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Lagrangian and (ii) that the coupling is minimal,
i.e., local curvature interactions, such as (2), are
absent. ] A clue as to what these restrictions
might be can be obtained by examining the known
theorems~" that derive the Newton principle from
Einstein's theory or from some generalizations of
Einstein's theory. In these theorems the crucial
assumptions appear to be (i) the presence of only
one long-range gravitational field (g ~) in the
Lagrangian and (ii) invariance of the Lagrangian

under general coordinate transformations ("gener-
al invariance"). This suggests the following re-
formulation of Schiff's conjecture: Any theory of
gravitation that obeys the smears equivalence princi-
Ple must be generally invariant and involve only
one long-range gravitational field. ' Although this
statement is in some ways weaker than that given
in Ref. 1, a general proof will still be hard to
come by.
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SIn Ref. 1 it is argued that the matter part of the Lagran-

gian can only contain one gravitational field. We are
now generalizing this so that only one long-range
gravitational field appears in the entire Lagrangian.
This generalization is necessary if {and only if) one
insists that the Newton princip1e hold exactly, even for
systems containing gravitational self-energy. Thus, in
the Brans-Dicke theory the breakdown of the equality
of inertial and gravitational mass {Nordtvedt effect)
can be traced to the presence of the long-range scalar
field.
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The large-N limit of ~$4 theory with O(N) symmetry is derived by functional methods.
Since the method does not require the cumbersome, detailed analysis of Feynman graphs,
it should make possible the study of more complicated theories in the many-field limit.

Many of the basic questions of relativistic field
theory involving its application to hadron physics
remain open because of the inability to go beyond
the usual perturbation expansion in the coupling
constant. A case io the contrary is A. Q' theory
with O(N} symmetry, where one may expand in

powers of 1/N, ' with each term in the series having
a nonperturbative dependence on ~. In particular,
the first term of the series in 1/N coincides with

the Hartree approximation of the theory. It has
been advocated" that other field theories, notably
gauge theories, be studied in a similar limit. To
date, technical progress along these lines has been
restricted to the identification of the dominant
Feynman graphs in the limit. '

The heavy dependence on a detailed analysis of

Feynman graphs is a major drawback of existing
studies, ' ' since this can be quite cumbersome in
theories as rich as gauge theories. It would appear
that a completely analytical technique might be
more suitable for an efficient investigation of field
theories with many internal (symmetry) degrees of
freedom. In this paper we present such an analyt-
ical derivation of the large-N limit of ~P theory
with O(N) symmetry by a method which is obviously
suited to the problems of other relativistic field
theories, and gauge theories in particular. Here
we limit ourselves to the presentation of the meth-
od, and leave specific applications and extensions
to future communications.

Consider a AP theory with 0(N) symmetry de-
scribed by the Lagrangian
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where 4)~ =(t), (x)((t),(x), and repeated indices are
summed from 1 to ¹ The generating functional
for the Green's functions is given by the vacuum
amplitude in the presence of an external source,

4,(x) = 4,(x) —4,(x)

so that

=-iln d, exp i d'xgf+Q+), xf, x

(4)

The one-particle irreducible (1PI) graphs are
generated by'

)' (( ) = -i )&)('(j ) —Jd'* j (&)( (".).
where

( )
. 51nW(j)

(2)
with

%'e may write

r(4) =r, (4)+ r, (y),

where

(6)

(8)

Define
is the classical action. Combining Egs. (5)-(8) one
obtains the integro-differential equation'

) (( l = r, (( l —()n J[up I «y ' i (e() —Jd'x z,
' (.(x)

I
6r, (4,)

where all explicit reference to j(x) has been eliminated, and

(10a)

= Jd'*I (( 0)*-~'('--'tW'--.'((' (')')- —„( ( R ((0(*t)') .
I

Now consider a sequence of steps leading to the
1/N expansion of the functional integral (9). First
consider the orthogonal transformation

4.(x)-Z-'.,4,(x),

which is a gauge transformation of the first kind.
Such a transformation does not alter the value of
the functional integral (9}, as it only involves the
change of integration variables. Under this trans-
formation

(12a)

spherical and nonspherical functions with respect
to the external field Q, (x), as denoted by the sub-
scripts. The spherical action is

while the nonspherical term is

(12b)

where the action f (7(), 4)) has been decomposed into Rewrite (9), using (11)-(14},as

iln [d(t), ]e-xp i i

d'x Z, (4), (i)')+S„(4)',T() R(t)) —P,(x)B„66r, (4)
x

and make an. expansion of the functional integral in terms of the Green's functions defined by the spherical
Lagrangian Z, ((i), 4) ). This is accomplished by expanding the exponential to obtain the formal power series
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};(p}=-j}nI[dA)( ']Id'y }la', j j(jt) —4(y)jj., j}
' ~ exy jf»jl(yj ,).', [ —, 51', (4)-

(18)

Since the left side of (16) is independent of any particular choice of the transformation B, we may average
the functional integral

[d4}.] I+a d'y g.(4, 4 ?ly)-4 (y)Z ' + ~ exp d'x g {4,4",5I', ((?})
j( jj[} [j[4 (y)

I

over all possible R,~ without changing its value.
It is convenient, but not necessary, to make the
ansatz

dp, dp, dp„f,

2l

which is justified in the light of our final result.
Ne then perform the average over all R„, term by
term inside the functional integration. Since the
average is carried out before the functional inte-
gration, T(},(x) is regarded as fixed in the aver-
aging process. Define

&&exp i d'xg, Q, f'

It is simple to show that

fdQ y, ~ ~ ~ (?} [fdQ eos" 8/fdQ](p')'
fdQ &(a)

(22)

y,'(x}=It„4,(x),

and the angle between (t}'(x) and (t}(x) by

(19) x {[8
2 2/ 1' 2l

+ distinct permutations}, (23)
(t},(x)p,'(x) = cos 8 (?}'(x).

Note that eos8, as defined by (19) and (20), is in-
dependent of x since R is a constant transforma-
tion, and thus the average to be taken is over the
surface of the N sphere defined by (?}'(x)fixed.
Since the N-dimensional angular average of cos"8
ls

where P(a) is the number of permutations in (23),
a combinatoric factor which cancels in the end.
Combining (23) and (22) one finds, on permuting
the dummy integration variables y„ that the angu-
lar average of (22) is

dA cos' 6) dA

=O(LIN '), (21)
&exp i d'xZ, (24)

every term in the angular average of (I'?), except
the first, is suppressed by at least one factor of
N ', so that the spherical term is the leading one
in the 1/N expanaion of (I'?) and hence (9).

To exemplify the argument, it is instructive to
consider the angular average of a prototype term
for the special case of constant external field (t}, .
[If (t},(x) is not constant, but bounded, the calcula-
tion is similar, although slightly more complicated
in detail. ] Consider the angular average of

From (21) and (24) it is evident that the average of
the prototype term (22) is given by an explicit
factor of N ' multiplying a spherical Green's func-
tion. All other angular averages encountered are
carried out in a similar way. It is clear from (24)
that the 1/N expansion is expected to break down

when A(?}'(x) is O(N).
In summary, for any (t},(x) not too large, we

have in the large-N limit

}'(j)=('(y)—j}nJ[d( lax' j J»[l[(8„0)'—(w' ~ —,'&j')j'[ j( (p} ~ }o(jj

(25)

It is clear that I'((?})given by (25) generates only the 1PI bubble graphs of AT(}' theory, constructed from
free propagators with mass term [(,'+ eh. (?}*(x), in agreement with graphical analysis. In order to construct
the 1PI amplitudes from (25), it is convenient to define the functional
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Z(j) = f—ln [dy.]exp i
J

d'x[2, (p, y*) + y, (»)j,(»)] (26)

(2V)

which generates the connected Green's functions of the Lagrangian defined by (13) or (25). Observe that

„ f[&e.Q'( } p[ f»~.(e, e*)l
6y, (x) 6y, (»} 6 ' Pdy, ]exp[i J'» Z, (y, y')]

Making use of (26) one obtains

«(4) 61;(t) i~ 6*&(i)
6&.(.) =

6&'.(.) '
6 ""'».(.)6j.(.), .'"""

Similarly

6'&(e) 6'&.(e), t& «, „, 6*~(j)
6$.(x)6$,(X) 6$.(x)60 (y) 6 " 6j.(x)6i.(»),=.

(28)

+ I,(»)A&(y)
6'&(j ) 6'~(j) 6*&(j)

6j.(»)6j.(»)6i, (~)6j,(~),=. 6j.(x)6j,(~),=. 6j.(x)6j.(S),=.

+O(N '). (29)

Other Green's functions are obtained in the same
way by repeated functional differentiation of (25)
together with substitutions from functional deriva-
tives of (26).

Equations (28}and (29}are the cornerstones of
the theory in the large-N limit. ' To exemplify
their application we formulate the equations' which

determine the effective potential' in this limit by
restricting f,(x) to a constant field. We have
1"(P) = V(P}f-d'», and write for the two-point func-
tion

6'& (j)
6j.(»}6ig(X),=,

+Nb. (96»~+K&) '3g~ln (33)

where

3g* = 2s V(y'}/s y',

8VP' =, =finite,
e=0

is easily solved for G». The result combined with

(31) when renormalized, leads to the "gap equa-
tion" of the model, '

1

96m'

6'&(y)
6y, (»)64g(X)

For constant p, (28) reduces to'

(3o)
a~vX=12, „, =finite.

sy. (y) = --,W y.G„(x,»).
8$~

(31)

Observe that (31) requires the trace of G„, as
determined by (29), and that the terms in (29) pro-
portional to 6,~ dominate the trace for N large.
Thus for the purposes of computing the effective
potential, (29}reduces to

G-'.,(x, y) = G,-'.,(x, y}
——eA6„6'(x —Y) G~(», x), (32)

where G, is the free propagator with mass p'+&A. p'.
When (32) is transformed to momentum space, it

The consequences of Eq. (33) have already been
studied in detail, ' so that we proceed no further.
Finally we remark that (32) is not sufficiently
accurate to evaluate the propagator in the case of
spontaneous symmetry breakdown"; one must re-
turn to (29), coupled with a consideration of the
four-point Green's function in the large-N limit.

The method outlined above makes possible a
study of more complicated theories in the many-
field limit with0'ut the necessity of a detailed analy-
sis of graphs. As such, our machinery seems mell
suited to the analysis of gauge theox ies in this
limit.
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Erratum: Mathematical structure of the Bethe-Salpeter equation for massless exchange
reinvestigated [Phys. Rev. D 9, 2411 (1974)]

Marian Qunther

(1) The right-hand side of Eq. (9), p. 2413, in-
stead of

—ccosjP
cosy —cosP'

should read

csin+
cosp —cosP

(2) The right-hand side of Eq. (187), p. 2438,
instead of

should read

27''Z

)f1 gll I/ Pl

(3} In the abstract (p. 2411, lines 17 and 18}and

again in the Introduction (p. 2412, second column,
lines 18 and 19}the "relativistic Coulomb" propa-
gator was referred to as half the difference be-
tween the advanced and retarded propagators,
while —inconsistently with it—the same relativ-
istic Coulomb propagator was referred to on p.
2436 (second column, lines 22-24) and in the
sequel as half of the sum of the retarded and
advanced propagators. Obviously, only the latter
statement is correct if the definitions of both the
advanced and retarded propagators involve the
same direction of the integration with respect to
P„ i.e. , from left to right. The author was mo-
mentarily misled by thinking of D (satisfying the
homogeneous Klein-Qordon equation and equal to
the well-known commutators of the free fields) as
being defined (incorrectly, according to the now
generally adopted conventions) as half of the sum
of the retarded and advanced propagators.

Erratum: Addendum to Wilson's theory of critical phenomena and Callan-Symanzik
equations in 4 —e dimensions [Phys. Rev. D 9, 1121 (1974)]

E. Brezin, J. C. I e Guillou, and J. Zinn-Justin

There is a misprint in the numerical value of the integral J after formula (4), which should read 4
= O. 7494. . . instead of J= 1.7494. . . .
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