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On the basis of recent data on K p ~ K n polarization and on differential cross sections, we present

an amplitude analysis for X p Eon and X+n K p. The approach makes use of fixed-t dispersion

relations and of information in the low-energy (resonance) region. %'e present detailed comparison of
our results with those of amphtude analyses of other reactions, and we underline a number of features

of the vector and tensor exchange in common to several two-body hadron processes. A check of our
results against finite-energy sum rules is also presented.

I. INTRODUCf ION

The structure of the real and imaginary parts
of the amplitudes as functions of the momentum
transfer 0- t has been one of the most important
preoccupations of two-body phenomenology in the
past few years. ' ' A main purpose of this effort
is to determine those specific features which are
the same in a number of hadron reactions and
which may eventually lead to a satisfactory theory
of two-body processes.

Recently the polarization for K p -K'n has been
measured at 8 GeV. ' The purpose of this work is
to combine this measurement with data on differ-
ential cross sections of K P -~ and K'n K P
in order to obtain what amounts to an amplitude
analysis for these two reactions. The approach
makes use of fixed-t dispersion relations (DR)
and of information in the low-energy (resonance)
region of KN charge exchange (CEX). With cer-
tain variations the same approach has been applied
to a number of two-body processes with very satis-
factory results '0 's' '

At high energy the reactions K P -E'n and K'n
K P are determined in terms of a vector t-chan-

nel exchange with the quantum numbers of the p
meson and of a tensor exchange with those of A, .
We determine the real and imaginary parts of the
g-channel helicity amplitudes for these two ex-
changes at 8 GeV. Our results are compared in
detail with those of other amplitude analyses in-
volving vector and tensor exchanges, and a num-
ber of common specific features are pointed out.
In particular, a rather definite form of the real
part of the nonf lip amplitude for both vector and
tensor exchange seems to emerge [Sec. III points
(vi) and (vii)J; this is hoped to be useful towards
eventually forming a satisfactory model for this
amplitude.

Section II presents our dispersion formalism.
Section III discusses the details of our approach,
presents our amplitude analysis, compares it
with analyses of other reactions, and underlines
a number of common features. Section IV checks
our results against finite-energy sum rules
(FESR) and also compares them with the results
of certain very recent analyses of KR CEX.

II. FORMALISM

We will describe here the basic formalism used
to discuss the two line-reversed reactions shown
in Fig. 1."' The s channel is taken as K'n-K'P
and is described by the usual invariant amplitudes
A(v, t), B(v, t), where 4M =s-u and M is the nu-

cleon mass. The corresponding u -channel ampli-
tudes describing K P -EPn are denoted by X(v, I )

and B(v, t ). We form crossing-even (-odd) forms
corresponding to A, (p) exchanges by taking sums
(differences)

A~'i(v, f ) = g [A(v, f )+ A(v, t )j, (2.1)

and similarly for B~'~. The corresponding nonf lip
and flip s-channel helicity amplitudes E„(v, t ) are
given to leading order in v by

Eo'~(v, t ) = —2M [A ' (v, t ) a vB ~'~( v, t )],
E,' (v, t ) = —v -t A&' (v, t ) .

(2 2)

(2 2)

, (I E,l
'+

I E,I'), (2.4)

The amplitudes for K'n -K'p -are then E„=E~'
+0 ', while those for K p -P'n are E„=E„'-E„' '

(n =0, 1). With these conventions exchange degen-
eracy for the vector and tensor exchanges implies
Im/'= -ImE„~. The amplitudes are so normal-
ized that the differential cross section and polar-
ization in the s channel are given by
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do 1
(2.5)

Analogous relations hoM for the barred (u channel)
amplitudes.

The rea1. parts of the invariant amplitudes will
be calculated from the imaginary parts by means
of the DR" FIG. 1. Kinematics of the KN CEX reactions.

1 g A'(MA-M) 1 gz'(M ~-M) 1 "„,ImA;(v', t)
2M vA+ v 2M vzs v m „v'+ v

0

1 "„,ImA~(v', t) 1 "0 „,ImA, (v', t}
0

(2 8)

where A~, B~ are the invariant amplitudes for K'p
elastic scattering. Analogous relations hold for
A„', B„', the invariant amplitudes for K'n elastic
scattering, with the subscript p replaced by n

everywhere in Eqs. (8) and (7), gA replaced by
zero and g~' by 2g~'. In these equations gh and

g r are the couplings of A(1.115, ~ ') and
Z(1.194, —,

' ') to the KN system, vA, vz are the
values of v corresponding to s = MA2 and s= Mza,

v, corresponds to the KN threshold and 7 to the
mA threshold. Since the mA decay channel is open
at the threshold of the E7X system, Eqs. (8) and

(7} contain extra integrals over the unphysical
region v& v~ v„also, since there is no physical
state with strangeness +1 and (mass)' & (Mr+ MN)',

ImA~&„& =ImB~&„&=0 in this region.
To obtain DR for A.~', B ' we use isotopic spin

invariance, which says

A=A~-A„', A, =A~ -A„,

and thus through Eq. (1)

ImAt'l(v, t ) = ImAt"y(v, t )

x (p2 p 2)[a~(c-ll/2
0 /

ImBt'~( v, t ) = ImBQ„(v, t )

V

(t}
) (,. „2)i/2

(2 9)

y ( p2 p 2)[n (it) -1] 2/(2 I())

where in the curly brackets the upper (lower) func-
tion of v corresponds to the crossing-even (-odd)
amplitude and n, (t), a', (t) are effective Regge
poles. Specifically ImAt, ~„, ImBt, l„represent the
effective vector (p) contribution, while ImA", ,'„,
1mB'„represent the effective tensor (A, ) contri-
bution. The two trajectories need not be the same;
however, for simplicity we shall assume

A~'~= g(A~ a A~ -A„+ v A„), (2.8)
u,'(t) = o.,(t) = n+(t),
n '(t) = ct (t) = n p(t)

and analogously for B.
Following a procedure that has led to satisfac-

tory results in several other two-body reactions,
we split the dispersion integrals into two pieces:
a low-energy piece (v&N, to be specified later)
and a high-energy piece (v&N).

In the high-energy piece the imaginary parts
of the amp1. itudes are taken to be the effective
Regge forms

and in fact that

(2.11)

M(Z s-Z'p) = .'(M'„~=,'-M',~=,'}, —

c.@(t) = n p(t)
—= o.(t) = 0.45 + 0.9t .

As for the low-energy pieces (p&N), since there
are no well-established resonances of hypercharge
Y = 2 and since the general amplitude I for K'n
-K'p satisfies
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we have

ImA(v, t) =ImB(v, t) ~0 (v&N).

Via E(I. (1) this implies

ImA('(v, t ) = —imA(-)(v, t )

=ImX(v, t),
ImB(')(v, t ) = —ImB( )(v, t )

=ImB(v, t ) (v(N) .

(2.12)

ImX( vi t ) = —2 (1111Xga —ImXAe) )

ImB(v, t) = —2 (ImBza —ImZA~) (v~N) .
(2.12}

Also, since the general amplitude M for E p-E'n
satisfies

M (tf-p -~)= ——.
'

(M,'~=,'-M,'-=0}

= —g (M~y -MA+),

we have

Before we present the final form of our DR we
note that, in view of (2.9) and of its crossing-even
property, the amplitude A(+)(v, t ) re(tuires one
subtraction. %'e define

-cotgma

tan~ma

1—cotawa )ReB(;)= 1mB(.')„
tan 2@a

(2.14)

and we proceed by writing a DR for the difference
A~')-A, ~,'~~. The rest of the amplitudes do not re-
quire subtractions; however, we can write all
DR in common form by applying well-known
Hilbert transforms to the high-energy piece (v)N}
of the dispersion integrals (for more details see
the Appendix of Ref. 12).

Then with (2.8), (2.12), and (2.13) the DR (2.6)
and (2.7) become

(,)( )
gr~(M~ -M) 1 1 gA2(M„-M) 1 1 (,) ( )4M vg+ v vz v 4M vA+v vp-v

+ — dv'I v', t, +, + — dv'ImA~'~ v', I,
P IIp

1
—a(')(t) $(&)(~ v) (2.15)

1 ~ 1 1ReB(" (v, t ) = g' +ReB(,')„(v, t )4N vz+v vz- v 4M vA+v vA- v

dv'ImB(v', t), v, —— dv'ImB("(v, t)
F It v+v v v w v+v v -v

0

()( )(()
I

g( l((( ( ( ) (2.16)

where

1 "&, 2v'(v —v,') t'
r v v

Itp

~e e v~ +~ ~2

(s+I+2n) '
n= v -vp

In the calculation of the integrals of (2.15), (2.16)
we use the relations (2.12) and (2.12) for the imag-
inary parts; these, in turn, are evaluated by res-
onance saturation; then N corresponds to the mass
of the highest resonance to be included (Sec. III).

By expanding I/(v'+ v) in the integrands of (2.15)
and (2.16) in powers of 1jv, we easily obtain the
foQowing FESR:

—7TvA 4M
+Ãvg 4M

+ vv v) + v v vg *(M -M) g '(M M) " „-~ "„(,) '(t)(~
1/0

(2.1V)

v
gA'(MA ™)g,'(M~™) "Od 1~( t) "d 1~()( t)

a(-)(t)(Z' —v,')'+""'~'

0

(2.18)
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g '
wg

' "0 — " b('(t)(1P —v )w')t'
w

A — ~ + dvimB(v, t)+ dvImB(')(v, t) =
P V0

()( t

g b( )(t)(]Vs v 2)[o(t)+x]/2
—wvA + wvE — dv vImB(v, t}+ dv vimB()(v, t}=

it V0

(2.10)

(2.10)

We shall make use (Sec. IV) of the lowest-moment
FESR.

III. PROCEDURE: RESULTING AMPLITUDES

AND THEIR MAIN FEATURES

At each value of t the formalism of Sec. II con-
tains four parameters: a(')(t) and b(')(t). In prin-
ciple, these can be determined from experimen-
tal data on the differential cross sections ckr/dt

and on the polarimations I' for K P -SFn and K'n
-K'p at one energy. Unfortunately, data on
P(K'n -K P) are not available at present. We
thus assume that the imaginary parts of our flip
amplitudes for the effective p and A2 contribution
are exchange-degenerate (EXD), i.e., that the
relation (2.11},

ImA(+)(v„ t ) = —ImA "
( v, t ), (3.1)

(3.2)

so that we need as input only three pieces of ex-
perimental information. We shall use the polar-
ization data for K P -IPn at 8 GeV (Fig. 2, solid
line), and the differential cross sections for K P
-Ph at 12.8 GeV (Fig. 3) and for K'n-K p at
12 GeV (Fig. 4).

The best way to calculate the low-energy inte-
grals of (2.15) and (2.16) would be in terms of
partial-wave phase-shift analyses. However, the
availaMe analyses are incomplete and cover only
very low energies; thus we proceed by saturating
the low-energy imaginary parts by the known KN
resonances. In fact we use the narrow-resonance
approximation, which has already led to satisfac-
tory results. ' Then a resonance of spin J, mass
M~, width I'~, and elasticity xg~ contributes to
the imaginary part of the partial wave f«„~»~ a
term

(3.3)

holds also for v&A. Exchange degeneracy for the
flip amplitudes (although not necessarily in strong
form) is consistent with the da/dt data above 5
GeV [Figs. 8 and 4 (see Refs. 31-88)], with the
relative magnitude and t structure of the polariza-
tions for K~P elastic scatteringyis and with severa
phenomenological analyses. " At sufficiently high
v (»v, ) E(ls. (2.9) and (3.1) imply

a')(t) = —a()(t),

Polarization 8 GcV

~2

.2 1.0 1.2

FIG. 2. Polarization of the KN CEX reactions at
8 GeV. Solid line: Input used in our amplitude analysis;
data of Ref. 9. Broken line: Predicted polarization for
Z+s IC P. -

where q is the c.m. momentum. Well-known par-
tial-wave expansions are then used to calculate
ImX, ImB. The integrals over the unphysical re-
gion v ~ v ~ v, are saturated by the A'(1405) and
Z'(1385) resonances, which are below the EN
threshold; for the explicit contributions of these
resonances to ImX, ImB, see Ref. 20. The res-
onance parameters (widths I'z and elasticities
xr„) used throughout the work are shown in Table
I, and correspond to mean values of Particle Data
tables. " Also, Table I shows the couplings used
for the A, A' and Z, Z' below threshold. For the
K/A and KHZ coupling constants we use values
close to those of a number of authors" "~; and
the couplings of the A'(1405) and Z'(1385) have
been chosen in accord with Ref. 24, which appears
to provide one of the best determinations (see
Ref. 22 and the second paper of Ref. IV).25

The real and imaginary parts of the resulting
s-channel helicity amplitude at 8 GeV are shown
in Fig. 5. Their essential features as well as
certain implications and comparison with the re-
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.5-
4

TABLE I. Resonance and pole parameters used in the
calculation of the low-energy integrals. The mdths are
the mean values of Ref. 21.
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FIG. 3. Differential cross sections for X p-FC n.
The line through the data at 12.3 GeV has been used as
input. The lines at 5, 7.1, and 9.5 OeV are predictions
of our approach. Data from Ref. 31.
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FIG. 5. The s-channel helicity amplitudes for the
tensor PL 2) and vector (p) exchange in KN CEX at 8
GeV.
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suits of other amplitude analyses are as follows:
(i} The imaginary parts of the flip amplitudes

(lmE~, '&) have a t structure in accord with the re-
quirements of the dual absorptive model (DAM),
namely ImEi, ' -Z, (RV- I), with R =1 F (hence
ImE~,'& changes sign near f =- 0.5 GeV).

(ii) The real part of the flip amplitude for vec-
tor (p) exchange (ReEi, «) satisfies approximately

Rex'&-& = tan~ma Ims&-', (3.4)

where a = a(t) of Eq. (2.11}. Together with (i),
this relation results in a "double zero" structure
of ReE, near f = —0.5. This structure as well as
(3.4} appear to be a common feature of most am-
plitude analyses' ' and should be considered as a
mell-established feature of vector exchange.

(iii) The real part of the flip amplitude for ten-
sor (A, ) exchange (Re/+&} satisfies approximately

ReE~'& = —cot ~wc. ImEP .
This again appears as a common feature of sev-
eral analyses involving tensor exchange. ' ' To-
gether with (i) and (ii), it implies that a good first
approximation for Ef'&(v, t) is a single Regge-pole
exchange [with a factor u(t) in the residue]; ab-
sorption or secondary trajectories should make
small corrections to the flip amplitudes. Notice
the relatively large contribution of Rel;& at —t
= 0.4-0.5; this is knomn to be mainly responsible
for the absence of dips near t = -0.5 of the KN
CEX cross sections.

(iv) The imaginary part of the vector nonf lip
amplitude (Im/ &) changes sign near t = —0.2 and,
in fact, is not far from the DAM form -Z,(Rl-t }.
Again, this appears to be a mell-established fea-
ture of vector exchange. ' ' Notice that, in gen-
eral, our KN CEX nonflip amplitudes are signifi-
cantly smaller than the flip amplitudes, as con-
jectured in several phenomenological treatments. "

(v) The imaginary part of the tensor nonf lip am-
plitude (ImEo&+&) has a zero near t = -0.2, but also
a second zero at t = —0.4; certainly, among all
imaginary parts it shows the largest deviation
from the DAM form. Qualitatively similar are the
conclusions of many analyses involving f„"'
K**, ' as well as A, " A partial deviation from
the DAM form should, probably, be considered
as a definite feature of ImE, (tensor) in all had-
ronic reactions. As a result, in the present anal-
ysis ImEO&'& are approximately EXD at small (f}
(ImEO+ = —ImE&;&, &t(~ 0.3}, but not at larger Itl.
In hypercharge-exchange reactions exchange de-
generacy for ImEO~'& is violated even more. ' '

(vi) The real part of the vector nonf lip ampli-
tude (Re/ &) deviates from the DAM form, and

is not simply related to ImE, . These tmo con-
clusions appear nom well established; in fact,

most analyses involving vector exchange' ' give
a shape much the same as that of our Fig. 5.

(vii) Finally, the real part of the tensor non-
flip amplitude (ReE,'&} bears no simple relation to
ImEO'&, at least for ~t~z0. 2. In the present anal-
ysis (Fig. 5) it changes sign at t=-0.2. Other anal-
yses involving A„ f„orK*~ (Refs. 4-8} show

also Re/+& changing sign, but, in general, at

larger [ t ~ . It is likely that ReE,'& = 0 somewhere

near t = —0.4 is a common feature of all tensor
exchanges in hadron reactions.

Once a~"(t) and b "(t) have been determined, we
can use the formalism of Sec. II to predict differ-
ential cross sections and polarizations for both
K P-K n and K'n-KP at several energies (v&N).
Our predicted do/dt(K P -Pbt) at 5, 7.1, and 9.5
GeV are shown in Fig. 3; and our predicted da/dt
(K'n -K'P) at 5.5 GeV is shown in Fig. 4. Agree-
ment with experiment is satisfactory. Figure 2

(broken line) shows our predicted polarization for
K'n K'P at 8 GeV; the characteristic feature is
very small values at

~
t ~» 0.3, but large positive

values at t= 0.6 [ro-ughly symmetric to P(K P
-K'n)].

IV. COMPARISON WITH FESR AND

WITH RECENT ANALYSES

The equations that determine a '&(t) and b "(t)
in terms of P(K P -TPn}, ckx/dt(K P -K'n), and
do/dtK+n -Kop at each value of t are nonlinear;
thus there are more than one solution (here two,
in general). We can discriminate between these
solutions on the basis of FESR. Figure 6 shows
the comparison of the selected solution mith the
lowest-moment FESR of Eqs. (2.17)-(2.20}. The
integrals of FESR have been calculated with the
same lom-energy information used for the disper-
sion integrals (resonances, etc. of Table I). In

general for Itl» 0.4 the comparison is satisfactory;
also, with the exception of B~', the FESR support
the zero structure of our amplitudes. " Solutions
other than the selected one are in marked contrast
with FESR.

After completion of. this work we received two
reports"'" with analyses of KV CEX, and we nom

compare our results with them.
Reference 29 uses experimental data en m p-qn

and K P -Kon, together with SU(3) symmetry and

the assumption that the phase of the helicity-flip
amplitude for vector exchange is Regge-pole-dom-
inated, to perform an amplitude analysis of the
tensor exchange. It can be said that, qualitatively,
the conclusions of this work are in complete agree-
ment with ours. Notice in particular their deduc-
tion of exchange degeneracy for ImE~" (used as
an assumption in our work), and their conclusions
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that E,' is consistent with Regge-pole dominance
[Sec. III, point (iii)J and that ImEO~') has two nearby
zeros [point (vii}]. Our ReE~+l is also within their
error bars. Reference 26 also predicts the polar-
ization for K'n -K'P in qualitative agreement with
ours.

Reference 30 is an application of KN FESR. The
integrals of the left-hand side are calculated via
phase-shift solutions (including a very recent one
for I = 0 KN scattering) extending up to P „,= l.5

GeV; then the right-hand side is used to obtain
information on the I; structure of the imaginary
and real parts (the latter via continuous-moment
sum-rule methods). Generally, their FESR re-
sults are in qualitative agreement with ours (in
particular for ImE|& ' and ImEo~ ~); also their Re/ '

agrees with ours. However, the details of the
t structure of their A., exchange amplitudes differ
(e.g., their ImF, '~ and ImE~'~ violate DAM com-
pletely). It is possible that KN FESR, although
very useful in providing qualitative tests (like
selecting between various solutions} do not accur-
ately reflect the t structure of all the high-energy
(a 5 GeV) amplitudes. "

14

10

(+) 14 -'Ib,

0.4 .2 OA

20

(+)

10
———LH5

RH5

I

0.2 0.4 0.6 6 pQcV
0.2 ~0A 0.6

FIG. 6. Test of our solution against the lowest-moment
FESR. LHS and RHS refer to the left- and right-hand
side of Eqs. (2.17)-(2.20).
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It is shown that the combination of a "bare Pomeron" with intercept &z(0) = 0.85 in conjunc-
tion with a reasonable set of secondary Begge trajectories and a canonical absorption prescrip-
tion is capable of providing a good global Qt to practically all 0 ~' 0 2+ meson-nucleon
scattering data up to lab momenta of 30 GeV/e. The bare Pomeron with intercept lower than
1 has a large real part which greatly facilitates the description of the data. At higher energies,
"renormalization" effects can be expected to be important as inelastic diffraction events, and
these lead to a renormalized Pomeron intercept very close to or equal to one. The value
+0) = 0.85used throughout this intermediate-energy fit is in agreement with current inclusive
triple-Regge data and maximum-rapidity-gap distributions. It is also in agreement with
certain strong-coupling ASFST (Amati-Bertocchi-Fubini-Stanghellini- Tonin) multiperipheral
model calculations. For secondary effects, we have used a family of vector Hegge trajectories
(p, &,E*) with a degenerate intercept of about 0.45, and tensor trajectories +2,E**)with 8n
intercept of about 0.25. A second vacuum pole emerges with intercept close to 0. The P' {f)
trajectory, not included here, can perhaps be expected to appear in conjunction with the re-
normalization of the Pomeron. Although no wrong-signature nonsense zex'os are included in
the parametrization, the p-A& and E~-E~~ pole eouplings are nevertheless very nearly ex-
change degenerate. SU{3) is used to relate most of the other couplings. The (pole+ eut) helic-
ity-flip p-A2 and E'*-It **amplitudes also show considerable exchange-degenerate character-
istics. %e have used a sbuwhard absorption prescription to calculate the second-order bare
Pomeron P') {3)Reggeon cuts and I'P cuts. An unusual result emerges —the "enhancement"
Q factors for aB cuts are less than one. This indicates the presence of higher-order cuts
which thus dominate over inelastic intermediate-state production in this approach. The data
used in this fit are a representative selection of 0 2+ 0™y+data /@eluding xN amplitude
e~3ysis, hypereharge-exchange differential cross sections and polarizations; ~'p and X'p
total and differential cross sections, polarizations, and t = 0 real-to-imaginary ratios; and~ and XV charge-excbfs~e differential erose sections and polarizations) up to p„b= 30 GeV/c
and I& I = 1.5 {GeV/c)~.

I. INTRODUCTION

A universal feature of all phenomenological
Hegge descriptions of bvo-body scattering data
of the last ten years has been the use of a vacuum
pole trajectory with intercept of (or very close
to) l.o, and a finite slope. This particular choice

has been traditionally suggested by the near con-
stancy of the total and elastic cross sections and
the behavior of the real-to-imaginary ratios of
the forward elastic amplitudes. Thus, a simple
Pomeron pole with intercept at 1, together vrith
a restricted set of leading secondary trajectories
and supplemented by an absorption prescription


