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The recoil to the eikonal model in scalar electrodynamics is derived. We then make use of our gener-
alization of Low's theorem, which in an earlier paper was derived for soft recoil due to real-photon
emission to infinite order in the coupling constant. Here, we generalize this further to yield hard recoil
due to virtual exchanged photons as well. Recoil is defined relative to the straight-line-path approximation
which we know gives the eikonal model. The recoil appears in terms of a correlation expansion where
the first term, which is noncorrelated, is the usual eikonal model. A second result is that this gives a
better and more explicit alternative to a Bethe-Salpeter ladder amplitude, since our ladder includes all
crisscrosses.

I. INTRODUCTION

In a previous work' we derived the covariant re-
coil to a generalized infinite P' ladder subjected to
the well-known eikonal approximation. The usual
eikonal result' ' could be identified as the first
term in this recoil expansion and the recoil ap-
peared in terms of a correlation expansion, which
was obtained by a rearrangement of the ordinary
perturbation expansion. The recoil is here defined
relative to the straight-line-path approximation for
the two throughgoing particles, which gives the
eikonal model. It should be mentioned that this
generalized ladder amplitude includes all types of
crisscrosses in contrast to a Bethe-Salpeter lad-
der, and the result is an explicit closed form. The
infrared (IR) faotorization was then performed
without introducing any cutoff, and therefore full
relativistic invariance was guaranteed.

We now apply the same machinery in a true IR-
divergent theory and will therefore derive a simi-
lar correlation expansion for a generalized ladder
within the framework of scalar electrodynamics.
As we know, in such a theory of charged spin-zero
particles interacting via photon exchanges, mo-
mentum dependence then also appears in the ver-
tices. This situation is different from that in a
scalar Q' model, where this dependence occurs
only in the denominators. By experience from our
generalized soft-recoil theorem' we further know
that this will contribute to the pair-correlation
current and give off-shell effects in the hard core.
The latter is here represented by the two vertices
and the propagator for the photon, through which
we eliminate the four-momentum-conserving 5

function. Furthermore we get an additional con-
tribution from seagull terms.

We here solve these problems, and as in the sca-
lar fIt' theory we find that one part of the amplitude
is totally faetorizable and eikonalized. We fur-

ther derive the corresponding unique generalized
pair -correlation tensor. All quantities are con-
served and the resulting amplitude is therefore
gauge-invariant. As in the previous work, we as-
sume that the correlation expansion will decrease
with increasing order of correlation. In most
cases it should therefore be sufficient to include
pair effects and neglect higher-order correlations.
However, in principle we can derive this correla-
tion expansion to an arbitrarily high order. For
example, the triple correlations are fairly easy to
calculate. ' The method allows for inclusion of
self -energy corrections and vacuum -polarization
effects.

We first derive the result for massless photons,
thereby retaining a fictitious photon mass to cir-
cumvent IR divergences in the intermediate finite-
order calculations. Finally we generalize to the
neutral massive vector-meson case. The deriva-
tion goes via a soft-recoil expansion, and the re-
sult is then generalized to the corresponding hard
recoil, for virtual exchanged photons. As we will
see, this requires a further generalization of
Low's theorem. " In 8@c. V we generalize this
a third time to include rather general core func-
tions with distorted propagators, spin effects, and
arbitrary off-shell effects which occur for all
physical sources which are not c numbers.

II. SOFT RECOIL

The interacting Hamiltonian is here given by

where p is a charged spin-zero field with which
we associate the two throughgoing particles of
mass m. The electromagnetic field denoted A is
first associated with massless spin-one photons,
with a fictitious mass to circumvent the IR prob-

10



2028 LEIF MATSSQN

lem in the intermediate finite-order calculations.
In the next step A, represents a neutral vector-
meson field with quanta of mass p, . Following the
notations of our previous work' the (n+ 1)th-order
exchange amplitude (Fig. 1), with exchanged mo-
menta denoted k„.. . , k„„, is defined by

p.a k. D
si

( fe)2))+2
(',M„„(&)f)—

jfr ( ",'.a, (a, ))

xl(2w)'()'{q-Z k,), (2 2)

where hr(k) = —f (k —)P + ff ) is the photon propa-
gator. As usual we define

Pa Pa' Pb' Pb &

t=q, s=(p, +p ),
(2.3)

(2.4}

V„= s'(P, +P,-.) (P, +P, ), (2.5)

where P, and P& are the momenta of the two in-
going charged spin-zero particles and the corre-
sponding primed subscripts denote momenta of
the outgoing particles. The quantity I is a product
of charged-particle propagator s,

%e eliminate the 5 function by integrating over
the r th photon momentum, thereby factorizing out
its two vertices I= I„V„, where V„ is given by

FIG. 1. A typical s-ladder diagram.
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t =&s+1

The kernel is defined by

For simplicity we first choose to work in the Feyn-
man gauge, and then, once we have checked that
derived currents are properly conserved, we can
move to an arbitrary gauge. The I„quantity is a
product of propagators and vertices, where we now
also include the coupling constants

&l&Q DaDaf 1= 1

I IIDIII
A

S-1 n+

&y(i) &)(&) ' (2.12)

To this we must add the contributions from seagull
diagrams (Fig. 2} due to the last term in (2.1):

f' -2 t-1 D'
p

fr+ 1 g-1 ff+ 1:...=-"z 1: err .„„„..""".." .„,rr' .„„rr;„„err.„„rr .„„t 1 &1&2 DaDa&/= 1 ~ t+ 1 J t+ 1 ' l=t+2 1=2'+1 Dye) ~ I =1 l = 8 - 1
D"D D

II III

+(seagulls in the other prongs). (2. 13)

Seagulls with the xth photon involved are treated,
together with the off-shell vertex effects, later.
Here s, is the number of quanta going from a to b
without crossing the rth line (Fig. 3}. Similarly
s, is the number of quanta going from a' to b there-

by crossing the rth line. These two numbers are
restricted through s, + s2 = s —1, where s is that
bb' vertex where the rth quantum is absorbed. The
set D, (5 =a, a', r), r)') is the set of all internal per-
mutations among all quanta attached to the ith
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order e"0 " and e"0 ""are retained in the differ-
ent prongs. A direct application of the generalized
soft-recoil theorem, by summation over Di, where
i =c, a', b, or b', shows that the i th prong con-
tributes with

s(i) 8(i) 8(i)
TT

y sym g J, ~ p&(i) ~ py(p)Pg(q) JL J Pg( l) '
1= a(i) p&q i wpq

~(i) a(i )

(2.15)

The noncorrelated soft currents are given by

fo fe goo ~fo Q g J3eP k+ic'i icQ

FIG. 2. Ladder with a seagull term.

prong and D) is the factor set D„/(D, SD,.), where

D„denotes all permutations on, for example, the

A =(a, a j side As.imilar summation is, of course,
required on the 8 side, but since the A quanta are
in fact the same individuals as the B quanta, we

have already summed over some of them (cf. Fig.
3 and our previous work'). We therefore should

sum only over Dn =D,/(D, ),SD,), ) and Dm =D, /
(D, ,SD, , ). The meaning of the subsets D„ fol-
lows from Fig. 3.

Following the lines of our previous work, ' we

first drop all k, ' terms, since those are easily
factorized and included afterwards anyway. We

also leave off-shell effects in the vertex function

(2.5) and longitudinal components k, &, in the nu-
merators for a separate treatment later in this
work.

We thus first work with the on-shell vertex

(2.14)

Following Ref. 1 we expand (2.12) and (2.13) in a
soft-recoil expansion where terms of essential

0$
( e)2

e P (0+)t)

X ~'~p p~q y ~&&q~q~p
P'c 'a'p P

Aq -g~ ~ . 2.17

The form (2.15) is easily proved by induction and
both J'„ and X„'„are conserved currents. In the
full amplitude the total pair-correlation tensor

OQ ~ Oi
Xppp q ~ Xppp q y

jr-Q
(2.18)

will appear. Inserting (2.15) in the (n+ 1)th-order
genera1ized ladder (2.12) and (2. 13) and summing
over O~, Dii, Dui, s„s„and r, after some
straightforward algebra" we find

{2.16)

and the partially factorized soft pair-correlation
current reads

{r-1~Ig P
~ Q

s„l {n-1+ l
—.. .'~& )

P

{s +s !!'1 '2'
{s-1}~gD

))

(„-s+1,~ g 1; .

FIG. 3. Schematic picture of the permutation sets relative to the Nh photon.
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J„'~=+f„", Q =A, B

with e, =+ 1, —1 for out- and ingoing particles, re-
spectively, on the A side. On the 8 side e; is re-
placed by —e;.

The pair-correlation tensor (2. 17) is still kept to
first order in the recoil expansion, although some-
what modified by inclusion of the k, ' terms.

By insertion in (2.2) this simplifies further, since
under the integral sign the pair effects can be ex-
pressed in a form-invariant functional of an arbi-
trary pair of two correlating quanta. The sum
over 5 and q then reduces to a multiplicative factor
(,"), since this is the number of ways we can select
two quanta out of n, if we do not bother about their
internal order. We then get

1
Ma+ 1(Si f )

/ j j f j 2E; kppq «~ . 2& ~ kqpp
XPPP q J Pp

se +f ie
pq Pq

2f 2'l f i i »i (i p )2 A22a
pp pq pq

yg

where x and y are defined by

2kp. k,
XPq y2Pq

yp ——2E;P]'(kp+k )+kp +k,

(3.2)

{3.3)

d'x e""n„(»)

where U is a scalar product

U(»; s; i)=i, a2(k)e ' '" J&"(k)2' *"(k},d'k

(2.21)

We notice here that the currents f ' n (3.1) and )t'
in (3.2) are conserved quantities in the long-wave-
length limit where k, ' terms vanish, but noncon-
served in the short-wavelength limit. As is shown
in the Appendix, this is cured by inclusion of lon-
gitudinal modes, which contribute to the totally
factorizable noncorrelated currents according to

2Pt|J + '6$ kp Q

22 f) ~ k+k'+ '

iiQ

and I' is a pair-correlation functional

QA J QB+PP~QB I&Pq
I"p~q

DS ~DA2& +DA2a }Ppkq (2.22}

Thanks to total decoupling of the one-particle sca-
lar products and partial factorization of a form-
invariant pair functional, (2.20) is now on a totally
summable form. However, first we generalize to
the corresponding hard-recoil amplitude.

III. HARD RECOIL

We here follow the scheme of Ref. 1 and approach
the problem via an infinite-order recoil expansion,
discarding all induced currents of higher-order
correlation than pair correlations. The simplest
part is to include uncorrelated recoil to infinite
order, e.g. , the total fa,ctorization of k' terms,
which is easily proved by induction. This modifies
the soft uncorrelated currents (2.16) according to

and to the pair currents through the new f 's in
(3.4),

2&~kppq ~ 2&~kqvp
Xup~,

-
& t p'e

~
+~ ~ 'e

&p',

2f i f i xi (ie)2 4222 a
Pp Pq Pq yf

Using the relation

k-f'=see;,
it is then easily verified that both JQ in (3.4) and

}{in (3.5) are conserved.
In order to extract all pair-correlation effects

from (2.12) and {2.13) we must study the infinite-
order recoil expansion. We then notice that higher-
order recoil due to k dependence in the nurnerators
necessarily induces higher-order correlations and
this is therefore discarded. Similarly, higher-
order seagull contributions are higher than pair
correlated ones. Therefore, as far as higher-
order recoil is concerned, since we are just in-
terested in pair effects, we have reduced the prob-
lem to the same as that in the scalar case. ' Thus,
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only recoil from denominators in powers of xPi,

contributes to higher-order pair-correlated recoil.
As in Ref. 1 we can put the m th order pair -corre-
lating recoil in the form

The inclusion of hard recoil, and longitudinal
k components as well, modifies the scalar prod-
ucts U and the pair-correlation functional P as
compared to (2.21) and (2.22):

'&~i"')) 2 xI)))))) ( )))) II f t)i (3.9)

+ higher correlations, (3.7)
p( (),,f d I)d ), , -

which after summation in m gives the total pair-
correlation currents to all orders in the recoil
expansion:

Xupuq Xupuq 1+xi
Pq

q
X„pu, =~ Xupuq

(3.8)

The expanded form (3.7) is, of course, valid just
for (x~(1 values, but, as we showed in Appendix

C of Ref. 1, we can derive the form (3.8) for arbi-
trary ~x~ values by successively neglecting induced
terms of higher-order correlation. In other words,
we should keep the original form of the total pair-
correlation tensor as it appears already for two

quanta, in which case we can treat everything ex-
actly. Starting from the exact three quantum-
form, gee could then also define the exact triple-
correlation tensor, etc. This defines the full cor-
relation expansion. However, here we content
ourselves with pair effects, the first correction
term to the eikonal model.

X (
4 gs))i) gs))))
upuq

upuq upuq+ x, J "'J "'+x, x "'"') .

(3.10)

The third term in (3.10) is of course not present
in (2.22), since there we kept only first-order re-
coil terms. It is interesting and important to no-
tice here that it is possible to rearrange the con-
ventional perturbation expansion in a consistent
and unique way with respect to the order of corre-
lation and simultaneously retain gauge invariance.
In fact, gauge invariance is directly necessary, as
we will see in Sec. IV, to solve the off-shell vertex
problem.

IV. OFF-SHELL VERTEX

We first observe that the off-shell vertex (2.5} is
invariant under D„D, , D„and D, . Therefore
the factorization machinery (2.12)-(2.15}works
even for this case. The kernel can thus be put on
the convenient form

I,"'.V, =
Sg Sg

~ i~n~iii

g(i) 8(i) 8(i)

II ( II fi;( i'E)((,i. IIfii( i)
~ (

i=ca'M)' l= cf(i) P &q i &Pq
fx(i) a(i )

(4.1)

oo 1(+j) 1+/ s( (AB«)) Vo(pi)
S=l

(4.2)

where a(a}= 1, P(a) = r —1, a(a') = r+ 1, P(a') = n+ 1,
a(b') =1, P(b) =s —1, a(b'} =s+1, and P(b')=n+ l.
In the general case we assume that V„ is a smooth
function in the momenta I', =P;+a,E~(,), with

E~(, ) =@~(i) + ~ ~ ~ +48(i), and can be expanded around

P g PPli

where the one-photon operator 4, is defined by
A ik

&Pi
(4 5)

f 'i f I ~ f i e))g-
us us u, (4.6)

The off-shell effects in (4.1}are now easily includ-
ed and related to the corresponding on-shell vertex
amplitude through the replacements in (4.1),

where

a
&8(i) = &i&a(i) '

~

Pi
(4.3)

e(uj, +aq')
Xupu, Xu u

=
Xu u

e

V, —V()—= —e (p, +p, .) (p) +p)) ).

(4.7)

(4.8)

V, (&i)=e '«& V,(pi)
80)

'l v, (p, ),
r = ~{i)

(4.4)

Factorization properties are most conveniently
carried out in the formal exponential form of (4.2):

As is seen in (4.8), we are still in the Feynman
gauge, but in Sec. V we demonstrate the explicit
gauge invariance. The derivation of (4.1) is now

reduced to the corresponding on-shell problem
and can be performed by direct application of the
machinery (2.15}-(2.19). The (n+1)th-order lad-
der kernel is then given by
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QZ "J"» +~( '" i"»»P'»~+X" i'"»i'"»~+X'" X"»»».) TT Z" J"»l Vp j +~ Xpppa &pea &&Pa LL O t

P&a 2 &Pq

(4 9)

grq Q f ii

jl Q

@=A,B (4. 10)

"fQ
XPP —~ X@I ~ (4.11)

where the total operator currents are defined by leakage current l'„ to restore the conservations
properties. In fact, this l „', corresponds to the
seagull contribution where the r th photon is one of
the two involved quanta, since in this case the rth
photon plays the role of the "hard core. " Conser-
vation of currents then gives

f», =f». 'f ».~

X», », = X»,»g" X»,», (" +"l)

(4.12}

(4. 13)

which yield exact results except for seagull terms
with the r th photon involved. As we remember
from (2.12) and (2.13) these had to be omitted in
order to eliminate the 5 function via integration
over the rth momentum. We thereby lost gauge
invariance. However, as we shall see, this can
also be cured.

The first term on the right-hand side of (4.12)
adds up through (4.10) to a conserved current,
whereas the second term does not. In the spirit
of the Low theorem' we must therefore add a

The explicit evaluation of (4.9} inserted in the am-
plitude (2.2), with a general vertex function, could
be quite complicated. However, here it is given
by (4.8), and only first-order derivations with re-
spect to a particular prong and second-order de-
rivatives which are mixed with respect to A and
B particles are nonzero. Therefore the exponen-
tial forms in (4.6) and (4.7) can be replaced by the
first-order expanded forms

k, f'l,' l+k, l'=0, (4.14)

l' =-ie (4.15}

The uncorrelated total currents are then given by

gQ i

j~-Q

where the differential operators D'„are defined
by

(4. 16)f», =f». +D'»,

&s j=-Q
(4.17)

When this result is included in the ladder kernel
(4.9), care should be taken before insertion under
the integral in (2.2). Namely, in the proper ex-
pansion of the first factor term of (4.9), with the
currents (4.16) inserted instead of (4.10), we get

which relates l '„ to a known quantity. We notices
here that there are two different w'ays to extract
0, from the first term, but since l'„corresponds

s
to the seagull, (4.12) must correctly contain the
pole in (P, +e;k, } = m, ', giving

gA gB»l TT JA ~B»l ~~ (DA gB»l ~gA DB»l+DA DB»l) TTJA gB»lLL Pg ]1 l LA
l sBs

I

~ ~ (gA DA DB»~gB» l ~DA gA gB»qDBll g) TT gA gB» l
~s [It &s &t LL P, (4.18)

s&t l &st
1

[It is easy to forget the double sum which generates
terms of type 0, k, in (2.5) with &e t.] The last
term in the single sum of (4.8) generates k, ' terms
in (2.5) since both operators depend on k, . This
problem is not present in the first-order deriva-
tive terms, nor in the pair-correlation sum in
(4.9), since such nonzero terms would give non-
zero contribution in the triple correlations. How-
ever, here we restrict ourselves to just pair cor-
relations.

A graphical interpretation of (4.18) is straight-
forward. The leakage currents in the first two
terms, linear in D&, display seagull terms with
one of the end points of the r th photon involved

[Figs. 4(a)-(4d)]. The quadratic D» term in the
single sum generates "double seagulls, "where
both ends of the r th photon and an arbitrary sec-
ond photon are contracted [Figs. 5(a) and 5(b)].
Correspondingly, the second-order derivative
terms in the double sum generate "seagulls, "
where again both ends of the r th photon are in-
volved, but now connected with end points of two
different photons [Figs. 5(c)-5(f)].

From the point of view of conservation there is
no need to add a leakage current to the off-shell
part of the pair-correlation tensor defined by
(4.13). Furthermore, if we take one of the two
pair-correlated photons apart and let it form a
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~ B ~ ~ B ~ ~ ~ ~
~ ~ ~

t

r

~ . ~ e ~ ~ t o ~ & ~

{))

~ ~ e t ~ t ~ eB ~ 4 + s ~ ~ e ~

S

(d)

FIG. 4. Possible seagull formations with the &th

photon.

seagull term with the r th photon, then clearly the
single remaining photon from the original pair
cannot be pair correlated any more. Therefore
a Pais-leakage current must be zero. On the other
hand, if we start with the two-photon amplitude
and pick out that part from (3.5) and (3.8) which
corresponds to recoil from the denominator (which
easily compares with the P' case'), we get

~ ~ ~ ~ & o

FIG. 5. Possible formations where both ends of the ~h
photon are of a seagull type.

x'A A ~

12

»» 1+x'12
(4.19)

Adding leakage current everywhere in (4.13), dis-
regarding the correlation mechanism, and per-
forming the scheme (4.14)-(4.17), we find that the
leakage currents so obtained cancel completely.
Thus (4.13) gives the full pair-correlation tensor:

Thus it appears that we should make the replace-
ment j"—f ' (4. 16) both in the uncorrelated and

pair-correlated parts of (4.19) in order to get a
smooth connection. In other words, we should

apply the Low theorem on each separate cur-
rent, irrespective of the correlation mechanism
(1+x»), which in fact implies additional leakage
currents. This paradox is easily solved if we work
it out for the rest of the pair-correlation tensor.

~QXPPXP1P2)QA)Bo
iEQ

Insertion in the integral (2.2) then gives

(4.21)

~g ~)f
Xp.p,

=
Xp, p,

A ~ A ~

(1+k,'+k', ) (4.20)
where X~» is given in (3.5) and (3.8). The total
pair -correlation tensor is defined by

M„,(s; t)= . d xe' '"+ (x) (iU)" + (iS) (iU)", + i P(iU)" Vo,n+1! (4.22)

where U is again defined by (3.9), S is a "single"-correlated recoil functional given by

S(x; s; t)=i, EB(k)e "'*(D"„J"+J"„DB"+D„"Dd k (4.23)

and P is a pair-correlation functional which follows from (4.9), (4.18), and (4.21):

(JA DA DB»PJ&B+DA JA JBPlDBI &+ A J Pi JBP +BX 2J Pl J 2 + X
+B 1 2)

V1 P1 P2 + X@1 P2 P1l 2

where again all nonmixed second-order derivatives vanish due to the form of Vo.

Summing on n in (4.22) we obtain the closed form

(4.24)
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V, . (4.25)

Correspondingly, if the rth quantum is not an ob-
ject identical to the other n exchanged quanta in
(2.2), we should divide by n! instead of (n+ 1)! in
(2.2) and (4.22), since then the r th quantum should
not be permuted over. Then the summed-up closed
form reads

from which we see that all functions of k„are
functions of q and invariant under all n! permuta-
tions among the n other photons. The rest of (5.2),
which is just the "pure" vertex (2.5), is invariant
under the subsets D„D, , Db, and Db. . Inserting
V& instead of V„we can again exploit the invari-
ance under D, and obtain (4.1). As before, we
then expand in a series

(4.26)
This summation to a closed form became possible
through the factorization and partial factorization,
respectively, and the fact that we could define
form-invariant corre1ation functionals.

8{i)
v. (P,)=" «& v. , (P, )= II "lv., (P, ),

t= 0!(t)

where the on-shell vertex is now given by

(5.5)

V. GAUGE INVARIANCE AND MASSIVE NEUTRAL
VECI'OR MESONS

-I"" —1 „, k"k"
g —Ck2+i~ k + ie k' (5.1)

This replacement can be made because it does not
affect the factorization scheme. Obviously the
functionals (3.9) and (4.23) and (4.24) are invari-
ant, since all involved currents are conserved.
All we need to study then is the vertex function
(2.5} under the same transformation. For the sake
of completeness let us here include the t th propa-
gator. Thus, instead of (2.5)-(2.7) we write

We have shown that it is possible to rearrange
the generalized ladder expansion into a correlation
expansion also in scalar electrodynamics. By ad-
dition of leakage currents I'„, given by (4.15), sll
currents (4.16) are conserved. In passing, we
remember that these leakage currents display sea-
gull diagrams which were earlier omitted. %'e now
demonstrate that our result is gauge-invariant by
proving invariance under the replacement

= m' —m'=0, (5 7)

we see that the term proportional to c in (5.6) does
not contribute. This proves the gauge invariance.

In fact, this form still leads to an infinite-order
expansion because of the form of the propagator.
We therefore split up the "core" function (5.2) in
the pure vertex part (2.5) and the propagator of
the r th photon. The off-shell effects of the latter
are then included as before:

d'x a~(x) e'"'*
kr +is

n+1

d'xbz x exp iq x -i k, x
t&r

g "' —e e "e"/e'
VG = e'(Pa+P-a )( 2 . (P(+P( ),

q +i&

(5 6)

Using the on-shell restriction for the external
particles

(P.+P") e=q" (P~ +Pa)

pv
Vo = e(P, +P,.)~-2 (P(, +P(, ), ,"k„'+su

where t" is defined by

k„„k„,
Pv gPP c

k 2 ~

r

Using four-momentum conservation we have

n+I

k„=q-

p, — kt — p, . + k,
t= 1 t=r+ j.

pb — kt — pb+ k,
t= 1 t=a+ 1

(5.2}

(5 3)

(5.4) 1

where k, is defined by

(5.9)

(5 6)

where again we have made use of (5.4). The k,
dependence is then, as earlier, included in the
correlation functionals. The remaining operator
part in (5.5) is now Iinearized as in (4.12) and
(4.13) and easily included as before. This sepa-
ration of the off-shell effects is possible because
of the invariance of the propagator and 6 [see
(5.3}]under all n! permutations.

These effects could also be derived in an alter-
native formulation. With q =(P, —P, .)' we have
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(5.10)

In passing, we notice that w could also use q'
= (P, -P,)' if A is replaced by 8 in (5.10). In order
to prove that (5.9) also gives the form (5.8), we
use the transformation

1 1 e(k', A )
-A {5.18)

vacuum corrections on this form. From Refs.
8-10 we can see that self-energies are as simple
as the exchanges. Further, we notice that a reg-
ularization of the photon propagator

d 'x S~(x) e" ",
g +ze

(5.11)

which we insert in (5.9). Then by means of the
operator relation

A

e't e" *=exp(k", +iq ~ x+ —,'[k", , iq x]) (5.12)

and

~[k", , iq x] = —ik, x, (5.13)

(5.14)

we can write
n+I

&((( (k, ) = II e ~ &(((,(q) .

Inserting (5.14) in (5.15) and by the use of (5.12)
and (5.13) we then get

(5.15)

we again obtain (5.8). Thus we can safely werk
with this technique, which is particularly useful
when we want to demonstrate the explicit gauge
invariance (5.5)-(5.7).

Therefore all "off shell" effects in the variable
q for any arbitrarily distorted but smooth propa-
gator-vertex function can be managed by this tech-
nique. With a corresponding transform defined by

does not affect the factorization scheme but just
gives a distorted propagator of the above-men-
tioned type.

A similar function enters by the insertion of
vacuum-polarization diagrams in each individual
photon line. All such photon self-energies can
therefore easily be included now since neither of
these functions disturb the factorization. Simi-
larly, the two-photon kernel contributes to the
pair correlation, and together with (4.24) this
gives the complete pair-correlation tensor. High-
er-order insertions would give rise to higher-
order correlations. To get an exact correspon-
dence to a certain order mth the ordinary pertur-
bation expansion, since we want to simultaneously
reproduce these results exactly, we must also
include, for example, the three-tw'o-one photon
kernel, etc. Including just photon self-energies to
the fourth order pair correlations without the
two-photon kernel, and dropping triple and higher
correlations, we can exactly reproduce the ordi-
nary sixth-order result and the rest to an infinite
order within the eikonal approximation. We close
this section by considering massive neutral vector
mesons, in which case (5.1) is replaced by

(5.19)

n+1.

d4x S„,x) exp iq x — iyt x
t ver

(5.16)

The k, dependence is then, as before, included in
the uncorrelated and correlation functionals. This
provides an extra little piece to the generalization
of Low's theorem. " In passing, we notice that
the same technique applies for real quantum emis-
sion as, for example, by bremsstrahtung.

We can now also permit scattering into resonant
states p('= mj'2 (diffractive excitation). This prob-
lem is here reduced to that of finding the trans-
form of the second term in (5.6) of form

Clearly (4.22) shares the property of renormal-
izability with the original amplitude, provided that
it permits an extension to include all radiative and

In case of nonexcited external particles we get the
same result as in the photon case, but for the
presence of the vector-meson mass p, +0. If w' e
permit excitation of the external particles, e.g. ,
scattering into higher mass states (fragmentation),
in (5.19) we get a, contribution from the second
term of type

2 2

F( p)
hm, bm(, 1

g —p, +z6
(5.20)

which is just as simple as the first term in (5.19).

VI. SUMMARY

We have demonstrated that also in scalar elec-
trodynamics a generalized infinite ladder, includ™
ing all crisscrosses, in contrast to a Bethe-Sal-
peter ladder, can be rearranged into a dynamical
corre1.ation expansion. By kinematical correlations
we mean those due to four-momentum conserva-
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tion, vrhich is superimposed everywhere. Also,
here the infinite summation into a closed explicit
form (4.25) became possible because of the factor-
ization and partial factorization, respectively, and
the form invariance of the correlation functionals,
irrespective of which individual quanta vrere in-
volved.

The first term in this correlation expansion is
the usual eikonal result, which involves no other
than kinematical correlations. The rest of the ex-
pansion expresses dynamical correlations and de-
fines the recoil to the eikonal= straight-line-path
approximation. Hovrever, here we are not so cru-
cially dependent on a straight-line-path, infinite-
momentum, or high-energy lirrat, but obtain our
result from a direct rearrangement of the ordinary
perturbation expansion. Although we have here
just derived the expansion for exchanged photons,
as discussed in Sec. V, the radiative and vacuum
corrections could also be included in this form.
As in the scalar Q' model' we have here assumed
that the correlation expansion decreases with in-
creasing order of correlation, and for some re-
stricted domain of applicability it should then
be sufficient to include just pair correlations, e.g. ,
the correction term to the usual eikonal result.
The loss of information by neglect of higher-
order correlations naturally requires a separate
thorough investigation. However, concerning the
simple case of exchanges, vre notice that there is
no information loss in our result for three arbi-
trarily hard exchanged photons, whereas the rest
of the indefinite number of photons are accounted
for by the eikonal= soft current. This distribution
of momenta with three "hard" and an arbitrary
number of "soft" quanta is very likely for some
limited domain of momentum transfer q ~@,. In
passing, we notice that the usual eikonal model
for exchanges of photons, without dynamical pair
correlations, reproduces just the one-photon ex-
change amplitude exactly and the rest in the eiko-
nal approximation. If we want to reproduce the
four-photon amplitude exactly and the rest in the
eikonal approximation, vrhich would enlarge the
above q, domain where this corresponds to the
actual physical situation, we must then also in-
clude all triple correlations. '

The recoil-correlation expansion vras derived
via a soft-recoil theorem for real quanta, ' which
is generalized here to yield hard virtual quanta as
v'ell. This generalization eliminates the need for
any type of cutoff as long as the photon mass is
different from zero. Thus, in our approach there
is no difference between soft and hard quanta in the
traditional individual meaning, since all quanta are
present in both parts of the spectrum. This is
more realistic, since from the beginning all pho-

tons are integrated over the whole of each four-
momentum subspace. All photons have got a total-
ly factorizable and eikonalizable tail, and their
hard residual effects appear in terms of the cor-
relation expansion. Nevertheless, vre could still
speak of "soft" and "hard" quanta, not in the strict
individual meaning but in an effective interacting
sense. This is so because of the fact that in the
uncorrelated current (3.4) there is a covariant
cutoff automatically built in through the 4' term
in the denominator and a corresponding infrared
suppression in the correlation terms. The cur-
rent (3.4) has been known since 1961 as Yennie's
form ii, ~2 However, because of technical compli-
cations in computation, the residual hard spectrum
was not so easy to evaluate. A strict mathematical
formulation of the IR problem, can be read about
in Refs. 13-16, and in Refs. 15 and 16 quantum-
dynamical recoil-correlation effects are also in-
dicated.

One reason for an infinite summation is the
infrared divergence, which in fact requires a
noncovariant cutoff. As we will see in a subse-
quent work, this changes this result just slight-
ly. However, it seems there is a second rea-
son. The tower insertions, as shovrn by Cheng
and %'u, ' lead to a growth vrith lns of n'. Thus,
for asymptotic energies the effective coupling
should tend to infinity, and only the summed-up
result could make sense. (This argument holds
to the extent that the tovrer estimations are cor-
rect. ) Now, slowly increasing the bare coupling
constant implies that the lns influence already
becomes important at lovrer energies, and in a
strong-coupling theory we must therefore stick to
the summed-up form for all energies. Then, in-
cluding the exact two-photon kernels, which could
possibly be approximated with the tovrers, it might
then appear that we should sum over pair, double-
pair, triple-pair correlations, etc. , together vrith

the iteration of tovrers. However, at this level
with simple exchanges af photons, there is no ap-
parent need to consider these higher-order cor-
relations, as was the case for infinite tovrers,
vrhich must be iterated not to violate the Froissart
bound. It will be highly interesting to see if this
correlation of a simple pair of exchanged photons
affects the linear high s dependence. This will be
considered in a subsequent work.

A compromised presentation of the results of
this paper and those of Ref. 1 was made in Ref. 17.
%'e also suggested there a new multiperipheral
model. " Namely, to be consequent with the idea
of identical clusters we must coherently sum over
all crisscross graphs. This was performed there
for just scalar particles; however, from the re-
sult of this payer, we are now able to treat clus-
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ters with spin and more general off-shell effects.
This paper further shows that the correlations in
(4.25) and (4.25) are proportional to a"', where
c is the order of correlation. Therefore, in a weak
coupling theory, our working hypothesis is prob-
ably correct and explains why the eikonal approxi-
mation is rather good.
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APPENDIX: LONGITUDINAL MODES

For simplicity we first derive the formula for
two emitted photons from the ith prong. The gen-
eralization to arbitrary many photons is proved by
induction. ' The exact two-photon amplitude is giv-
en by

~~ (2et P, k, +At') [2e tPi (fit+0, )+)pt'+l, '] 1+xi» (Al}

where x'„ is given by

y»= 2&i pi (kt+k2)+fit +42
(A2)

After summation over permutations, multiplication
by the dropped factor (1+x») ', and addition of
seagull terms, the amplitude reads

Mtot fi fi + fi i ltt2 fi i 2ttt

3'12 - 12

i (2pi+~i ~i)tit
2etpt kt+kt' ' (A3)

For the uncorrelated one-photon currents we use
the notation

+f fttta tt)(ttt tta'

1

~12 12

(A4)

The last factor in (Al) is invariant under permu-
tations and is therefore omitted for the moment.
The rest of it we split in two parts:

Repeating this for 3, 4 quanta, etc. , dropping all
higher than pair correlations we are led to the
formula"

~(t) ~ (2pi+&t&t4t(2pt+&tft*)~2
(2e, p, k, +St')y'»

(a) g (2pi+eikt}ltt2fiktttm
perm (2fipi &I+~1 )y»

Mu ~ ~ ~ ~- ~+
1=1 &~st

1 1

which is easily proved by induction.
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