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in terms of a correlation expansion
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A technique to derive covariant recoil to the eikonal model in relativistic quantum field theory is
developed. Recoil is defined relative to the rectilinear-path approximation which gives the eikonal
model. It appears in terms of a partially factorizable correlation expansion, where the first term is
noncorrelated and is the usual eikonal model. The second term displays pair correlations, etc. By
correlation here we mean dynamical correlation. Kinematical correlations due to four-momentum
conservation are of course superimposed everywhere. We first consider soft recoil, and then generalize
to the hard re:oil, without introducing any cutoff. The technique is developed here for a scalar $'-type
theory but it is general enough to be extended to, for example, quantum electrodynamics and scalar
electrodynamics.

I. INTRODUCTION

The eikonal model in nonrelativistic quantum
theory is a good approximation for elastic two-
particle processes at high energy and small mo-
mentum transfer. ' Recently eikonalization has also
been studied in the framework of relativistic quan-
tum field theory. ' ' This might be viewed as a
continuation of the question of Reggeization of
field theories pursued during the last decade.
The primary motivation is to understand diffrac-
tive aspects of elastic high-energy scattering in
strong interactions, as mell as in weak-coupling
theories like quantum electrodynamics (QED) and
scalar electrodynamics, massive as well as mass-
less. The strong interactions, because of the
large coupling constant, must be totally summed
up from a formal perturbation expansion. For
weaker-coupling theories it shows that the sig-
nificant high- or intermediate-energy behavior is
not just the simple story of a single Born diagram,
as (with minor corrections) was the case at low
energies.

For example, in @ED, if there were no other in-
teraction but exchanges of photons (Fig. 1), the
scattering amplitude would take the form

A(s;f) =sf (f),

which does not exceed the Froissart bound, ' but
has elastic-unitarity ambiguities. The form (1.1)
is easily obtained from the eikonal approximation
of generalized s ladders (Fig. 1), which then ex-
ponentiate after summation to infinite order.
Other virtual self-energy corrections (Fig. 2)
could be treated in the same simple manner, ' but
the addition of these corrections would not affect
the form (1.1). At high energies production and
annihilation of partic. les, beautifully accounted for

in field theory by second quantization, contribute
to the total cross section. Through unitarity, this
is reflected in the absorptive part of the elastic
amplitude, and therefore all significant high-s in-
fluence due to vacuum polarization must be evalu-
ated. To restore unitarity one therefore considers
multiexchanges of single chains (towers) (Fig. 3)
giving o'„, =C ln's. This "saturation" of the Frois-
sart bound made many people take this scheme
very seriously. However, as remarked in Ref. 9,
interaction between individual chains can also give
a significant contribution.

In the scalar (t)' theory with a reasonable strong
coupling constant the situation is even more deli-
cate, ' due to the problem of defining a rectilinear
path for the throughgoing particles. Reasonable
arguments have been given for the dominance of
nested ladders (Fig. 4), giving rise to Mandel-
stam-type cuts, "over large classes of other dia-
grams. " However, here also we notice the crucial
dependence on one single throughgoing large-mo-
mentum path. This implies that practically all
production should occur in the pionization region, "
which is hardly the physical situation. To include
the possibility of fragmentation" of beam and tar-
get, factorization properties of the two latter ef-
fects from the pionization amplitude in a single
Q' ladder have been studied. ' To remove the
noncovariant cutoffs, which must be introduced to
separate "fragments" from "pions, " it is also re-
quired that the fragmentation amplitudes be calcu-
lated to infinite order in the coupling constant ~ If
correlation effects are totally neglected, an ex-
ponentiable tail of the latter effects is obtained,
thus removing the cutoffs. If all significant physi-
cal information is retained in the fragmentation
parts, they can only be worked out to some finite
order, leaving a noncovariant cutoff dependence.
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FIG. 1. A typical s-ladder diagram.

(A simple tentative reasoning tells that this is
probably more realistic, since out of all disso-
ciation products only a finite number of secon-
daries could be true fragments. Because of four-
momentum conservation infinitely many must be
soft "pions". ) Nevertheless, we find this approach
appealing since we believe that the above factoriza-
tion properties should survive a better treatment.
From a technical point of view the problem is es-
sentially of a kinematical nature, as in infrared-
divergent theories. Our previous experience from
that problem was that a cutoff could be chosen such
that the committed error was minimized, for
limited maximal available energy in the process. "
If, on the other hand, we minimize the error by
some s dependence in the cutoff or in a typical
mass involved in the factorization (this is neces-
sary in high-energy processes) we get trapped by
an undesired s dependence in the fragmentation
amplitude, violating the Froissart bound. To sum
up the shortcomings, the Regge-eikonal scheme in
field theory suffers from lack of recoil, alterna-
tively absence of correlation effects, or nonco-
variant eutoffs, strongly ordered graphs, and lack
of crisscrosses. Besides, there is a general
question of arbitrariness in summing relevant
classes of diagrams. Some of these deficiencies
might very well be symptoms of one and the same
disease.

A positive feature is that Regge asymptotic be-
havior can be generated by the eikonal amplitude
derived from field theory,

FIG. 3. A diagram with iterated exchanges of single
chains (timers).

M(s;))=4 (s J bdM()~t, )(( —8'X"'") ().2)

and tha't it provides a crude picture of the physical
origin of a Pomeron. As indicated above, through
the requirement of unitarity, eikonal models of
the elastic amplitude provide an excellent tool for
studies of multiparticle production processes, or
in reverse, the increasing knowledge of multi-
particle cross sections gives formidable informa-
tion about elastic amplitudes. In fact, it has been
possible to construct eikonal models for which the
scattering operator satisfies full multiparticle
unitarity in the direct channel, "for a large variety
of production mechanisms. They admit a general-
ization including diffractive excitation of beam and
target. " The competition of these fragmentation
effects with the former multiperipheral effects
under the restriction of unitarity is known from
more direct phenomenological models. " Thus the
field-theoretic approach to eikonal models could
provide a discriminating language for model build-
ing in general. However, from the above-men-
tioned shortcomings we conclude that a more con-
sistent treatment of the semiclassical limit neces-
sarily goes via one solution or another to the re-
coil problem.

We here solve the problems for a generalized
infinite s ladder within the scalar model
X~= g|II), Q,Q -H.c. This ladder, including all
types of crisscrosses in contrast to a Bethe-
Salpeter ladder, will be the basic ingredient in a

~ e ~ ~

FIG. 2. A typical s-ladder diagram arith virtoal cor-
rections. FIG. 4. "Mandelstam nests. "
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more thorough investigation of the full high-energy
amplitude. Recoil is here defined relative to a
straight-line path of the throughgoing particles
and appears in terms of a partially factorizable
dynamical correlation expansion. The first term
in this expansion is tQe usual eikonal model, the
second displays pair correlations, etc. A direct
application to a generalized t ladder is obvious
and the technique applies as well to, e.g. , @ED and
scalar electrodynamics, with or without a mass
gap. The solution is first derived by means of a
soft-recoil theorem, "which is then generalized
to the corresponding hard-recoil theorem. How-
ever, first we make a slight reformulation of the
standard eikonal approach to a generalized s lad-
der without recoil.

II. THE GENERALIZED INFINITE LADDER
WTHOUT RECOIL

The generalized infinite ladder of simple parti-
cle exchanges in the s channel (Fig. 1), gives the
simplest form of a relativistic eikonal model.
The technical clue to eikonalization in this dia-
grammatic approach is the factorization by an in-
finite-momentum approximation of the scattered
throughgoing particles, or alternatively a soft
approximation of the exchanged momenta in the
ladders. In a naive manner, part of the amplitude
could then be written

going particles. The same approximation also
gives rise to an amplitude totally factorizable in
virtual momenta, which tells that the correlation
effects due to the above defined recoil are essen-
tially of dynamical nature. The kinematical cor-
relation due to over-all four-momentum conserva-
tion is, of course, still present. By elimination
of this, the characteristic subtraction (or addition)
by one in (1.2) appears. Notations are chosen as
close as possible to Levy and Sucher. ' Through-
going masses are denoted m and exchanged ones p.
Since the recoil theorem" is valid for any
strength of the coupling constant, we just require
that g is finite and real. Our working hypothesis
is that the correlation expansion decreases with
increasing order of correlation, and that there-
fore some finite order will be sufficient in most
physical situations.

Consider a ladder diagram, where n + 1 quanta
with momenta 4&, k, , . . . , k~ are exchanged
(Fig. 1). The corresponding amplitude is given by

X5~ q- k~

(2.2)

where a~()t) = (kf' —p'+is) ' is the meson propa-
gator, and I is a sum of a- and b-particle propa-
gator products a„(p) =l(p'-m'+le) ';

n

Q g"Q (p, '-m('+2p, K„+K„') '
PCf Ill

V=PC-Pa =Ps -Po

s = (P.+Ps)',

t q2

(2.3)

(2 4)

(2.5)

-g" II(2p )t ) ' (2.l} The 5 function is used to eliminate the gth-mo-
mentum dependence and I is then given by

where P, is the external momentum of the ith par-
ticle and K„ is a sum Z„=Q;,)t, of exchanged mo-
menta. The eikonal model is then obtained by
summation to infinite order in the coupling con-
stant. It is easily seen that k, ' terms can be kept
in (2.1}, whereas k, kz terms with I ej spoil the
factorization. By use of a technique similar to
that which we used in the generalized recoil the-
orem, "we here derive the recoil due to such
terms. In spite of the fact that the recoil theorem"
is derived for soft rea1 quanta, we here demon-
strate that it can be generalized for hard virtual
quanta (and soft as well, of course). The general-
ization to the hard spectrum will become clear
once we demonstrate the partial-factorization
property of the recoil terms, which induce corre-
lation effects. Recoil is here defined relative to
the straight-line-path approximation of the through-

(2.6)

where

I,=br(p, kq, )' ~ ~ n, r-(p, —k~, —'' -)tq, )

(2 7)

Similarly, for a given permutation II, I~(n) is a
product of 5-particle propagators. In order to re-
store certain symmetry properties, which are
lost with the special choice of y, we must sum
over r:

(2.8)
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D„
I D gD (2.9)

where D„ is the set of all n1 permutations within
all n +1 quanta except the rth. Thus I in (2.2)
should be replaced by the symmetrized expression

I~yftt lr Sym

(2.10)

where I'„,„ is given by

Further we must sum over the set D, of the (r —I)!
permutations within the (r —1) quanta emitted be-
fore y. and the set D, , of the (n -y +1)!permutations
within the (n r-+1) quanta emitted after r. We
should then also sum over the factor set

D~« =D„/{D,SD,i). However, because the quanta
absorbed on the bb' side are the same objects as
those emitted from the ua' side, D~ is summed
over by summation over D," except for the factor
sets of permutations D» and D„, defined by (notice
that D, and D; are not in D,")

D„=D,/(D, 8D, .},

Dm = D. /5. y@D. q )
(2.12)

where the meaning of D„.and D, ,. is obvious from
the above definitions of D„and D...and Fig. S.
This is because the summation over D„D... D, ,
and D, , was performed without exchanges over the
yth line. Some of these exchanges are taken care
of by D» and D«, , given in (2.12), and the rest by
D", given by (2.9). This could also be seen as fol-
lows: D«corresponds to the

f„„.=
D1 Do D~iA

(2.11)

As is seen in Fig. 1 the p th quantum is absorbed
at the sth vertex by the 5 particle. Accordingly,
there are (s —1) quanta being absorbed before s,
within which we have a set D, of (s —1}!permuta-
tions. Then there are (n -s+1) quanta absorbed
after s with a set D, of (n —s+1)!permutations.
Let s, be the number of quanta going from a to 5
without crossing the yth line, and s, the number
of quanta emitted from a', crossing the yth line
and then being absorbed by b. The corresponding
permutation sets are denoted respectively D„,
D, , (Fig. 5). Clearly then we must sum over s,
and s, such that s defined by s, +s, =s —1 runs
from 1 to n+1, or, alternatively, first over s,
and then over s with the given restriction.

In order to include all possible permutations we
should then also sum over the factor set

r sym

DAD D
I 11' 111

(2.13)

where

various ways the s, quanta could be connected with
the (r —1) quanta before r, and D», corresponds to
the

pg -y+1
82

ways to connect the s, quanta with the (n -y +1)
quanta emitted after y. From now on, the coupling
constant will be included in the propagators:

(.;- +s ) ~ = (g-1)~c,I}'"
1 b

(II-S+&),~ e. D„.

FIG. 5. Schematic picture of the permutation sets relative to the yth quantum.
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K = k,-2p K +E '+i&
fg fg

L=l, . . ., r —1 (2.14)

fg
8Z EI( 2p, lf»ff +Le ' J( Z t

e fg fg t=f +1

L= @+1, . . . , n+1 (2.15}

1

foa foo
g =Sl+1 s~

r+s2

I = r+S2+1

Af ter summation over s, and s, and by use of the
binomial theorem we then find

L=l, . . . , e -1 (2.16)
Ir Sj'lYl

r-1
IIf"(f"+f" ),
I=1

g=r+1
(2.23)

L=s+1, . . . , n+1. (2.17)
which, after relabeling of the last +-&+1 currents
by letting L- / —1, repeated use of the binomial
theorem, and summation over p, factorizes to

As a trivial check we now apply the eikonal ap-
proximation, which is essentially to collect all
terms of order g'")t '". The derivation will be
carried out in some detail in order to see how
things generalize when recoil corrections are in-
cluded. Summing over D„D,i, D, , and Db.
(2.10) easily factorizes to

'&m rs m

II JOA+B»

The currents J' are defined as in Ref. 19,

(2.24)

Ir sym

~1 a+1 ff+ 1
Oa Oe' Og * Ob'*

S1 g g-1 g-r+1 g-1 g-s+1
a&u a

I II 111

J(=f(+fi . (2.25)

We then define a scalar product for the uncorre-
lated currents

with the currents f defined as in Ref. 19,

(2.18) U(x st) =i . j (k)e "J'A(Lo) -~ gos»(k) .dk
(2v}'

=2. p, a. ~
.o .p)

Lg (2.19)

The c, is +1 for outgoing particles and -1 for in-
going particles. If the quanta are absorbed, then
clearly k- -k and

(2.26)

Summing over n to infinite order in the coupling
constant we get the usual eikonal result

(2.20)

According to the above scheme of connecting the
different quanta (see also Fig. 5), and after re-
grouping the elements we obtain

e'~ -1'xe"'*n,r (x)
tU

Ill. SOFT RECOIL

(2.27)

r~l

f„„.= Z Z II f, f",* II f, f',"'
g)A S g= 1 g=sl+1

II

r+sp

foa'foo» II foa'foo'»
S2 g = r+ 1 g = r+s2+ 1

~III

(2.21)

For fixed y, s, , and s, we then sum over D,", DII,
and DIII

The totally factorizable and exponentiable form
(2.27) thus obtains if all k, )t, terms in (2.2) are
neglected. Vfe here approach this problem by
first making a soft-recoil expansion around
p&' = m&' (no internal mass excitations). The clue
to this problem appears already by a first-order
recoQ expansion, where all terms of essential
order g'"k '""must be carried out. They prove
to be partially factorizable from the rest of the
expansion, which is completely factorizable and
still summable to infinite order in the coupling
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constant. It is clear that a first-order recoil ex-
pansion is only valid in a certain e domain in k
space around p, '=m, ', and we therefore must in-
clude all orders in the recoil expansion. As men-
tioned in Sec. II, k, ' terms can be kept without
spoiling the factorization in (2.18). This means,
as we show later, that noncorrelated recoil can
be kept to all orders in the recoil expansion, still
giving a closed form (2.27), but now with slightly
modified currents. A consequence of this is that
the scalar product (2.26) becomes finite also for
to 0.

We then demonstrate how pair-correlation ef-
fects to all orders in the recoil expansion factorize
partially, and we demonstrate this property in a

nonexpanded form. This enlarges the above e do-
main for both uncorrelated and pair-correlated
currents to the whole of 0 space. The complete
recoil then of course includes triple and higher
correlations, but for the moment we shall discard
them, in line with our working hypothesis that
some few orders of correlations will be sufficient
in a large variety of physical situations. We first
concentrate on the soft-pair correlation, mean-
while discarding k, ' terms since they are easily
included later.

Straightforward application of the generalized
recoil theorem" to (2.13) and summation over the
permutation sets D„D, , D~, and D,. gives the
first-order recoil

ig;;,. IIf;;i II
I 11 111

s-1 n+ 1 -1 n+1

f'"IIf, * II f; * f';~ 2;",
l=1 l=s+1 l=1

& p&q
Xr+1

n+1 s-1 n+1

II foa' II cobb' II fob'o

& ~pq l =1 l =s+1
r+1

n+1 s-1 s-1 n+1 r-1 n+1 s-1 / n+1 n+1

IIf; II f: IZ.;,",, IIf; IIf;,'* II~: II;"?If;,'*~', Z.;,IIf; *~
I =1 l=r+1 ( p&q 1&pq j l=s+1 l =1 l=-r+1 l=1 ( p& l &pq

1 ps+1 s+1

(3.1)

The pair currents are given by

o, (. ), kb'k, 1 1

'p, ~ (k, +k, ) 2p, .k, 2p, k,

i =a, a' (3.2)

and

'pt (kb+k, ) 2p, kb 2p, k, '

(3.3)

In Appendix A we regroup the elements, exactly
as in the uncorrelated case in Sec. II, with re-
spect to s,b, s„and the rth line (Fig. 5) giving
(Al). Under the integral we can relabel r-r+1,
and for the last n -y +1 currents we let l- l -1.
Summation over s, , s2 DII and D„, then gives

n n

f R —Q Q (xoA/Bb+Bb +xoBgoAgoA )
r=O p&q

1

z IIf"&'* II f"' -*
&A pq l =1 l =r+ 1 l Bapq

I

(3.4)

x,", =Px,", , Q =&, &.
leQ

(3.5)

The permutation set DI ' is the factor set
D,"/perm( qp) The total .pair-correlation currents
are defined by

Summation on y then gives IP„, which we must add
to (2.24),

fR Q(xoAz B o+o0B bx +BzoAzooA) II zoA+oao
p&q

1
»pq

1

(3 6)

-*O„„(s;((=, , ( fu *8""~,(*(
(n +1)i

x (iU)" + i'P(iU)" ' .
2

(3.6)

The number of possible pair correlations (",) does
not spoil the explicit summation. Reversing sum-
mation and integration we obtain the closed form

When inserted in the (n+1)th-order generalized
ladder (2.10) we can utilize this partial decoupling
of coordinates and extract a form-invariant pair-
correlation functional

d'a
P(Z s. t) =i' —~ - ' n (k )n, (k )e '~b'bo"

(2a )A (2tt)'

x [XoA(kbk, )J B'(k, )J'B*(k )

+Xoa(k k )QA(k )JOA(k )]

(3.7)

which together with the scalar product (2.26) in-
serted in (2.2) gives
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M(s;))=ig'jd'*e""i (*)

~iU
X

iv

2&,p, 4, +4,' 2e,p, 'k, +0,

2k, k2
2e, p,' (k, +k, ) +k, '+k, ' (4.3)

iet+

2(iU)

(3.9)

from which factorization of the currents (4.2) is
evident and where the pair-correlation current
can be read off directly:

Before generalizing to the corresponding hard
formula we notice that if the ~th quantum is not
identical to the others, we should divide by gl in-
stead of (a +I)! in (3.8}and would then obtain

with

ate tefPfe i

2k~

2e,p( (kt +k, ) +kt'+k, ' (4.5)

(3.10)

This form requires the presence of at least one
totally different quantum or other different mech-
anism T. Therefore T could be regarded as the
initiator of the whole process, whereas in (3.9)
the initiator couM be any one of the exchanged
quanta. At least one quantum must be exchanged
in order for something at all to happen, therefore
the subtraction by one in (2.2V). If t' displays the
exchange of a scalar particle, then it is given by

9 (x) = ig, 'a~(x) . (3.11)

IU. HARD RECOIL

Integrating (2.26) and (3.7) over the whole k space
we notice that the former is logarithmically di-
vergent and the latter is linearly divergent, at
least for x =0. This is due to the fact that we have
taken only the first term in the recoil expansion,
e.g., the soft approximation, which requires some
type of noncovariant e cutoff in the spatial k space.
To enlarge the integrations in (2.26) and (3.V) to
the whole k space we must find the full uncorrelated
and pair-correlated currents compatible with
(2.13}, to all orders in the recoil expansion.

We first demonstrate this for the uncorrelated
currents. For a prong i emitting n quanta the am-
plitude is proportional to

The nth-order formula follows from (86):

P&e»Pe
1

Thus partial factorization of soft pair effects sur-
vives when uncorrelated recoil to all orders in the
recoil expansion is included, although the form of
(4.5) is somewhat modified compared to (3.2).
The currents (4.2) are then the total uncorrelated
currents compatible with (2.13), since all other
terms in the recoil expansion consist of higher-
order correlations.

%'e then extract all pair-correlating effects
from the all-orders recoil expansion of (2.13).
Neglecting all higher-order correlations than pair
correlations for g emitted quanta from the ith
prong, the mth-order recoil can be written in the
form

ft,' ' D„f) (-I) g (&P, ) +higher correlations
l= 1 Pe.'q

(4 7)

As is shown in Appendix C, Eq. (C12), this holds
for )(xt', )&1, but in (C13)-(C15) we demonstrate
that the summed form

(4.s)

(4.1)

where AP is given by (2.14) and (2.15). For n = I
this trivially gives the uncorrelated current to all
orders in the recoil expansion:

is valid for all x's. The full pair-correlation cur-
rents are thus given by

2f P ' k +4' +if
(4.2)

since all other terms in the recoil expansion con-
sist of higher-order correlations.

Inserting (4.2) and (4.9), we are again led to
(3.8) and (3.9) or (3.10}now with modified U and
P given by

This is just a modification of the soft currents
(2.19) and (2.25). For n =2 we obtain
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&(x, s t)) =i' ' ' a (k )n, (k )e ' o"~'*d4A, d'A,

(2„)~ (2„)4 ~ (' r a

(
8 gBgB s gkdrt ~A

8
)

(4.11)

where the logarithmic and the linear divergences,
respectively, are now removed. The integration
is now extended from the former z domain to the
whole k space, thus circumventing the nonco-
variant cutoff problem. Simple power counting in
(4.10) and (4.11) shows that they are well behaved
in the ultraviolet limit with divergency indices
D((= -2 and D~ =-4. The third term in (4.11) is of
course not present in (3.7}, since (3.7} is derived
in a soft first-order recoil expansion.

In order to get an idea of how higher-order cor-
relation effects appear in this expansion, we
notice that in a second-order soft-recoil expan-
sion triple and double pair correlations also occur.
From (815}we get

n n tl

II((2) IIf( ( I)2 +(x( )2+ g xi(
t= 1 i)'&y P& q& l

+ ~ Q x~( x~((, (4.12)
(P&4I) ss(k& g )

where n is again the number of emitted quanta
from the ith prong, e.g., the order of the coupling
constant to be summed over at the end. Concen-
trating on triple-correlation effects we notice that
the exact triple-correlation current to all orders

in the recoil expansion should already appear for
n =3, as the difference between (C13}and the two
first terms in (C15). Inserted in the infinite gen-
eralized ladder (2.13}, it induces a triple-correla. -
tion function of the type

'dA, dk, dk, -
(x) ) i/ l

(2 )g (2 )4 (2 )4
dL jp (k() )dip (k() )

xi (k )s-((()()+))q+k() x
E

y g&g& J&~i gAgAgAa & Pel P q

To get the total triple-correlation effect for
i (:=A(8) we must consider all combinations of un-
correlated, pair-, and triple-correlation effects
in the noncorrelated B ((4) currents, similar to
the third term in (4.11). This does not spoil the
partial factorization, which means total factoriza-
tion except for arbitrary three quanta. Similar to
(3.8}we get

-tM„„(s)i} —
( 1)

X

& (iU)" + i'P(iU)" '
2

+ i'T(iU)" '
3

where kl in the („"}factors mirrors the indepen-
dence of intrinsic order among correlating quanta.
Summing up (4.14) we get

i(f(s; I}=i

If )U~ & 1, then some few terms in the kernel expansion are significant,

f(x; s; I) = [I+,iU+~6(iU)'+ -~~(iU)'++(iU)'+ ~(iU)'+ ~ ~ ~ ]+i'~[ ', +-, iU+-~(iU)2+ ~(iU)'+ ~ ]

+i'T[~2, + ~~~iU + ~(iU)'+ ~ ~ ]

whereas if (U~ ~ 1, we must stick to the closed
form (4.15). In the latter case we notice that the
strength of the coupling constant alone is not a
relevant measure of the strength of the correlation,
but rather the summed factor which multiplies P
in (4.15).

If one of the quanta is different, the 5 function
in (2.2) could be eliminated via this quantum giving
a third term in the expansion (3.10):

i2 i3
J(f(s &) = d'xe(o'J(x)e" 1+ —I +—T+ ~ ~ ~ .

2f 3f

(4.17)

In this form the strength of correlations are par-
tially determined by the strength of the coupling
constant to a power twice the order of correlation,
irrespective of whether it is a weak- or strong-
coupling theory. In the form (4.15) this is only
true for the weak-coupling case. In the strong-
coupling case (4.15) and (4.1'I) then require a sep-
arate thorough investigation to see if our working
hypothesis is correct, or rather to check which
models have the property of a rapidly decreasing
correlation expansion. It should then be remem-
bered that any other possible link between the two
correlating quanta in the above ladder expansion
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will contribute to the dynamical pair correlations.
For example, we could make a f, -ladder insertion
in this special pair and apply the same technique
to this.

This mill be discussed further in the summary.
We here content ourselves with the first "correc-
tion" term to the eikonal result and therefore just
drop higher than pair-correlated terms, However,
as me saw in Appendix C, we could a,iso correct
for triple correlations without too much compli-
cation, and in principle to an arbitrary high order,
thereby defining what we would like to call the
correlation expansion. Its correspondence to the
ordinary perturbation expansion will be discussed
in a subsequent paper on scalar electrodynamics. "

V. SUMMARY

A technique to derive covariant recoil to the
eikonal model has been developed. The obtained
result is no longer crucially dependent on a recti-
linear path approximation or a strict infinite mo-
mentum limit. Although derived here for the tech-
nically simple Q' theory it is general enough to be
applied to, for example, QED and scalar electro-
dynamics, massive as well as massless.

Recoil appears in terms of a dynamical correla-
tion expansion in which the pure eikonal model is
the first term. Thus recoil is here defined rela-
tive to the straight-line-path approximation for
the throughgoing particles, since this gives the
eikonal model. The secoad term in the above ex-
pansion displays pair-correlation effects, etc.
By kinematical correlations we mean here those
due to over-all four-momentum conservation, which

is superimposed everywhere.
Let us for a moment rotate the s ladder into an

infinite generalized t ladder, which is the simplest
multiperipheral production mechanism. " In prin-
ciple, it should then be possible to relate our
correlations to the usual correlations of emitted
particles in multiparticle processes. (Usually, in
a multiperipheral model one discards not only the
dynamical, but also the kinematical correlations. )
It therefore provides a method to construct more
realistic "gas" models'' -"guided by relativistic
quantum field theory, without appealing to the
partition-function technique" in deriving dynamical
correlations (other than those due to energy-
momentum conservation). The dynamical correla-
tions could be thought of as some "collision"
mechanism in the "gas." It is clea~ that the above
scalar Q' theory is probably too simple a struc-
ture for high-energy hadron physics. However, it
will no doubt provide interesting information on
correlations between clusters in more realistic
Inodels. Going back to the s ladder, it should be

mentioned here that a t-ladder insertion between
the two correlating quanta would give a more com-
plete pair-correlation effect. However, here we
restrict to the simple ladder structure itself,
since such a second ladder insertion is managed
with the same technique.

The above collision idea is not new, but from the
point of view of field theory we were earlier
trapped by the fact that we could just derive some
few orders in the hard spectrum. To derive a re-
sult to infinite order in the coupling constant, we

previously had to apply some semiclassical or
eikonal type of approximation, with a correspond-
inp large loss of information in the original model.
Iv. a, Bethe-Salpeter approa, ch we must neglect.. "isscrosses and transverse momenta. To speak
n terms of information theory, the above collision

mechanism renders the gas a certain mean free
path, e.g., periodicity or short-range order.
Accordingly, we could then also expect a corre-
sponding reduction of coordinates. In fact some-
thing similar takes place here, The various cor-
relation effects partially factorize out from the
full amplitude and the correlation functionals are
form-invariant, irrespective to which individual
quanta are correlating. Because of these two

properties we can now sum to infinite order in the
coupling constant.

As we will see in Ref. 21 this closed expression
for the elastic amplitude, because of its explicit
form, can be used to derive directly measurable
correlations. It therefore provides an effective
tool with which to discriminate among various
models. En the case of a rapidly decreasing cor-
relation expansion, this provides an alternative to
the Bethe-Salpeter equation where we can now re-
tain all crisscrosses and still obtain a closed
explicit result (no recursion formula). Another
good feature is that in this method we can clearly
see the separation between dynamical and kine-
matical correlations.

It shouM further be noticed that the noncorre-
lated currents, physically significant in the infra-
red (IR) part of the spectrum, and the nontrivial
correlations, displaying residual hard effects,
are factorized and separated without any use of
cutoff. In our approach there is no difference be-
tween soft and hard quanta in an individual mean-
ing, since all quanta are both soft and hard in that
they are present in both parts of spectrum. All
quanta have a totally factorizable tail (exponen-
tiable} and their hard residual effects appear in
terms of the above correlation expansion, a rela-
tivistic invariant series representing two-, three-
particle interactions, etc. (As mentioned above,
then we must consider all possible links between
the pairs, triplets, etc. )
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Nevertheless, from a practical point of view we
could still speak of soft and hard quanta, not as
individuals but as effective interacting quanta.
This is because in the uncorrelated currents (4.2)
there is a covariant cutoff automatically built in
through the 0' term in the denominator. In the
corresponding @ED-variant form, this has been
known since 196I as Yennie's form. ""This
form can be exploited at low and intermediate en-
ergies in weak-coupling theories where some few
orders or even the first-order Born approxima-
tion of the hard spectrum give a good result. At
extremely high energies, however, from tower
insertions, etc., we get increasing terms which
are powers of lns, which necessarily require
infinite-order considerations. (In passing, we

notice that these calculations also include order-
ing, etc. ) Then if we increase the strength of the

coupling slowly, we realize that these terms be-
come important already at lower energies, and
we therefore must stick to the summed form both
in the hard and soft spectrum. In the subsequent
paper on scalar electrodynamics, "we discuss
what must be included in this correlation expan-
sion in order to get an exactly identical result to
some finite order in the ordinary perturbation ex-
pansion, since of course we want to reproduce the
nice low-energy results. For a more compressed
discussion of the result of this paper, on scalar

electrodynamics" and on the new multiperipheral
model, where because of identical clusters all
crisscross graphs are coherently summed over, "
see Ref. 28.
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APPENDIX A

In Eq. (3.1) pair effects from each particle leg
have been partially factorized. The four particle
legs in this process are somewhat arbitrary until
we have fixed the vertices y and s, which deter-
mine the endpoints and the starting points, re-
spectively, of such legs. We then regroup the
factors in (3.1) with respect to the indices s, and

s, . After summation overy we find

$1 $1 r-1 81 r-1 81 1

=+ +
l,
Z " f"*f"*II f"f"' ll f f"*'+ ~ " f"*f"*IIf"f"'IIf"f"*

gA 1 1 81+ 1

sl r-1
XOa Obg Ob' g

1

foa foo g II foo foo ' g
&s

sl+ 1

+all terms including Xo' and gob

.P[- (3.»)]g' g x,",, f,",'f,",' ll, f;', 'f,",* II f",'f", *l
81
D II D111

rt 82+ 1

n+1 r-1 r+ s2 n+1

f"f'; Igf" f",*IIf, f", * II f"f"* II f, f", *'( —)
) P=sl+1 a=r+82+1 J I =1 I sep I=r+1 I &a

g n / sl+1 r+ s2+ 1
11 III

/r-1 81 r-1
+PI g ltoo' f oo foo II foo fooe II foo foo'qg [see (2 31)]

ysl+1
11

81+ 1
III

Under the integral we can relabel p -y +1 and for the last n -y +1 currents we put l- l -1. By means of
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(2.25) and (3 5), summation over D„, D», , s, , and s, , and repeated use of the binomial theorem, we ob-
tain

r tt r rI tt

=Z~ Zx, ,J', J",* f,&' lI f", ", *+IIf,&;*Q, ', * "*IIf 'J"
DA g1 1 r+1 r+1

I

tt tt r

Zx, fl;f:; IIf",Jl;*II f"'&" p g x,", f;f-,'D,f"~- IIf"'z-*

.Z Z xl' f",'f- II»"D,f,"'&'* px,", f',"f,"'IIf;,~ * IIf,"~;*~.
&-1p=r+1 & ~ ~1~ l l l» l l &&

& ~ p a, ,
1 r+1 r+1 r+1

This is verified as follows:

(A2)

Q xoa JOBa+Ba IIfsago»a QXoa +Ba+Ba g IIfoaf oba II foaf oh'0

1 D&+ 81+ 1
II

j8 8 t'

Zl'E':, I:; ~::.I(~:;f:;*II f
II

1

r 81 r

+ ~Os OI) q oa'~ oe OI) q Oa OI 'q

1 81+ 1

81 81 r
+ p g Xoa fObaf Ob'0 IIfOaf oba II job f b' o0

q=1 P=81+1 l ~ l BBP

1 81+ 1

r 81 r

+ Q Xoa f '
ObfaoabII joa foba II fos fob

81+ 1 81+ 1

Relabeling /- 1+1 and y -~ —1, this gives the four
first sums in (Al). Similar relations give the
rest of (Al). By straightforward calculations we

further find

IB P g (XOA~Ba&OBa +XoB~A~A)
r=o P&e

1

tt

x IIfoa~sa II foa'~Ba
D pa l=1 l =r+1 l Bspq

I

while D", = [D(1;n)/D(I;y)]/D(b + I;n) as in Sec. I.
As an exercise we here verify (A4) for the case
n =3. For the left-hand side we get

,:. z(l'lf;, II ~;, )

r 3

~~,
'" Z(lif" II f;")

l=r+1 l 00103
I

which follows from relations like

jj.:. z(llf;, I'I ~;;)

=2 PC..II~.;,II, ~*",

DA 1 1
I

r tt tt

Ilf;, Zx,",;. IIf;, (4)
l=1 P&e l ~r+1 r+1

3

~:." z(llf;; II f;)
DA23 l 1 l r+1

I

(xoA fOa +xOA fOa')

(r= 3) {r=0)

+ (XOA fOa +XOA fOa')

(r= 2) (r= 0)

+ (XSS fi +XSS f l Uaa, S .
(r=1) (r=o)

Similarly we get for the right-hand side
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f r 3 3 3

&~fax", IIf," II f"' fIf Zx"' ll f"'~
g& X I I r+I r+I

I
3 3 3 3 I 3

+ X + XON oo + og Xoo'

@+=2 P&lp l=S + =3 P&C 1 &PC +r=O P&q g seger g = I 1=1 P&g
I l I I I I 2

Xoa(f Oa + foa ) +Xoa(f 00 +foa') +XOa(f Oa +foa
) +XOa (fOa +f00

) +Xoa (foa + foa ) +Xoa (foa + foa )

= left-hand side.

Finally summation over r in (AS) gives

IB Q(XQAJoBO Josa ~XOB JoA+A) II gOA+B
P&a

I

We have thus performed the proof for the A side,
but could as well have done it for the B side by
summation over r instead of B in (Al). The A-8
symmetry proves (As).

APPENDIX 8 PARTIAL FACTORIZATION
OF THE SECOND-ORDER RECOIL

Notations and conventions. For simplicity we
shall consider emitted quanta from one outgoing
particle leg. Permutation within a set of n emitted
quanta are denoted II„. If m of these are already
summed over we shall use the notation II„, , the
factor set of permutations. We will further fre-
quently make use of the symbols

The corresponding pair-correlation current is
defined by

X12 = M. f1f2-

+12=fIf21
12

(as)

g(O) +g(1) +g(2)
S 3 3

For higher n values we will first concentrate on
the case ~x(«1. In Appendix C we will extend these
results to arbitrary x values.

n =S: (x~&1.

I
123 lISg2

and by the use of (al)-(84}
I

M, = (1 -x„,+x„,') Q f,f, (1 -x„+x„')

I
i 2pu+u' '

y =2p'(k +'''+k )+k +'''+k '

x,2...1
—(y„...1) 2 Qk$ kg

g&J
I

(a2)

where the upper index is the "order" of the recoil.
Clearly then ft',"= f,f,f, and

ft3 = — Q f1f2- Z f1f2"12
&123 F3~2

If all x's are discarded (2 -0}, then the well-known

eikonal approximation is obtained. We therefore
first expand around «=0 for the case (x )

&1 and

then derive the obtained summed forms for arbi-
trary jx ( values from the original form without

expanding in a series. In passing it should be
noticed that (x (

&1 also yields extremely hard

quanta. In the following we shall use the notation
M for the total amplitudes.

n =2 al/ x values

I I
M

2p k, +k, ' ep (k, +k,) +k, '+2k, k, +k,'

I
(I ) +f1

123f1f2f3 flf2f3 ~ 12
f1f.f, ~

~12 12
rr~g~ 3' 123

=-f1faf3 Zx1.
IIS]2

f1f2f3( 12 x13 +x23}

where y, ~„=2k, k, andy„, 'Q„y„x„=x„,
have been used.

In the general case with n emitted quanta, the
first-order recoil is given by

n n

~'."=-Ilf, Z.„.
I

I
~1~2 I +~12

(a4) which is easily proved by induction.
Second-order recoil in MS is given by
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Rs ' = &123 Q flf vis +xlss Q flf.
IIS/2 113/2

where we decompose the three terms according to

Z flfs 12 flfsf33 123 2 12
3/2 TT~/2

-f,f,f, Q 2k, k~12,
II3/2

(ti) xlss + flfs= 123&lssflfsfs
~3/2

=flf.fs 2 2kl'ks
II3/2

=flf.fs Q»mls
III/2

2 flfs 12 flfsf3 Q 33 12 '
ITS/2

Insertion of (i)-(iii) gives

Since the general forms of g'„" and g'„" are known,

only the second-order recoil term will be studied:

R4 3 1234 ' flf2f3 Q ( 12 x123)
I tT,/, 3/2

1234 Q flf2f3
II4/3

+xl.s4 Qflfsfsp 1. ~

TT4/3 II3/2

Insertion of

2 2
1234 flf 2f3 1234 3 1234 flf 2f3f 4

4/S

x1234 Z flfsfs Q xls
II4/3 IT3/2

IT4/3 TTg/2

R's"=flfsfs Zxl. '
ITS/2

+ ' ' ' 2(k k +k k +k k ) g x
~123 - IT~/2

g 2k, k~„"
IIS/2

which is found by means of
4

Z ~4K 12 Z 0121
II4/3 ITS/2 (f & g) ve tk& f )

4 4

=flfsfs 2 (xl.'+xl's»
IIS/2

where the notation

2(k, +k, ) k,
123 12

&12S

(8'I)

gives

~1234 +fy

X1234Z 1j 123451234 t

1

(811)

is used for the triple correlation. Then M, is
given by

Ms= f,f,f, 1 —Q x„+ Q (x„'+x,'„) . (89)
113/2 1T3/2

s=4: fxf&I.

123 Q flf2f3 1234 Qflf2fs Q 12
IT4/S TT4/3 TI3/2

4

12$4f 1fsfsf4 Ã1234 g
(812)

-1
4 ~1234 ( X1234 1234 ) ~ 3 '

II4/3

The first term in (810) is decomposed according
to

Zf f f Z(" ''*'-)=f f f f Zv Z**"Zs E*l*.)IT4/S "3/2 II4/3 II3/2 IT4/3 TT2/2

j 4 4

—f,f fsf4 f
y, 3 Q xl~ Q 2k;'kgxl)+p, ss Q xi), — Q xlq2(k, +kl) kl.

f& j&l 18e{j&g)
1 1 1

{813)
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Equation (812) contains 2k, k, x» for all combina-
tions (ijkl) .However, all terms in which all four
indices are not different cancel by the second and
the fourth terms in (813). By insertion of (B12}
and (B13) and use of

(Bl 5)

yI234 '2(k, k, x,4+k, k,x,4+k, k4x„

+k, k x 4+k, k4x 3+, 4,2)

12 34 13 24 14 23

1
2 Xfj Xyt

(«j) ~(n&r )
1

APPENDIX C: PARTIAL FACTORIZATION
OF PAIR EFFECTS IN THIRD- AND HIGHER-

ORDER RECOIL EXPANSION

Again we let n denote the number of emitted
quanta.

n =2: fxf &1. The third-'order recoil is easily
identified in the expansion of (84)

(B10) takes on the form
4

4"=f)f2f3f.
f

Qx)'+ 2 xl')k

l I & j&)f
1 1

jXI) Xk)
(3& j)~(k&t )

1

Repeated use of this technique gives the general
formula for arbitrary n:

182 —f If, (1 —x„+x„-x„+~ ) .

n =3: fxf&1.

3 3' 123 ( X)23 X123 X123

x Q f,f, (1 —x„+x„'—x„')
II3/2

(0) +g(1) +g(2) +p(3)
3 3 3 3

The third-order recoil is thus given by

(Cl)

3,' =I-&)'3„, ' I, f,J, „' *„,Q f,f,x„'+*„,'I f,f,*„*„,' l,l,)
.

3/2 II3/2 3/2

(C2)

The first and the second terms decompose accord-
ing to

The two last terms in (C3) after decomposition,

Q flf2 12 flf2f3 Q 33 12
~3/2 II3/

=f)f2f3&I23 Z x12'
II3/2

-flf2f3 Q &la)2'
II3/2

=f i*f.)' -g &'
3/2

-flflf3 Z 2kl'kkx)2'
II3/2

x123 Q flf2 12 flf2f3 123 K y3 12

2V 2
X123 ~ flf2 12 123 flf2f3 + V3 12 I

3 V' 3
123 ~ ~1~2 123 ~123~1~2~ 3

II3 /2

123 flf2f3 Q 12v12 I

II3/2

combine to one single term

(C6)

~3/2 II3/2

2f lf2/3 123y123 ~ 12
II3/2

-fl f2f3x)23 2 2kl'kkxl, .
II3/2

{C4)

2flf2f3 123 ~123 12 '

3/2

Insertion of (C3), (C4), and (C7) in (C2} then gives

(3) 3flf2f3 ~ 3 V . 2 2II 3 = (-1) ~123 ~ 12 ~ 1 2 12 123~123~ 12 123 ~ ~1 ~2 12 123 7123 ~ 12
Y123 rl3/2 II3/2 3/2 3/2 "3t2
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+higher correlations

As in (Bll) the first term decomposes into

(CQ)

Using

128y128 (hl h2 h» hn hn h8)

we then find that all pair effects in the third and
fifth terms are effectively canceled by the second
and the fourth terms, respectively. Thus, the
four last terms contain only higher correlations
than pair correlations and therefore the first term
correctly describes the pair effects in a third-
order recoil expansion.

Since we are here mainly interested in the pair
effects, for n emitted quanta the mth-order recoil
can be written in the form

It»re) g x 2(-1)
~ I 8 8 ~ tf IJ= 0

n-I
~ 8 e X Hj

"n/(n-I)
I

first term, which is thus the only pair-correlating
term in (C10). The termination of this procedure
occurs also in this case since the last terms,

~ ~ n fXI~ ~ n ~ ~I Jn-I I ~ ~ n ~1 ~n&I ' n

~n/ 4-I)

'f1'"f. Zx»»y»»
g&g
I

I" ft I tf I

~n/ (n- I ) I
n-I

=x,...„'f, f„Q y„Q x»»
n««» I

=x,...„'f," f„Q-x,, (y, ...„-y,,),
)&j
I

recombine into one single term [compare (CV)],

m I f ~ ~Xl ~ nnn ~ I ~ n ~In ~ nn ff '
i&/
I

Z
n/ {n-I) I

~n/ (n-I)
1

f»' 'fn Z-x»» (yl nyi~ »~ ')

I

=f, ~ f n, .y„gn&X»—f, fn g X»»" y,
j&J
I I

It should here be noticed that only in those terms
where all triple-correlating mechanisms are re-
movable is it important to investigate the survival
or canceling of pairs, since the other terms are
of higher-order correlation anyway, and can
therefore be neglected in deriving the pair effects.
Thus, the mth-order recoil for n emitted quanta
can be put in the form [compare (C9)]

R„'=IIf, (-1) g x»; +higher correlations
1=1

(C12)

The second term in (C9) gives

x,...„f, f„g-y„Q x,.»
~n/ (n-I ) I

=
1~"n f1' ' 'f. Zx»»" '(y1-. -y»») .

(C10) The case of arbitrary x»»at»»es In Ap.pendix B
we saw that in the case n =2 we could derive (B4)
and (B5) for any x value. Starting from n = 2 we
extend this derivation to the case of 3 "emitted"
quanta.

n =3. The exact M3 amplitude reads

M3=—

fIf2 &
(C13)

+X123 rr + X12
3/2

As is seen, the first term in (Cl1) causes pair
effects since

x, ...„y,...„=2(k, 'h, + " +k„, h„).

However, these are effectively canceled by the
second term in (C10). Successive decomposition
and pairwise recombination. proceeds exactly as
in third-order recoil (C2)-(CS), except for the

where the second term for nonvanishing xI23 is
triple correlated. The rest decomposes as follows:

1
3 ~123 ~If2 1 +x

3/2 12

=x... ' Pf f. (& —,,„'* ),
II3/2

for all x». We then write
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M,'=f,f,f,y», ' PX, 1 —
1

"
IT3/2

+ X12

ff,f.=( —Z q, '„' & - ' Z (',*„'*
II3l2

+ 12 TI3(2 12

(C14)

where the last term is triple correlated through

&123
This can be iterated to an arbitrary n, and the

general formula reads

n n

M„=llf, 1 -g ' +highar correlat'ons),
l=l i& j ij

(C15)

where the first term is again the mell-known
eikonal amplitude, which is completely factor-
izable. The second term in (C15) is, in fact, the
same pair correlation as in (C12), a fact which
becomes clear after summation over m in (C12),
with no other restriction on x but x w -1, a case
which will be examined once the final summed-up
result has been obtained.
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