, and yn —D,(1520) with
x=3. Again, all the well-determined signs agree
with experiment, although the predicted (and poorly
determined experimentally) signs for the D,,(1700)
and S,,(1700) are opposite to those discussed
above.

There is still trouble in this case with the mag-
nitudes of various amplitudes. The x =3, yn—D%
amplitude is too small, as is the amplitude for yp
-S571,(1535). Mixing only hurts here, as the yp
transition to the other S,, is forbidden, resulting
in an even smaller prediction for yp - S7,(1535)
and too small a result as well for yp —S;,(1700).
Although the D,, amplitude predictions now agree
well with experiment, that for the S,; is still much
too large.

It is interesting to note that for this second fit
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we have
(70 L'=1](8, 1), +(1,8),]|56 L=0)

=(170 L'=1|(8, 1), - (1,8),[56 L=0),
(10 L'=1(/(3,3), (/56 L=0)=~0.

(47)

Equality of the first two reduced matrix elements
is exactly what is forced by vector dominance plus
the scheme of Petersen and Rosner?® for vector-
meson decays. The reason why

(70 =1(/(3,3), |56 L=0)

should be so small, which in the fit is forced by
the smallness of the amplitude for yp — D},(1520)
with X =%, is possibly an interesting theoretical
problem.

At the present time, given the uncertainties we
feel exist in the electromagnetic couplings of the
N*’s, either set of predictions should be regarded
as in fair agreement with experiment as far as
magnitudes are concerned. The signs in either
case are a triumph of the theory for both photon

and pion transitions and verify that the Sand D
amplitudes have opposite sign.

For transitions from the 56 L'=2 to the ground
state 56 L =0 we also have in principle a large set
of amplitudes for comparison with experiment. In
practice the amplitudes are less well known, as
seen in Table VIII. The quantities in the table, as
in the previous one, are matrix elements of D%
+(1/V3)D® with signs appropriate to yp — N**
-7*n and yn~ N*°~7~p. For the TNN* vertex we
express the two reduced matrix elements for 56
L’'=2-56 L=0 pion decays as*

(56 L'=2]/(8,1),-(1,8),]| 56 L=0)=5(2P+3F),
(48)
<_5_6 L'=2]|(8, 5)1_ (3-’ 3. ”5_6 L=0)=3V3(P-F),
where the amplitudes P and F correspond to /=1
and 3 pion orbital angular momenta, respectively.
The relative signs of P and F are the same (op-

posite) if the (8, 1), - (1, 8),((3, 3), - (3, 3)_,) matrix
element dominates. The reaction®®+*” 71N —~ rAindi-

TABLE VIII. Comparison of matrix elements of Di + (1/\/'3_)D‘i for 56 L’ =2—56 L =0 photon
transitions with experiment (see Ref, 48). Nucleon resonances are identified as in Ref. 18 with
the quark-model states, which are labeled by their quantum numbers J and [SU(3) multiplet]*S*!,
where S is the quark spin. The signs of amplitudes are those in yp —7*n and yn — 7p, with the
P and F amplitudes at the TNN* vertex taken to have the same sign (see text).

(N*,A|D,|N,A=-1)

WN* D, |N,A-1) predicted with
experiment (Ref. 48) (56|l (3,3)-4]| 56) and
Transition (1/GeV) (56| (8, 1)~ (1, 8)oll 56)=0
F5(1688)| ~vp, A=7% —0.07+0.06 —0.07 (input)
AT r=3% +0.44 £0.03 +0.44 (input)
—~yn, A=% -0.11+0.02 -0.26
r=3% 0+0.08 0
P3(1770)) —vp, A= -0.02+0.14 —0.70
8P r=% ~0.03+0.13 +0.22
—yn, A=% -0.06+0.06 -0.21
A=3% +0.03+0.11 0
F31(1920)) =~vp, A=3 ~0.27+0.05 -0.17
o r=4 ~0.30+0.,04 -0.22
Fy5(1860)) —vp, A=7% +0.17+0.06 -0.07
oS r=% ~0.09+0.08 -0.30
Py;(2000)) = vp, A=% ~0.12£0.07 -0.11
i, nopt r=% +0.05+0.03 +0.18
A= +0.0420.05 —-0.11

Psluseoy( —~vb,
1, nopt

o}
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cates that P and F have the same sign, and we use
this together with Table VI of Ref. 3 in construct-
ing Table VIII. The “data” are again from Ref. 48.
To compare theory and experiment, we simplify
the situation for the photon vertex by setting both
the (56 L’=2 I1(8, 1), - (1, 8), (|56 L=0) and
(56 L'=2(/(8,3).,(56 L=0) reduced matrix ele-
ments to zero. This leaves only

(56 L'=2]|(8, 1), +(1,8), 156 L=0)
and
(56 L'=2](3,3),]56 L=0),

as would be the case in most quark-model calcula-
tions.?®'2* Rather than making a fit to all the am-
plitudes, we use the well-measured yp - F,; am-
plitudes to fix the two reduced matrix elements,
and then calculate the remaining amplitudes.

All the predicted signs agree with our previous
results,’ and, with the possible exception of the
F,s amplitude with A =3, the experimentally well-
determined signs agree with the theory. In a pre-
vious analysis,®! both the F,, amplitudes also
agreed. The signs of the P,;(2000) amplitudes,
among the p-wave 7N resonances, provide some
(marginal) support for the P and F amplitudes at
the pion vertex having the same sign, as the 7N
-~ 7A analysis*'*” shows much more definitely.

The magnitudes of the predicted amplitudes are
in fair agreement with what is observed. There is
no need to allow (56 L’=2/(8,1),~ (1, 8),[/56 L=0)
and (56 L’=2[/(3,3).,(|56 L=0) to be nonzero. In
fact, fitting all four reduced matrix elements to
yp~ F5 with A= and £, yn—~F3 with A=%, and
yp ~ P, with X =3 results in essentially the same
predictions; the two additional reduced matrix ele-
ments have values more than an order of magni-
tude smaller than either (56 L’'=2]|(8, 1),
+(1,8),/|56 L=0) or (56 L'=2]/(3,3),]|56 L=0).
The smallness of the A = amplitude for yn - F;
by itself assures the strong constraint on the two
additional reduced matrix elements

-#(56 L'=2]/(3,3)_,1(56 L=0)
..~_+7?5"/_2<ﬁ L’=2”(8, 1)0—(1,8)0”§§ L:O) )
(49)

There is thus fairly good evidence in this case that
only the two reduced matrix elements found in the
quark model are present at a significant strength,
and, in particular, that equality of

(56 L’=2][(8,1),+(1,8),[/56 L=0)
and
(56 L'=2]/(8,1),-(1,8),]|56 L=0)

is ruled out.
Finally, we examine the transitions from a

“radially excited” 56 L’'=0 back to the ground
state 56 L=0. The 56 L’'=0 includes the Roper
resonance, Pu(1470T and the P,,(1718). We fit
the one possible reduced matrix element,

(56 L'=0]/(3,3),(56 L=0),

to the amplitude for yp - P;,(1470), and predict

the other amplitudes in Table IX using the 56 L’'=0
- 56 L =0 matrix elements from Table IV. Again
the—signs are those in yp—=7*n and yn~n"p. The
experimental results of both the Berkeley*® and
Lancaster?® analyses are shown, there being some
discrepancy between the two. Note that this is a
case where the explicit quark-model results of
Feynman et ql.?* fail by predicting the wrong
sign*®%! for the P,,(1470) excitation.

VI. SUMMARY AND CONCLUSION

The operator V, which by definition takes us
from a current to constituent quark basis, contains
in principle all the information about matrix ele-
ments of the weak and electromagnetic currents
when taken between hadron states, assuming that
the hadrons can be treated as if constructed out of
(constituent) quarks. Lacking a complete knowl-
edge of V, we have abstracted only certain of its
algebraic properties from the free quark model
and assumed them to hold in the real world. In
particular, in this paper we have abstracted prop-
erties of the operators V~'D$V, which correspond
to those which induce real photon transitions be-
tween hadrons.

In our case, abstraction from the free quark
model leads to V~-'DSV being assumed to be the
sum of four terms which transform as {(8, 1),
+(1,8),, 1}, {(3,3),,0}, {(8,1),-(1,8),,1} and
{(3,3)_,, 2}, all of which belong to 35’s of the full
SU(6),, of currents. In Sec. II we have shown how
matrix elements of D2 +(1/V3)D? are related to
real photon amplitudes and how they may be related
to a sum of [ SU(6),] Clebsch-Gordan coefficients

TABLE IX. Comparison with experiment of matrix
elements of D3 +(1/4/3)D? for photon transitions from
resonances in a radially excited 56 L’ =0 multiplet to
the nucleon in 56 L =0. Amplitude signs are those in
Yp —~7"n and yn —77p.

Predicted
matrix
element Ref. 48 Ref. 49

Experimental matrix element

Transition

P;,(1470)~yp, A=} —0.37 @input) -0.37+0.04 —-0.55:0.13

1

2
—~yn, A=3 —0.25 0+0.07 —0.51%0.32
Py (1718)—yp, A=3 —0.18 +0.01£0.07 +0.07:0.25
A=% -0.31 -0.15£0.10 +0.33+0,29
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times at most four reduced matrix elements for
photon transitions from one hadronic SU(6), multi-
plet to another. We have also shown that the theo-
ry leads to multipole selection rules, a particular
example of which is the old SU(6) result? that the
transition from the nucleon to 3-3 resonance should
be magnetic dipole in character. In fact, we may
generally express the four reduced matrix ele-
ments for transitions between two given multiplets
in terms of four multipole amplitudes, two electric
(of the same multipolarity) and two magnetic.
These selection rules yield very interesting pre-
dictions, which may be subject to a qualitative ex-
perimental test in that low values of j:, (or ! for
pions) are forbidden for L’=> 3 - L =0 transitions,
even though they are otherwise allowed by spin-
parity considerations and favored by angular mo-
mentum barrier arguments.

When applied to mesons there are many ampli-
tudes which are related, but little to compare with
experiment besides the transitions between the
vector and pseudoscalar mesons, both of which lie
in the 35 and 1 with L=0. The available data are
consistent with the theory, but little else can be
said at the moment.

For baryons, on the other hand, we have years
of experimental effort that has been devoted to
pion photoproduction in the resonance region,
from which baryon electromagnetic couplings may
be extracted by phase-shift analysis. For the 70
L =1 baryon states, not only do we find agreement
of all the experimentally well-determined signs
with the theory, but the photopion matrix elements,
which contain information on both the yNN* and
TNN* vertices, indicate that the S and D wave am-
plitudes at the pion vertex have opposite sign. This
is in agreement with the results*®**” from the re-
action 7tN~wA. For the 56 L =2 baryon reso-
nances, again all signs agree with the theory, ex-
cept for possibly one of the yN -~ Fj, amplitudes.
There is also an indication from yN-7N that the
P and F amplitudes at the TNN* vertex have the
same sign, in agreement with results*®*” from 7N

-7A. While the signs are in good shape, the mag-
nitudes, particularly for 70 L=1-56 L=0 transi-
tions, leave something to be desired. Given the
uncertainties in the experimental analyses, how-
ever, we feel the present situation is fairly sat-
isfactory.

The general outlook then is extremely good.
Between the phase-shift analyses of 7N -7A and
yN-7nN, more than 25 signs predicted by the theo-
ry agree with experiment. For the first time we
have some good evidence that not only is the multi-
plet structure of the quark model found in nature,
but further that the wave functions of the states
resemble those of the constituent quark model, in
that the relative signs (and more roughly, magni-
tudes) of amplitudes are correctly predicted. How-
ever, neither the results at the TNN* nor yNN*
vertices corresponds to the hypothesis of SU(6),,
conservation, the most direct and powerful evi-
dence being the signs and magnitudes of amplitudes
for 70 L’=1 baryon resonances to decay into 7N,
mA, and yN. The predictions resulting from the
quark model,?*'** where the reduced matrix ele-
ments are explicitly calculable, are wrong in
places also—in particular in the signs of pion
transition amplitudes for 56 L’=2 to 56 L =0 bar-
yons and in the signs of pﬁ?)-toproducti-(_)?l ampli-
tudes for yN - P,,(1470) -7 N.

With the success of the theory, it may now be
used as a tool to help in classifying new reso-
nances into multiplets by using information on
their signs in TN~7A and yN-7N. What is still
needed is a dynamics, or possibly an even higher
symmetry, which will correctly give the magni-
tude and sign of the reduced matrix elements.
This, and the extension to ¢% #+0, remain as im-
portant problems for the future.
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Based on the V —A interaction, a finite, unitary theory of pure leptonic weak interaction is
formulated in the framework of the finite quantum field theory with shadow states. A pertur-
bative series, originated from the conventional expansion, is obtained. This new perturba-
tive series converges in the high-energy region where the original one does not. The differ-
ence between the prediction of this theory and the universal V—A theory is negligible in low-

energy regions but becomes significant in high-energy regions.

The universal V — A theory of weak interaction'
is well established for low-energy processes as
long as one treats the interaction Lagrangian as a
phenomenological interaction to be used only in the
lowest order. It is also well known that the matrix
elements calculated from the lowest-order pertur-
bation violate unitarity at high energies. One
might take this as an indication that the higher-
order calculation should be included. However,
the V - A theory as it stands is not renormalizable;
i.e., to renormalize all divergent amplitudes in-
volves an infinite number of arbitrary constants.
1t is therefore, if not meaningless, at least aes-
thetically unappealing. The modification of the
universal V —A theory has been discussed quite
extensively in the past.? Recently great progress
in the experiments on high-energy neutrino weak
interactions has been made.® The construction of
a workable theory of weak interaction is therefore
becoming more urgent. There has been some pro-
gress in the effort to unify the weak and the elec-
tromagnetic interactions such that the weak-inter-
action amplitudes become renormalizable.*

While the general approaches to modifying the
V — A theory have been concentrated in the direc-
tion of introducing new heavy particles following
certain symmetry schemes, one might adopt a
quite different approach by, instead of introducing
new “physical particles,” changing the dynamical
law of the theory. This is the main idea of the
theory of shadow states.® In this note we present a
finite unitary theory® of pure leptonic weak inter-
action within the framework of the theory of shadow
states.

In the V - A theory, the interaction Lagrangian
for pure leptonic interaction is given by

.G a
£, = 3 JyJN, (1)
where J, is the leptonic current,

Jy = [%h 1 =75, +¢up7) 1- Ys)wu]' @)

Following the idea of shadow-state theory, we
introduce two shadow fields for each of the leptonic
fields,” and rewrite the current as follows:

3 3
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Here g, is the field of the physical lepton a with
mass m§ and 2 and 33, are the corresponding sha-
dow fields with masses mJ and m§. The shadow
fields are quantized with the “wrong” sign for the
commutation relations. In other words, in contrast
to the physical fields y} which satisfy the commuta-
tion relations

[ (), valx)] = =Sk’ - x), (4)

the shadow fields 32 and 2 satisfy the commutation
relations

[Yalx), palx)]=iSx’ - x), )



