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General consistency conditions are derived for the N+ —~~ helicity amplitudes. These are
used to check previous determinations and then incorporated into a new calculation scheme
to determine both s- and p-wave helicity amplitudes.

I. INTRODUCTION

The determination of the helicity amplitudes
for the reaction NÃ- nm has been the subject of
much recent interest. These amplitudes enter
the study of the relationship between mN and mm

scattering, ' ' unitarity corrections to the extrac-
tion of the 0 term for nN scattering, 4 and the inter-
mediate range nucleon-nucleon interaction. ' ' It
is thus of considerable importance to determine
these amplitudes accurately. The methods used
in the literature use either Omnbs dispersion
relations, "with the disadvantage that evaluation
of the left-hand cut contribution requires extrapo-
lation of the mN amplitude outside the ellipse of
convergence of the I egendre expansion, or other
analytic continuation methods which do not use
our knowledge of 7tw phase shifts. In each case it
is difficult to assess the accuracy of the deter-
mination. It is our aim here to show that these
problems may be overcome and accurate helicity
amplitudes obtained by use of helicity-amplitude
consistency conditions.

In Sec. II we sketch the Omnhs dispersion rela-
tion approach to evaluating NÃ- mm helicity ampli-
tudes and identify the input required for accurate
solutions. Then in Sec. III we give a short account
of the nm interaction. In Sec. IV we present a
derivation of helicity-amplitude consistency condi-
tions which are initially used as checks on previous
helicity-amplitude determinations, and then in
later sections incorporated into a new helicity-
amplitude calculational scheme. In particular, in
Sec. V we use a novel form of Omnls dispersion
relation to evaluate f'„and then in Sec. VI demon-
strate the efficacy of using non-Born dispersion
relations to evaluate f' and I;, where

I; = (f, - mf /v 2 ) [2/m ,' t)]---
(we use units such that 5 =c =m, =1, the metric
ds' =3x' -dt', and the notation m for the nucleon
mass). I; is evaluated directly instead of being
calculated from f', and f' because it appears in
the calculation of the nucleon-nucleon potential. ' '
The actual evaluations of f', I', are detailed in

Sec. VII; in each case the calculated amplitudes
are compared with previous works and a careful
estimate of errors made. Section VIII summarizes
our results, a preliminary account of which has
appeared elsewhere. '

1 "„, Imf', (t')
(2 2)

1a=4 1—
4m2

For 4=0, fo(t) =0, so we are left with f', (t),
which requires one subtraction. [In principle,
one could subtract at t =4m' since f', (4m') =0;
however, in practice this is of little use due to the
slow convergence of the dispersion integrals. ]

Relation (2.2) presents two problems. The first
is that there is no straightforward way to evaluate
the right-hand (RH) cut, and the second is that
at best we only know the left-hand (I H) cut in the
range -26 & t & a. This latter circumstance arises
because we determine Imf ~ on the I H cut by using
a Legendre extrapolation from the physical mN

II. OMNES DISPERSION RELATIONS

To write down dispersion relations for the helic-
ity amplitudes f f (t) we need to know the appro-
priate analytic properties. These were first de-
duced by Frazer and Fulco" using the Mandelstam
representation for A', B' and the helicity ampli-
tude projection formulas. The principal features
are two branch cuts: one from t = -~ to
4(1 —1/4m') and the other from t =4 to ~. There
are no kinematical singularities. In addition,
unitarity places bounds on the asymptotic be-
havior as t-~, so that at worst

f7( t) t 7+1 l2
(2.1)

fZ(t) t

Thus we can write for Jc0

f (t)
I '

dt, f (')
7T ~ t —t —gC
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scattering region. To be explicit we write down the appropriate equations":

J.(t)
Imf f =—,~ zg'mz, P~(z, )+ 8(-t) ds' = a, (s', t)+mzb, (s', t) P~(z)

61K p q ) (~+g&2

Imf ~ =, „,z zgz[P~„(zo) -P~, (zo)]+ 8( t} -ds'b, (s', t)[P~, (z) P~-, (z)]],
(2.3)

where

z, =(m' —p ' —q ')/2p q,
z =(s' p'--q ')/2p q,
L(t}=m'+1+2p q —,'t, —

P =m -4t,

and we note that

a,'(s', t) =ImA (s', t),

b,'(s', t) = 1mB'(s', t), for t & 0.

(2.4)

(2.5)

Next we neglect the RH-cut integral. This approxi-
mation is strengthened by the fact that in practice
the unitarity relation (2.6) holds up to t = 50 at
least for s- and P-wave mw interactions. " In addi-
tion, if we subtract the dispersion relation, we
reduce the distant cut contribution for both cuts,
so not only do we reduce the known LH-cut con-
tribution, but we also further increase the ac-
curacy of the "exact" unitarity approximation.

It is clear now that to implement. this subtracted
Omnhs dispersion relation scheme, we need to
know the appropriate mw phase shifts and subtrac-
tion constants.

4 even- J =0,

zJ odd~ I =1.
Now we define

(2 't)

(2.6)

and consider the function f f(t) e "&'", which is
real in the interval 4& t&16. The appropriate
dispersion relation is

fJ(t)p(g)(dtf eJ Imf g( t )
7 g gg t'-t —lE

1 "" Im[f (t') e ~&"']
+ —

i dt'
~ ~X6

t' —t —i~

(2.9)

Now we can see that the Legendre extrapolation
of oy 5] is required because the upper integration
limit L(t) requires cos8& -1, where 8 is the zN
scattering angle. As usual, the Legendre extrap-
olation is hemmed in by the nearest singularities,
which in this case occur at t = -4m, i.e., t = -26.

Fortunately, we can overcome both of the above
problems by employing Omnhs dispersion rela-
tions subtracted to reduce the importance of the
unknown distant cuts. To derive these relations'
the key step is to observe that t-channel unitarity
says

Imf f(t) =ff(t)*e' ~ sinb~, for 4&t&16. (2.6)

~ ~ is the en phase shift in the state of angular mo-
mentum J and isospin J. %'e observe that since
we are dealing with the XÃ- nn reaction the isospin
must be 0 or 1. Thus in relation (2.6) the sta-
tistics imply that

III. nm' PHASE SHIFTS

The mn interaction offers considerable problems
for the experimentalist and much effort has been
directed at its elucidation. Our aim here is to
indicate what we consider to be the "best" mm

phase shifts for input to our dispersion relations.
For a more complete coverage we refer the reader
to the excellent reviews of Jackson, "Morgan and
Pis6t, "and Petersen, "together with the recent
papers by Basdevant et al."

From an experimental point of view the most
important feature of the mn interaction is that it
cannot be studied directly at present. The short
lifetime of the pions forces the study of reactions
in which the final state is generated by a mm ver-
tex. To counterbalance these difficulties the mm

system offers some simplifying features. In par-
ticular it turns out that up to 1 GeV (t -50), zw

scattering is well described by s, p, and d waves.
Thus we have the phase shifts bo„602, 6'„620, 6,' (no-
tation 6~). This simple description applies be-
cause the pion has spin zero, the forces are of
short range, mm~3n because of C parity, and
nm-4m appears only at high energies. Since we
are interested here in the amplitude NÃ- nn we
can forget those mm waves with isospin different
from 0 or 1. In addition &, is very small and is
neglected in our subsequent analysis. Thus we are
left with 6p and

The extraction of 6~ has been a major problem.
However, our current picture of the mm s wave is
fairly clear due to the accumulation of much ex-
perimental data and the analyses of Morgan and
Shaw'~ and, more recently, Basdevant et a/. " It
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now appears that the best available solution is of
the between-down/down form. We show this 500

in Fig. 1 [for a parametrization see Appendix A].
Above 900 MeV 6~~ rises rapidly and appears to
flatten off on reaching m. The low-energy behavior
of ~p is also of interest and it appears that expe ri-
mental estimates of, the scattering length are con-
verging on the original soft-pion result of Wein-
berg, "i.e., a, =0.2.

Now we turn to the p-wave mm phase shift ~,'.
The fact that this is resonant at about 760 MeV
has been known for some time. Also the scattering
length is reasonably well established as

a = 0.035 +0.005. (3.1)

However, there is still some uncertainty about
the width of the resonance. The current favored
value is

I'~ = (135+15)MeV, (3.2)

compared with the older value of 120 MeV. It is
interesting to note that electron-positron annihila-
tion to two pions and pion. electroproduction give
information on the pion electromagnetic form
factor

E.(t) =e"~"' (3.3)

for spacelike (+ve) and timelike (-ve) t, respec-
tively. Thus it would appear that the most
straightforward procedure would be to put the ex-
perimental values for E„(t) directly into our Omnfts
dispersion relations for f', I', . However, the data
are not as accurate as one would wish. In Fig. 2
we plot the pion electroproduction data of Akerlof
et aI,"Mistretta et al. ,

" and Brown et al. ,
'

together with the Novosibirsk electron-positron
annihilation data of Auslender et a/. " It is im-

portant to note that these experimental results
are model-dependent. This is particularly true
of the electroproduction data. The Akerlof et al.
and Mistretta et al. error bars are meant to in-
clude both theoretical and statistical errors, while
those of Brown are purely statistical. The Novosi-
birsk electron-positron data quoted here have a
"model dependence" caused by the treatment of
the p-& interference. Auslender et al. employ
a crude model and give a value 105 MeV for the
p width. More recent Orsay data" indicate a
larger width, and when the raw Novosibirsk data
are combined with this and a realistic model em-
ployed for p-& interference a width of 135 MeV
is obtained. (The Orsay data are not given in a
form readily amenable to plotting. ) In view of
this we feel that the best approach is to work
from the ~,' phase shift.

We use I'~ =135 MeV and parametrize the phase
as in Morgan and pshaw" (see Appendix A). The
phase shifts for the present w'idth of 135 MeV
are shown in Fig. 3 where we show the older 120-
MeV width set for comparison. We have plotted
the corresponding curves (labeled A, I3) for ~E, (t)~

in Fig. 2. One of the interesting features is that
E, (t) for t& 0 is independent of the p width and
is consistent with the most recent electroproduc-
tion analysis (Brown et al)." We emphasize that
it is important to include the high-energy 6', con-
tribution. In the spirit of Pis6t and Boos we
have used ~', = m for t&100. For comparison we
have also plotted (curve C) in Fig. 2 the results

o Ref. 18

x Ref. 19
o Ref. 20
& Ref. 21

o o
vQ
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FIG. 1. The ~m phase shift coo.

30 t m-„~ 40

FIG. 2. Plot of III" ~(t) j vs t. Curve A is drawn for a
p width of 135 MeV, and curve B is for a p width of 120
MeV. Curve C corresponds to a width of 135 MeV, but
with the high-energy tail of the ~~ interaction omitted.
Curve D is another possible fit to the data.
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obtained if we arbitrarily set &,
' to zero for t&100

for the 135-MeV phase shift. %e make the point,
however, that although we must include the high-
energy tail, the results for ~E, (t)~ are insensitive
to any reasonable variations of detail. %e also
draw in another curve (D), which we use later to
obtain an estimate of the accuracy of our deter-
minations of f', I', .

Thus we have chosen the ~m phase shifts for use
in our Omnhs dispersion relations. The remaining
problem is to evaluate dispersion-relation sub-
traction constants. Our principal tool here is a
set of helicity-amplitude consistency conditions
which we derive in Sec. IV.

IV. HELICITY -AMPLITUDE CONSISTENCY CONDITIONS

Our consistency conditions constrain the helicity
amplitudes at t =4 and are derived simply by ob-
serving that in the usual integrals over the mN

center-of-mass energy of the nX invariant ampli-
tudes, projecting out the NN- ww helicity ampli-
tudes, the range of integration collapses at the
mn threshold to a single point. Thus at the wm

threshold the helicity amplitudes are given directly
in terms of the unphysical s-channel invariant
amplitudes.

To begin with, we write down general projection
formulas for f~~(t}. For 8 even,

m m'- ,'t-

m[J(/+I)]'~'
8 (&+1)(pq)'

X ~ dv Pg g Pg+g

xB'(v, t},

and for J odd,

m m'- 't-
(4.1b)

where

m[Z(v+1)] '~'
8v(2J+1)(pq)~

d PJ'~ J PJ'+g

XB (v, t), (4.1d)

8 —p.v= cosQ=
m 4m

Q =center-of-mass NN- nn scattering angle

C'(v, t) = A '(v, t)+ f, B'(v, t).

Now we set t =4 (which implies q-0) and obtain
our consistency conditions. To be explicit we now
restrict our attention to the 4 =0, 1 helicity ampli-
tudes, for which we find

I80-'

(4.la)

I20 MeV

m2 —1Ref'. (4) = A'(0, 4),
4w

, ( )
B (0, 4)&2

12m

1 lsA (v4)ReI;4 =
24vm

I
sv

(4.2a)

(4.2b}

(4.2c)

I40$

I20
f

(deg)
IOO 9

Evaluating the right-hand-side expressions using
the results of Engels" and Hohler and Strauss"
together with the mN amplitude tables of Nielsen, "
we obtain

80-

40-

Ref'„(4) =110.0 +0.5,

Ref' (4) =0.35+0.01,

ReI', (4) =0.019 +0.001,

where we use the standard decomposition

(4.3a}

(4.3b)

(4.3c)

20-

300 400 500 600 700 800 900 I000
~ (MeV)

FIG. 3. The ~~ phase shift 5~&.

(4.4}

Explicitly, f,(t}' is obtained by inserting the
nonintegral terms in Eq. (2.3) for g f~ into the
left-hand cut of the dispersion relation (2.2).

As an initial application of these relations we

test published helicity-amplitude determinations.
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In particular we note that for the J =0 amplitude
Nielsen, Petersen, and Pietarinen' obtained
f', (4)-55, a factor of two smaller than required
by (4.3a.}. However, we find the /=I results of
Hohler, Strauss, and Wunder (HSW),

Ref' (4)~„,„=0.25,

ReF, (4)(„~=0.016,
(4.5)

are in fair agreement with our values.
In the next few sections we develop a calcula-

tional scheme based on the consistency conditions
and Omnhs dispersion relations for the helicity
amplitudes. As stated earlier, one of the major
problems has been to estimate the contribution of
the unknown distant I.H cut (-~&t&-26). Since
we now have a good value of the amplitude at t =4
we can either use this directly as a subtraction
constant to reduce the importance of the unknown
distant LH cut or, if more convenient„we can
subtract at some other point and adjust the sub-
traction constant to force the amplitude to obey
our consistency condition. In practice we find that
to attain the necessary accuracy we need to sub-
tract twice, so we require the value of the second

subtraction constant, too. For fo we can use
results from forward mS scattering data to
evaluate one of the subtraction constants reliably,
so we have no problems there. However, the
same technique is not accurate enough for f', I,.
Fortunately, our consistency conditions provide
a method for obtaining an estimate of the other
subtraction constant. Since our approaches for
f', and f', I; are quite different, we treat them
separately in the following sections.

V THE f 0 DISPERSION RELATION

To preface this section we remark that previous
determinations of f', are very crude except for
the very recent work of Nielsen and Oades' which
we discuss below. In particular, the results of
Hamilton et al. ,

"and more recently Nielsen,
Petersen, and Pietarinen' appear to be only quali-
tatively correct. They fail our consistency condi-
tion test by a large margin (see Sec. IV). In view
of this and the recent reliable determination of
&', we attempt a new, accurate evaluation of f', .

The dispersion relation we use for f, is twice
subtracted at t =0 and has the form

e "o"'f'(t) =Ref'+(0)+t —Re[e "o"'f0+(f)] + ' 'ln +t —+-a, Imf', (0) ( 26(t —a)" 1 1

st ', , v I a(t+ 26) a 26

+ ——Im[e "o"'f', (t)] ln
f 8, 2 (6t-a)
v est ',=, a(t+ 26)

t' "', e "0" 'Imf', (t') -Imf', (0) —t'((s/st")Im[e "o" 'f', (t"))]..+ ' dt I r2 ~ for t&4. (5.1)

This relation is different from the usual one used by Hamilton and others, "namely

t'r ae-»"&fo„(t)=Ref', (0)+t, Re[e-»" 'f;(t')] +—,„P dt', ,„™',,at' ~=0 m
(5.2)

We include a derivation of (5.1) in Appendix B. Its
principal advantage is that numerical evaluation is
much simpler, for the limiting procedures re-
quired by the Hamilton relation are avoided. %'e

have checked the numerical accuracy of our rela-
tion by using the same input as was used by Hamil-
ton et a/. 27 in 1962 and we reproduce exactly the
Hamilton Imf', . Also, if we input the phase-shift
predictions of NPP we get their results for Imf', .

In practice we find that the two subtractions
lead to a highly convergent relation. (We note that
just one subtraction gives poor accuracy. ) The
LH-cut contribution is rapidly reduced at large
negative t and in our evaluation the Born term
gives the dominant (&95'rc} I.H-cut contribution
[we use the Nielsen tables" for Imf0+(t)]. As
stated earlier we, employ as input the Morgan
and Shaw-type 5', and we find that f'+ is not sensi-

Refo (0) =-1.9+3.0, (5.3a)

Ref 0 (t) =2.8 +0.9.
at 1=0

(5.3b}

We have found that (5.3b} is not accurate enough
for our purposes. However, we can evaluate the
derivative subtraction constant in the following
way. %e use a recent determination for the first
subtraction constant, ~ i.e. ,

Ref', (0) = -2.8 +O.V, (5.4)

together with the Morgan and Shaw phase shift as

tive to the experimental errors" attached to &',.
The main problem is that the solution for fo is
sensitive to the derivative subtraction constant.
Early analysis of forward mN scattering by Menot-
ti" yielded the values
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together with the Born contribution alone. We have
also plotted the results of Nielsen, Petersen, and
Pietarinen (NPP)' and Brown and Durso" which
were used in the recent NN interaction calcula-
tions of Brown and Durso, "Chemtob and Riska"
and Chemtob, Durso, and Riska, '

It is clear from the comparison that the accuracy
of previous determinations is poor. From the
CGLN model f', we can also understand why
Kapadia" had cutoff problems in evaluating the
corresponding NN potential integrals. We also
note for later reference that the Born term is
large and responsible for the rapid variations in
fo near t=4.

We should also mention the recent work of
Nielsen and Oades, ' which provides an evaluation
of f', which has an accuracy comparable to that
of the present work. They use unsubtracted dis-
persion relations and attempt an extrapolation of
the distant I H-cut contribution from the region
t& a to the region of interest t&4. Results are
given for Imf', only. It is clear at this point that
with the NO phase-shift input our f, coincides with
the NO f', .

FIG. 4. (a) Heal and (b) imaginary parts of the f+0

amplitude.
VL NON-BORN DISPERSION RELATIONS

input to our dispersion relation evaluated at t =4.
By imposing the f', consistency condition we find

—Ref', (t) =2.0 +0.2.9

at + (s.s}

Ref 0 (0)i „= 2.0, -

—Ref' (t)
8 =18

CGLN et=a

(5.6)

We now turn to our results for f'+. We show
both Ref', and Imf', in Figs. 4(a) and 4(b) with

error bars indicating the spread corresponding
to the uncertainty in the derivative subtraction
constant. For comparison we have drawn in the
"improved" CGLN model prediction for Ref 0

We note that the determination is quite insensitive
to the value of Ref', (0). It is interesting to note
that the subtraction constants may be determined
in a quite different way. This entails use of the
improved accurate CGLN model for the mN ampli-
tude, which we have derived and explained in
detail elsewhere. ' With this model we predict

So far we have used omnhs dispersion relations
to calculate the complete helicity amplitudes.
However, we already know the Born amplitudes
so it is natural to ask the question: Why not con-
centrate on accurately evaluating that part of the
amplitude which we do not know„ i.e., the non-
Born part'P This approach appears particularly
attractive in relation to evaluations of the NN

potential, for there the g4 terms of the helicity-
amplitude expansion are subtracted out leaving
the smaller (non-Born)' and (non-Born&&g') cross
terms. ' We shall also find in Sec. VII that non-
Born dispersion relations are essential if we are
to implement our consistency conditions directly.

We observe that non-Born dispersion relations
have advantages which appear not to have been
exploited in previous amplitude determinations.
For this reason we briefly derive and discuss
these relations. First we write

(6.1)

and observe that ff(t) has a LH cut from t =0 to
-~ and a RH cut from t =4 to ~. Thus we have

Im{[f', (t') f', (t')~...„je "~"'-)
t' —t- ie (6 2)



10 DETERMINATION OF THE NN mm HELICITY AMPLITUDES 2175

Then if we apply unitarity in the usual way, we
arrive at our non-Born dispersion relation

we find that the corresponding resonance errors
are

"„,, f', ( t')l~...sin5', ( t')

w, e"~"'(t' —f —f e)

The advantages of this relation are apparent.
First of all, the unknown (non-Born) distant LH-
cut contribution is neatly isolated and the Born
terms appear on the RH-cut, where their con-
tribution is certainly more accurately evaluated
than if they appeared on the distant LH cut. As
a result of these features the relation is particu-
larly suited for approaches such a,s that of Nielsen
and Oades' in which the unknown LH cut is extrap-
olated.

In Sec. VII we evaluate f', I", using non-Born
dispersion relations subtracted at threshold (f =4)
and at resonance (t-30). We also show how the
resonance subtraction constants may be estimated
using unsubtracted non-Born dispersion relations
together with our consistency conditions.

+ other terms. (7 1)

From this it is clear that at resonance the deriva-
tive subtraction constant error mill be magnified
by a factor of about 200. Using the results of
Vick, "namely

Ref' (t) = -0.053 +0.007,
~=0

—Re&,(t) = -0.00532 *0.00025,
8

Bt

(7.2)

VI1. THE f, I' DISPERSION RELATIONS

Previous attempts" to calculate the 4 =1 helicity
amplitudes employed Omnhs dispersion relations
twice subtracted at t =0 following the approach
used for the f', amplitude. However, this method
is inaccurate for the 4=1 amplitudes. To illustrate
the difficulty we consider the Omnhs relation for
f' (the I; case is entirely analogous). We have

f' (t) =e"&"'Ref' (0)

+e"&"'t Ref' (f')8

~'=0

Error ff' (30))-1.4,

Error (I;(30)l -0.05.
(7.3)

These errors are of the same order of magnitude
as the amplitudes (this is in marked contrast to the
f', case, where the corresponding errors are
typically 5% of the amplitude). Thus subtracting
twice at t =0 is out of the question.

The later work of Hohler, Strauss, and Wunder
(HSW)' used subtractions at t =0 and t = -20, e.g. ,

—e"&
'"

(—,', f)Ref ' (-20)e"&
' "'

+other terms. (7 4)

Thus, the HSW work is more accurate as the error
magnification at resonance is smaller (-20). How-

ever, a nm P-wave phase shift of width 148 MeV
was used (as compared with the current value of
135 MeV). In addition, the HSW amplitudes do not
quite satisfy our consistency conditions. We re-
mark that HSW actually determined f', whereas
we calculate the amplitudes f' and I;, for these
are the quantities directly entering the NN calcula-
tion, and we observe that calculating I; from f',
can lead to large errors (up to 25% at the reso-
nance).

In view of the above we attempt a new deriva-
tion of f', I;. We emphasize that the NN potential
is very sensitive to the ~ =1 amplitudes, ' so it is
most important to know these amplitudes as ac-
curately as possible.

We feel that the best approach is to use Omnbs
dispersion relations subtracted at t =4 and at
resonance. This allows direct use of our con-
sistency conditions but requires an evaluation of
the resonance amplitudes. In addition, we have
found particularly for f' that the subtraction at
t =4 in the full amplitude dispersion relation causes
sensitivity to the value of F, (f) at t=4. The rea-
son for this is that the Born term on the LH cut
varies extremely rapidly near t =a (see Appendix
C). If non-Born dispersion relations are used,
this problem disappears. Thus we use

f'(t)e "&"&- 'Ref'(4)e "&&'&t —t
4-tP

, (& -4)(t - t, ) l
-'

+
4

Imf'(t~)le "&"»&l
P

e "&" 'Imf'(t') ", f' (t') l...„sin5,'(t')
(~' -4)(t' &,)(t' —&) —

l

" "'l(t' -4)(t' —t, )(t' f)—
for t&4, (7.5)
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results, leaving the details till the end of the sec-
tion. We find that there is quite some latitude in
the choice of subtraction constants. The consis-
tency condition limits are

0.97 & Imf' (t~) & 1.48

I

-30 -20 -t0
I I

iO 20 30 y0 50

-0.1 & ImI'2(t p) & -0.051.

Faced with this situation we can make some con-
sistent subtraction-constant choice and plot the
resulting f', I; amplitudes calculated from (7.5)
with error bars indicating the spread of solutions
allowed by the consistency conditions. We choose
the set

imf' (f,}=1.48,

ImI;(tp) = -0.051,
FIG. 5. i&~(i) ~. Comparison of HSW ress)t with ours.

where t~=29.8.
A similar relation holds for I;(f). The main

problem now is to evaluate Imf
' (t~) and Iml;(t~).

It is instructive here to look back at the HSW

paper In par. ticular we show in Fig. 5 the HSW

E,(t) input together with ours. The striking fea-
ture here is that the two curves coincide up to
the resonance region. We also find that the 88%
values of f', in the region t &0 compare well with
the recent accurate values of Nielsen. "

In view of the above results it is reasonably clear
that the principal difference between the 88%'
results and ours will be due to the change in E„(t)
near resonance. [We note here the subtle point
that ~E, (t)i peaks at f -29, i.e., about 10 MeV
below resonance. This behavior was also found
by Gounaris and Sakurai. ~] The HSW resonance
amplitudes are

imP (t, )i„,„=1.27,

~+ P ~»w

which imply that Imi;(t~)~»w -—-0.052, but we
remind the reader that a 5% error in f' here
impHes a 25fg error in I"„sothe HSW values of
I; are not very accurate. Using our 135-MeV width
6', for E, (t) (i.e., curve A of Fig. 2, see Sec. III),
we find that these values are altered to

which are in fact the respective upper limits as
indicated in (7.8). This choice is particularly
useful for determining limits of uncertainty in NN
potential calculations. ' We show the resulting
amplitudes and error bands in Figs. 6 and V. We
have also plotted in Fig. 6 a solution for f' using
as input the value

Imf '
( fp) = 1.28, (7.10)

2

2.0-

Ref'

I.O-

)0 20

CGLN
Born
(i.2B)
(j.~)

60 70

(.5

Im f' (t&)* ).48 solution
I (2B o

We note the fact that as for E, (t) the imaginary
parts of the amplitude peak at t-29, i.e., a little
below resonance. In addition, we observe that all
the amplitudes go through a zero shortly after
t =40. For comparison we have also drawn in the

Imf' (t~) =1.5, (7.7} 0 - CDRB resorence omphtude

Imi;(tz) = -0.062,

where again the f' value is the more accurately
determined. We can make an independent check on
these amplitudes by using unsubtracted non-Born
dispersion relations together with our consistency
conditions. At this point we merely quote the

0.5

00~ e 20 30 40 60 ?0

FJG. 6. The f ~ amplitude.
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HSW results together with the CGLN' and Born
amplitudes. For convenience we have character-
ized the J =1 amplitudes used in the NN calcula-
tions of Chemtob, Durso and Riska, ' Chemtob and
Riska" and Durso and Brown" (collectively CDRB)
by their values at resonance, i.e.,

Imf-'( t q)l CDRB
0'93

(V.l 1)
imf, «, )~,.„,= -O.OS6.

W'e observe that these fall outside the allowed band
of solutions. We also note that the Born terms
are large for both amplitudes and, as for f„Dare
responsible for the rapid amplitude variations
near t =4. An interesting feature brought out by
a comparison of the CGLN curves for f', and
f', I", is that the h(1236}contribution certainly
drops off as we go to higher Ii7N- iiir helicity ampli-
tudes. This behavior is as predicted by our analy-
sis of the CGLN model which we have described
elsewhere. '

In summary we can say that our 1=1 results
are similar to previous determinations. It is
clear, however, that the amplitudes are not well
determined by either our or the other approaches.
This is most unfortunate, for when the helicity
amplitudes are used to evaluate the N-N potential,
errors in the J'=1 amplitudes are then amplified
consistently.

We now return to the details of the consistency

Thus we want an estimate for the quantity

I ", Imf'
F.(t')(t' —t't e) (7.14)

when t = t~.
Now we make use of our consistency condition

at t =4 together with Eg. (7.12) and find

x, (4) =o 13. (7.15)

Next we assume Imf' &0 in the range -~ & t & -26.
Support for this comes from the Nielsen tables"
and Eil. ('7.15). With this assumption and noting
that

condition restrictions on the resonance amplitudes.
We illustrate the procedure for f' F. rom Sec. VI
we write down the unsubtracted Dm&s relation
for f':

r 0f' (t) e "i"'= — dt'v, „F,( t')(t' t ——t)
1 ",f' (t')~ii„„sin6,'(t')

(F, (t')((t' —t —t.)
'

('7.12)

At resonance we find

I P "", f' [~„„sin5',Imf'(t )=IF (t )I dt
IF (t)l(t'-t )

1 ", Imf'7.' „F(t)(t'- t, )
'

(V.is)

4 iP 20
0.0

-0.05-

HSW«~ 50 60 70 t

Born
C6l.N

1 -1 -1
t' —4 t' —tp t' -4 '

the following inequality applies:

—'„' x, (4)&x, (t, )&x, (4).

(7.16)

(7.17)

Rel 2

-0, I

In conjunction with (7.13}, this implies

1.07& Imf' (t, ) &1.48. (7.16)

We have used our curve A (135-MeV width 6', )
for F (t) here. If we use the curve D defined in
Sec. III and plotted in Fig. 2, we obtain

-0.I5

Iml 2

-0.05

4 io 20 30 40 60 7P t

47 * CORB resononce
otnpiitude

) ' -0.05I solution

0.97 & Imf' (t, )&1.40.

For I; we define

] r-2B ImI;
(Ft'}(t' - t —t~} '

and find

x, (4) = -0.013.

(V.19)

(V.20)

(7.2i}

~Consistency cond~i~on range

FIG. 7. 7he I'2 amplitude.

W'e assume ImI; & 0 in the range -~ & t & -26, with

support coming from (V.21) and the Nielsen ta-
bles, "and find

Choice A: -0.1 & Iml;(t~} & -0.056,
(V.22)
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Imf' (t, ) =1.28 ~0.13,

I lm(t 2p)
= -0.056 +0.011.

('l. 23)

Choice 8: -0.09 & lml;(t&) & -0.051.

We should point out that we have used the Nielsen
values for Imf', ImI; in the range -26&t&0 with
no allowance made for errors. We shall return
to this shortly. %'e remark that we have tried a
once-subtracted version of this consistency con-
dition scheme and find it leads to wider limits on
the amplitudes.

Of course, at this stage one is tempted to fix
tighter inequalities by trying an extrapolation of

y, (t), y, (t) to t =t~. To see if this will work we
have evaluated these functions in the range
-25 & t& 3 using Eqs. (q.12) and its I; counter-
part, together with the Nielsen tables. " To obtain
some idea of the errors we have carried out
the evaluation for both curves A and D for
E, (t). The results are plotted in Fig. 8. It is
clear that even assuming exact accuracy for the
Nielsen input the uncertainty in E, (t) precludes in

accurate extrapolation. For this reason. we make
no attempt to extrapolate to the resonance region.
NO made a. more detailed analysis of the extrapo-
lation problem. Using as input a, &,

' phase shift of
width 125 MeV, they obtained

These results are consistent with our limits.
It is clear from the above that there is quite

some latitude in the choice of resonance subtrac-
tion constants. The "hard" consistency condition
limits are

0.9V&Imf'(f, ) &1.48,

0.1& ImI;(t, ) « -0.051.
(V.24)

VIII. CONCLUSIONS

We have successfully applied our consistency
conditions in two ways: first as a check on previ-
ous helicity-amplitude calculations, where we
find the f', amplitude to be poorly determined by
NPP, and second as a constraint in Omnbs dis-
persion relations to accurately determine both
the entire f', amplitude and the entire P-wave
amplitudes f', I;. In addition we have shown the
efficacy of using non-Born Omnbs dispersion
relations for determining helicity amplitudes.

In summary we can say with confidence that
f', is well determined in our approach, however,
our analysis indicates that f', I", are not as well
known as has been previously assumed. We de-
scribe elsewhere the application of our helicity
amplitudes to the problem of calculating the inter-
mediate -range nucleon-nucleon potential.

(They actually worked out f', .) The errors quoted
reflect only the uncertainty in the nN input data.
Thus no allowance is made for errors in E,(t).

-0.5

APPENDIX A

We give here the parametrizations for &,', 6 .
In the range 4&t&40 we used

50O(q) = aoq +a,q'+ a,q' + a,q" + a,q' + a,q",

-04

Cho

I I I i

-20 -tO

-0.3

-0.2

a 0

-O. I

l I I I

20 30

ao =0.20,

a, =0.142 3626,

a, = 0.003 034 2,

a, = -0.006821 0,

a~ =+0.000896 2,

a, -- -0.000 035 8.

(A2)

Choice D

Choice A

- -O.ol —(?)
Q

- 0.02

——0.03

An alternative effective range form is that of
Brehm, Golowich, and Prasad, "which (after cor-
rections for misprints) is

1 1 Q'

2(1+q')'~' ' 2a, (1+q') 2n 1+q'»» cot6', = , lnA

+, q, „, ln[q+(I+q')'"],
p(1 +g

FIG. 8. Plot of gg(t), gg(t} indicating extrapolation
hazards. where A =350.



10 DETERMINATION OZ THE NN - mw HEI. ICITY AMPI. ITUDES

Above t = 40 we dropped 50 linearly (in q) to zero
at t =200. Strictly speaking, &00 should rise rapidly
through —,'n near t =51 and level off on reaching m

as indicated by the latest data. However, this
"tail" behavior has little effect on our fo solution
except, say, for t&50. Thus our fo results are
certainly reliable up to t =40, where cutoff inde-
pendence sets in for the associated NN potential
components.

&,': %e use the Morgan and Shaw-type para-
metrization'6

q' '~'
5, (1 —0.153eq')(1 +0.014q')

q'+ 1 ' 0.035q'

for 4 & t & 100 (A4)

6,'=m, for t&100.

COMPLEX t PLANE

FIG. 9. The integration contour for E(t)t2 in the corn-
plex t plane.

Thus our dispersion relation is

The effect of this tail on E, (t) is easily eval-
uated. Recall that

P, (t')P'(t) dt tl(tl —t
'

)4

1 [" ImF(t ')df '
v J, (t')'(~'-t-i~)

+near -pole contribution. (82)

f (f) eiiiit)

Now

5' = ieiii&'&~ncaa
i

5'(t')
f'( t' —t —')

100

(AS)

(A7)

Nem -I'ohe Contribution. %rite

S =(I,+f,)/2~i,

where

il+iK F(ii l)dt /1

1 (f t)R(~I t)

ii -ie F(f t)df I

;, (~')(t' —f)

(84a)

(84b)

100 X-t
(AS) Note that t&4 so we have dropped the i~ in the

LH-cut integrals. Next we use partial fractions:

where X is a cutoff. If we do not include the &,'
tail, we find F =1. If we include the tail according
to (A4), then

1 1 1 1
(t')'(t'- f) t'(f' f) Pt' -~(i')' '

and write

(85)

100 (AS) I~ =I~+I~+I, . (85)

Thus we see inclusion of the tail affects E„(t)
considerably at resonance. Our parametrization
(A4) is justified by the good fit for F„(t).

APPENDIX 8

Then

1 ""' E(t')dt'
~t „„, t'-t
1 (" E(t '+ ie)dt '

~t I „ t'-t+ic (8V)

We derive our dispersion relation for f0 here
To simplify the notation we write Now we make a Taylor expansion,

F(f) =e"'"f'(~) (81)

and derive a dispersion relation for F(t)lt'. The
contour around which we apply Cauchy's theorem
is shown in Fig. 9. There is a double pole situated
on the cut at t=0. This must be dealt with care-
fuQy, so we split off the piece of the contour near
the origin, as illustrated in Fig. 10.

-h+ ig
I

I

-h-ig

8+i f.~t =o
a

h-i E

Cofnplex & plane

FIG. 10. The region of the contour near t = 0.
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F(t '+ ie) =F(ie}+t 'F'(te)+ —,F"(ie)21

Hence

+ ~ ~ ~

I2 = ~ F(ie) + O(h),

1 . t+hI' = —F(ie)rn + 2hF '(te }t-h
t+h

+ (t —ie)F'(2e)ln +t-h
i.e., I', = O(h). Similarly we find

(86}

(89)

(Blo)

Now for h„h, small enough we can replace

ImE(t ')
t'-t

ImF (O)

t

Hence

(O) (O)
( (f' )' ') ( EOdt

2 ImE(0) 1 1
wt h h2 1

iw F,(, )
1 " F(ie)dt '

O(h)t t „(t'+ie)

t2, (. )
1 2hF(ie)

( )t t h2+&2 (811)

In the above we have made use of the integrals

= O(h„h, ) . (816)

Hence as h -0, F(t)/t 2approaches a definite
limit. For computational purposes it is necessary
to get the dispersion relation into a form without
the explicit limit h -0. Thus we now consider the
terms in the dispersion relation dependent on h.
%rite

= -2r

dt' 2h
„(t'+ie) h +e

t'dt' . 2ihe

2 (t +ie) h +e

(t')dt' 2he2U~=, , =2h -2ez+
p (P +$EP h2+g2

Hence we find

8 = ~ ReF(0)+ —ReF '(0)+—1 1, 1 2h ImF (ie)
t t h2+e2

(812)

(BIS)

where we have now introduced the cutoff at t=-26.
Now we write

1 "" Im[F(t')-F(0) —t'F'(0)]dt'
(t')'(t'- t)

1 " Im[F(t')-F(0) —t'E'(0)]dt'
(t ')'(t ' —t)

+ — + ~. . . +0 t), B18

where
Thus, neglecting the HH cut we have

F() 1 ' .-" ImF(t')dt'
t2 (t/)2(td t ) t2

+ ', ReE (0)+
1 2™'

+O(h) (814)

Now what happens as h-OP Write F(t) =E(t, h)
=G(h) so that for h, &h, &0 we get

() ( (f' f ')( dddt

1 2 rmF(O)
pt h

After some manipulation we find

rm[F(t ') —F(O) —t 'F'(O)]dt '

(t '}'(t ' t)

(819)

G(O, ) —G(h, l = —
(f + f ), ,

)

2 ImF(0) 1 1
2t h h2 1

(815)

ImF (0) 1 26(t —a) 1 1 1
~t a(t+ 26) t a 26

(82o)
ImF '(0) [ 26(t —a)

ttt $ a(t+ 26)

and our final dispersion relation reads
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Im ''0'
e "o'" ', (t)=Ref', (0)+t Re —[e "ot"f'(t)] + f" ' in ' ' +t —+—

+ — Im —[e "o'"f',(t)] in
i =o a t+26),

„,e "O' Im', t'-Im', 0-L'Ime
(t ')'(t ' —t)

APPENDIX C where 6 is very small. Then

(C1)

where

%'e demonstrate the rapid variations of
Imf '(t) ~~„„near t = a. From Frazer and Fnleo'0
or EtIe. (2.2) and (2.3) we write

Wg' (-,'t- 1)'
Imf -(t}lsom =

I@ 4(p )2

and

1
q = (1+-,'m'5}

2m

2m'-1 ~- m'6
2m 2(2m2 —1)2

(C7)

(C8)

e =(I-4t}"'.
Now when t= a=4(1 —1/4m'), then

1~-=
2m '

(C2)

which leads to

2m 6
(2 2 1)2

Hence

Imf '(a —5)~ „„=(~Wg') 2m 5

(c9)

so that

2m'-1
2m

(C3)

(C4}

=6.4x 10'6 .
Thus it is clear that there are rapid variations in
Imf '~~„„near t=a.

Of course it is natural to enquire as to the situa-
tion for I', and also f ', . %e find

Imr, (a - t ) ~...„= g
8m

Imf '(a)~...„=0.
Thus we must look in the neighborhood of t= a.

We set

(C6)

Imf ', (a —5) IBorn -(k ~g ') ~

(C 11)

Hence there are no sudden variations in either
I", or f', .
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