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again sets in with &glor-0. In a model where
the conventional Gell-Mann-Zweig quarks are
"bound states*' of Ban-Nambu quarks and gluons,
the vector gluon carries charge so above the gluon
production threshold scaling may be changed and
the ratio o~/&xr most probably will not approach
zero. In any case, we could be assured of a new

regime of physics.
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Observation of deviations from scaling in the structure functions for deep-inelastic inclusive

lepton-hadron scattering may provide a test of the hypothesis that the strong interactions are described

by an asymptotically free field theory. Tests not involving additional assumptions are obtained for the

combinations of structure functions F~(ep)-F, (en), F, (v)-F2(V), and xF, (v or v). Neutrino and

electron scattering experiments are compared as possible tests of asymptotic freedom.

L INTRODUCTION

Approximate scaling, a.s observed in deep-in-
elastic lepton-hadron scattering, can be under-
stood qualitatively if the strong interactions are
described by an asymptotically free non-Abelian

gauge field theory. ' Such theories predict small
deviations from exact scaling. ' A real test of as-
ymptotic freedom must involve the observation
and measurement of this scaling breakdown. In

this paper we discuss possible expeximental tests

of the quantitative predictions of asymptotic free-
dom in deep-inelastic inclusive electroproduction
{elaborating on earlier work' by Parisi) and in the
corresponding neutrino scattering process. In

Sec. II we review the consequences of asymptotic
freedom for the structure functions in lepton-had-
ron scattering. %'e explore possible explicit ap-
plications of these ideas in Sec. III. In Sec. IV we

compare neutrino and electron scattering experi-
ments as tests of asymptotic freedom. Section V
contains conclusions.
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II. STRUCTURE FUNCTIONS IN ASYMPTOTICALLY
FREE FIELD THEORIES

An asymptotically free non-Abelian gauge theory
is characterized by an effective coupling constant
which for large spacelike momentum transfer Q2

= —QpV" is

22- 1
Bln(Q'/A')

In some sense, g describes the strength of the in-
teraction for a momentum transfer q. The con-
stant B depends on the gauge group and the kinds
of fundamental fields in the theory. For definite-
ness, we assume that the strong gauge group is a
color SU(3) group with four triplets of quarks
(8, X, X, and 6" each in three colors), in which
case l6n 2B = ~3.' The phenomenological parame-
ter A measures the Euclidean momentum at which
g gets large and the approximation Eq. (1) breaks
,down. The effective coupling g goes to zero as
Q2 goes to ~, so the theory is "asymptotically
free."

In such a theory, the Q' dependence of the mo-
ments of deep-inelastic structure functions is giv-
en by"

J
1

F(x, Q') x" ' dx =g A„(n}exp[- sa„(n)]
0 f}f

&[1+O(g '/4z) J+ O(m, '/Q'),

(2a}

ln(Q'/A')
ln(Q, '/A)

where E is xE„E„orxES and Q0 is an arbitrary
reference momentum chosen such that Q0&A. The
quantity x is the scaling variable introduced by
Bjorken, x=Q'/2ml, v, where v is the difference
between the lab energies of the incoming and the
outgoing lepton. It is sometimes suggested that
better scaling is obtained when the structure func-
tions are expressed in terms of some other vari-
able which approaches x in the Bjorken limit (for
example, the Bloom-Gilman variable x' =x/
[1+xm44 /Q ]). All tllese dlstlllc'tlolls al'e bill'led
in the terms of order m~'/Q' about which we can
say very little. In the context of asymptotically
free field theories, we have no way of determin-
ing which scaling variable is "best." %'e can only
extract useful information from Eq. (2} for high
Q' (say, 20 GeV), where terms of order m4, '/Q
are hopefully negligible and the choice of scaling
variable is immaterial.

The A„(n)are unknown constants, but the a (n)
have been calculated. ~' lf the terms of order

r
1

E(x, Q') x" ' dx =A (n) exp[- sa(n)],
0

(3a)

where

2 2 1.t.) =G(-4 - -. ~ 4
n n+1 (3b)

The constant G is a group-theory number. For the
the four-triplet model, Q =~». This may still be
difficult to test because it involves information
on E(x) for all x. But Parisi has showup' that Eq.
(3} is equivalent to the integro-differential equa-
tion

ml, '/Q' can be neglected and if g'/4z is small so
that g has the form (1), then the moments have
only a logarithmic dependence on Q'. This is
still not very useful because in general Eq. (2)
involves several terms with different Q' depen-
dences. The sum over a in Eq. (2} refers to the
different operators appearing in the operator-prod-
uct expansion of a product of two currents (to
lowest order in g). In general, there will be op-
erators bilinear in the quark fields and also gluon
operators [involving the gauge fields of the color
SU(3) groupJ. But there are at least tin ee struc-
ture functions now or soon to be experimentally
accessible which have the property that only a
single operator contributes to each moment:

(I) The difference of electroProduction structure
functions on proton and neutron targets,
E,(eP)- E,(en). Proton-neutron differences are
not isosinglet, so only fermion operators contri-
bute (xE, structure functions will not be considered
separately because these models imply the Callan-
Gross relation 2xE, = E,).

(2) The structure function xE~ for neutrino or
antineutrino scattering off any tm get. 6-parity
conservation implies that gluon operators do not
contribute' to xE3, which is a vector-axial-vector
interference and is therefore G-odd (we assume
the currents are first class).

(3) The neutrino antineutrino -difference
E,(vp) —E,(vt4). This is related by charge symme-
try to F,(vp}-E,(vn), so only fermion operators
contribute, ' as in case (1). Indeed, only fermion
operators contribute to E,(v)- E,(v) for any target.
Targets with the same number of protons and neu-
trons are not useful because charge symmetry im-
plies E,(v) = F,(v), but heavy nuclear targets may
be interesting.

For these structure functions, in the large-2,
small-g limit, Eq. (2) becomes simply

8 l dz——E(x, s) = [3+4 ln(1 -x)]E(x, s) + dz(2 —2z) E(x/z, s }+4 I [zF(x/z, s) —E(x, s)] . (4)
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If I' is known for some value Q'=Q, ' at which Eq.
(4) is applicable, we can predict E(x, Q') for all
higher Q' in terms of the phenomenological param-
eter A' and the model-dependent group-theory
number G. We can also predict I at any lower
Q' for which Eq. (4) is a good approximation. In

fact, it is not even necessary to know E(x, Q,')
for all x. If it is known for x~xo, we can predict
it for x ~xo at different Q'.

E(x, s,) = g d„x'~'(I-x)" .
n"-nO

Then Eq. (4} implies

—,—E(x, s,}= Q d„p„(x),1

n=nO

(5)

(6a)

III. EXPLICIT CALCULATIONS

To study the consequences of Eq. (4), we con-
sider fitting the data at some value of s =s, by an

expression of the form

P (x)=Q (-I) I (x)
rn=O m

with

)at

I (x) =x""~' —~3+ 4 ln(l —x) —8 ln(1+x'~')+ 8 ln2+ —8 Q

4X 4X nt+ l ~ nt+2 ~ X
+

2 1-2 +ax +3x +8~
J=0

(6c)

In Eq. (5), the x'~' behavior at small x is sug-
gested by Regge-pole-dominance arguments' for
the generalized forward Compton amplitude at
fixed large Q' and v- ~. The leading trajectories
that contribute to the processes under consider-
ation all have intercept approximately equal to 2.
The x'~2 "Regge behavior" is stable under changes
in Q'. The lowest value of n =n, may be related
to the behavior of elastic form factors in a given
Q' range. "

The relevant experimental data raw available

are at low Q' for E,(eP)-F,(en} (Ref. 9) and

x F,(v) —x F,(Freon) (Ref. 10). The gross features
of these data can be described by the function

x"~'(I -x')' of the Bloom-Giiman variable. To
illustrate the main features of the Q' dependence
of the structure functions, we will assume that
this form (but as a function of x rather than x')
describes the structure functions for some large
Q'=Q, '. In other words, we assume that only
the n =3 term is present in Eq. (5). Then Eq. (6)
becomes

E(x, s,) = fx'~'(I —x)' [-~3 +4 ln(l —x) —8 ln(1+x'~'} + 8 ln2] —F55 x(l -x'~') +8x'~'(I —x' ')] .

This function is negative for x a 0.08 and positive
for very small x. We can use it to calculate the

change in E for a small change in s. To extract
more information, we have numerically integrated
Eq. (4) with F(x, s,) =d, x'~'(I —x}' for a large

ange in s, which corresponds to an enormous
range of Q'. We have used G =+, . The results
are summarized in a series of figures. In the
figures, d3=4.

Figure 1 shows the function E(x, s}for various
values of s. The curves are labeled by their s
values (s =0 corresponds to the input function).
Negative (positive) s corresponds to Q' &Q,'
(Q' & Q,'). The general features of the evolution
in s are easy to understand. All the moments
decrease as s increases and the decrease is
faster for the higher moments, so the area under

the curve decreases while the curve becomes
more sharply peaked at low x.

We cannot label the curves with values of Q'

until we know the value of the parameter A'. This
parameter can be determined experimentally by
fitting the data at two different large values of Q'

to two curves in Fig. 1 [or their generalizations
from Eq. (6}]." For definiteness, take A'=1
GeV' and Q,' =100 GeV'. The curves labeled
s = —0.69, -0.43, 0, 0.55, and 2.2 then corre-
spond to Q'=10, 20, 100, 2860, and Vx10" GeV'.

Figure 2 is a redrawing of Fig. 1 in terms of
the variable u& = 1jx. This emphasizes the behav-
ior of the structure functions at large v (small x}.

Figure 3 shows the Q' evolution of the structure
function at fixed x, normalized to its value at Q,'.
The input is again E(x, Q,') =x'~'(I —x)' and G = ~»
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F(ff, s)

Oo .2 .5 .9 x

FIG. 1. E(x, s) versus x at various values of s.

as in Figs. 1 and 2. Once more, it is not possible
to show the results as a function of Q', but only
as a function of s. The structure function varies
most rapidly at large x and decreases for in-
creasing s (or Q'). Only for very small x does
it increase with s. For reasonable values of A'

and thinkable ranges of Q, it mill be very diffi-
cult to observe nonlinear effects (except possibly
at very large x). With good data at large Q' the
experimentalist should try a fit of the form

&(x, s)=g &.~''(&-&)"+&sr d.P.(&), (8)
n =n0

with p„(x)given by Efl. (6). With the d„determined
by a fit at some Q' =Q,', Eq. (8) involves two ad-
ditional parameters: the group-theory number
6 and the scale parameter A'.

In Fig. 4 me present the results of a theoretical
experiment on the effects of terms of order mf, '/Q':

F ((u, s )
I I

1
I I I I I

t
I I I I f I

)
I I I I

5 10 20 50 100 200 500

FIG. 2. Ec~, s) versus ~ at various values of s.
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s 5% from Q' = 5 to 40 GeV'. This has the oppo-
site sign to what we expect from asymptotic free-
dom at large x. Therefore, if the behavior shown
in Fig. 3 is observed in the raw data, it is prob-
ably not due to the effect of radiative corrections.

If the weak interactions are also described by a
gauge theory, one expects other surprises in high-
energy neutrino scattering: the opening of charm
thresholds and the existence of intermediate vec-
tor bosons. The 8'-boson propagator suppresses
high-Q' events by an over-all factor of (Q'+ I&') '
Since the suppression is g independent it does not
lead to the behavior shown in Fig. 3.

Above charm threshold there could be an in-
crease in xI', at small x. Such an effect should
be easy to distinguish from the effects we dis-
cuss because it sets in at a definite value of W',
the mass of the hadron system. " Nevertheless,
it would probably be impossible to correct for
such an effect, so the small-x behavior of xE,
would be useless as a test of asymptotic freedom.

V. CONCLUSIONS

experiments at large Q'. It may be possible to
test asymptotic freedom by observing deviations
from scaling in xE, for neutrino (antineutrino)
scattering, EI(v)-E~(v), and E~(ep)-E~(en). The
observability of these effects depends on the value
of the parameter A'. lf A' is too small, devia-
tions from exact scaling will be very small at
large Q~. If A' is too big, asymptotic freedom
is useless as an explanation of scaling in con-
temporary experiments; what is observed at
SLAC energies would in this context be an incom-
prehensible epiphenomenon. The tests we have
discussed only are interesting if A' is of order 1
GeV', in which case A' and the group-theory num-
ber t can in principle be measured experimen-
tally. Unfortunately, the techniques described
above cannotbe simply applied to E,(ep). To check
asymptotic freedom using E(eP) we can either de-
vise very complicated (and probably useless) tests
involving four different values of Q' or we can use
information from very model-dependent extra-
field-theoretic sources.

Asymptotically free non-Abelian gauge field the-
ories of the strong interactions make specific
predictions of deviations from exact scaling in
deep-inelastic inclusive lepton-hadron scattering
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