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A formalism for a complete partial-wave expansion of the four-nucleon Green's function is given by
generalizing a standard method. All of the constraints imposed by the symmetry properties {parity, time
reversal, and exchange symmetry) are worked out, and an extended unitarity condition is shown to be
satisfied. The use of Pade approximations to the Green"s function is shown to provide a physical
amplitude which is unitary, has correct threshold behavior in all waves, and has good analyticity
properties. Therefore, such a scheme is well suited to explore beyond the Born term the dynamical
content of various Lagrangian models proposed for the nucleon-nucleon interaction.

I. INTRODUCTION

The Bethe-Salpeter equation (BSE) has been
considered as a possible scheme to treat the lom-
energy nucleon-nucleon scattering in a relativistic
framework. ' It is only recently that a reliable
numerical solution for this equation has been ob-
tained' in the ladder approximation.

Two different methods were used and compared
with each other: matrix inversion after kernel
regularization and Padb approximations (PAs)
constructed from iterated series. The use of PA
mas suggested by the rigorous convergence results,
well established for the BSE in the spinless case.'
However, a new idea was introduced recently'
mhich consists of approximating through the Pade
method the Green's function rather than its re-
striction to the physical transition matrix T. The
reasons will become clear in the folloming.

In the case of the ladder series (computed by
iterating the BSE), it was found' that while a
[4/4] PA was necessary to reach numerically
good results when working with the T matrix, a
[2/2] PA to the Green's function G was enough to
reach the same accuracy. Such a result is cer-
tainly not surprising in itself because the Green's
function G contains much more information than
the T matrix, and the PAs make explicit use of
this extra information. Indeed it is a nonlinear
approximation, which mixes up physical and un-
physical elements at any order. Furthermore, it
is far easier to compute unyhysical terms of G in
lom perturbation order than physical elements of T
in higher orders.

%e propose in this work a systematic investiga-
tion of the PAs to the four-nucleon Green's func-
tion, as has already been done for w¹' This re-
quires a detailed analysis of the general four-
nucleon Green's function.

The physical T matrix is a 4&4 matrix which,
due to the symmetrical properties (parity, time
reversal, Pauli principle), has only 5 independent

amplitudes (corresponding to the well-known
Fermi invariants), while the complete Green's
function G is a 16x16 matrix with 41 independent
amplitudes.

We are mainly interested in the lom-energy re-
gion (from zero to a few hundred MeV), and there-
fore the unitarity condition plays an important
role. It is well known' that the [N/N] PAs to the T
matrix are rigorously unitary. On the other hand,
the Green's function enjoys an extended unitarity
condition which reduces to the usual one for the
physical elements; therefore, the PAs on the
Green's function also automatically fulfill the ex-
tended unitarity condition. The elastic unitarity
equation becomes a purely algebraic condition
when me diagonalize the Green's function under
the rotation group (namely when we choose a set
of basis vectors with definite total angular mo-
mentum J).

As a consequence we shall investigate the gen-
eral structure of G for a given angular momentum
J, parity m, and isospin I. It will be shomn that
for G~'~'" the extended unitarity condition becomes

2 ImG~'"(s) = pG '~'"(s )PG~'""*(s)

pG 4I I w 0 (s )PG z I ~ If(s )

where P is ayrojector on the physical states,

Wadis

the
energy in the center-of-mass system, and p = m'/
2z&s. %Ye shall alsoyrove that G ' '" is a4x4quasi-
symmetrical matrix if the physical element is a sin-
glet or an uncoupled triplet v=(-1)~, or a 6x6
quasisymmetric matrix when the physical ampli-
tude is a coupled triplet v=(- I)~". This produces
10+10+21= 41 independent amplitudes.

Finally, one should remark that historically the
PAs to the Green's function mere not introduced
in order to improve convergence, but rather to
cure a disease of the [1/1] PA to the T matrix in
the case of pseudoscalar interactions. In such a
case the Born term gives rise to wrong threshold
behavior for the 'S, and '(8 —1)~ waves (this is
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FIG. 1. Diagrammatic representation of the Green'8
function.

a 6&6 matrix, and an irrelevant 2 x2 matrix. In
Sec. III the extended unitarity equation„ the prop-
erties of the PAs to the Green's function, and the
threshold behavior are analyzed. In Sec. IV we
quote the basis of invariants we have chosen and
their Fierz transformation properties. The final
formulas relate the transitions in the spectroscopic
frame to the Legendre projections of the invariant
amplitudes. Appendixes A, B„C, D, and E con-
tain the most relevant technical details.

unavoidable since it is related to the intrinsic
parity of the pion). This wrong threshold behavior
which is still present in the [1/1] PA to T is com-
pletely eliminated by the use of the [1/1] PA to
the Green's function.

In this first paper we give the complete angular
momentum expansion of the Green's function in a
form suited for actual field-theoretical calcula-
tions. The partial-wave analysis performed in

the case of BSE' is not suitable to such purposes.
We actually extend the method of Qoldberger,
Grisaru, McDowell, and Wong' (GGMW) to the
Green's function with a choice of a set of invariant
amplitudes which are free from kinematical sin-
gularities, easy to compute for any Feynman dia-
gram, and for which the extended Pauli principle
is a trivial algebraic relation and the parity and

time-reversal constraints are extremely simple.
The final partial-wave elements of G are linearly
related to the Legendre projection of such am-
plitudes. In a future paper we shall apply this
method to specific models such as the Y&kawa

model, the nonlinear a model, and the gauge field
models.

The plan of the work is the following. In Sec. II
the general structure of the Green's function is
examined together with its symmetry properties
under parity and time-reversal operations and

the exchange operation (Pauli principle). Using
the angular momentum basis, selection rules
are derived and the Green's function is shown to
be reducible to a direct sum of two 4&&4 matrices,

x i'a

Po
(2.4)

where m' = p, =p, = p,
"=p," is the square of the

nucleon mass. The 8 matrix is given by

II. THE GREEN'S FUNCTION

A. Definitions

I et g(x) be the Heisenberg field for the nucleon.
Then the four-point Green's function in configura-
tion space reads

9 (x,', x,', x„x,) = (0 i T( y (x,') e q (x', ) y (x,) e $(x,)}] 0},
(2.1}

where T is the time-ordering operator. We split
the Green's function into a disconnected part (sum
of products of two propagators) and a connected
one, which reads in momentum space (see Fig. 1)

9"-(P,', P.', P„P.)

=(& )-" fe'"
x9 (x,', x', x„x,) Cx, &fx, dx,'dx,' . (2.2)

Amputation of the external legs yields

(pl& p2& pl & p2} E (pi) @SF (pR) 9 (pl& p2& pl& p2}

xSr '(p, ) g S„'(p,), (2.8)

where S~(p) is the exact fermion propagator. The
connection with the 8 matrix is fixed by the nor-
malization of the physical nucleon wave function

S(p,', p,', p„p) = 6(P, —P') 5(P, —P') + N(P) f&f (P) N(P') f&I(P') g(P') gP') 9™(Pl,P,', P„P)s(P) &(P ), (2.6)

where u is a Dirac spinor with positive energy
(see Appendix A) and where all the momenta are
on the mass shell.

The relativistically invariant transition ampli-
tude T is related to 8 by the standard relation

S(p& & h& p» p2) = 6(p& - p&) 6(p2 - p2}

+i(2w)' N(p, ) N(p, ) N(p,'}E(pm}

x6(p&+pm-p& -p2)T(p&, p»p& p2) ~

(2.6)

In order to exploit translational invariance and
to have a simpler relation with the transition am-
plitude we define the Green's function from now

on as G(p,', p,', p„p,), where we drop the super-
script amp for convenience:

9-'(P;, P.', P„P.) =f(»)'6(P, +P, —P,'- p.')

G(p,', p,', p„p.), (2.7}

so that from the previous relations 6 is related to
the transition amplitude by
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G=g d'»(p;, p, , p„p,) r,.er, , (2.9)

T(p,', p,', p„p,) = u(p,') @p') G(p;, p,', p„p.)
xu(p, ) u(p, ) . (2.8)

The Green's function, whose perturbation ex-
pansion is given by the Gell-Mann-Low series,
is, from its definition, a 16x16 matrix and has
the expansion

variant (Appendix A).
The space-reflection transformation properties

of the above states are quite evident; however,
since we deal with identical fermions we must
take into account the symmetry properties arising
from the interchange of two of them. In order to
make this exchange symmetry transparent, we
shall change our basis

~ g„q„X„A„p„p,) by a
linear transformation into a new basis

with

r; =(1,y„, iy, y„, 2 o„„,y, ).-X/2 (2.10)

~ p, z„q;p„p,&=r, ~x„q;p„p,&,

where P=+, —,e,o and

(2 15)

where u satisfies the Dirac equation

(p'-m)u(x, p)=0, p, &0, m'=p' (2.13}

normalized by uu =1. A. is the helicity and q can
be thought of as an intrinsic nucleon parity. %e
remind the reader that the relativistic nucleon
field [which belongs to the (-,', 0) 8 (0, —,'} repre-
sentation of the Lorentz group] has to be a spinor
with four independent components, while the phys-
ical wave function (which has a definite parity and

belongs to the —,
' representation of the rotation

group) is a spinor with two independent components,
as in the nonrelativistic case.

A suitable basis for G is provided by the spinors
of (2.12). By defining the dual of (2.12} not as the
adjoint but rather as

&n, l, PI= (l, P)y,' ""'-, (2.14)

orthonorrnality and closure relations are satisfied,
and moreover this choice is clearly Lorentz-in-

Our convention for the y matrices is given in
Appendix A. A covariant version of (2.9) is ob-
tained if, from the external momenta, we construct
a set of orthogonal four-vectors W'", W„",W„'~,
W~'~ such that in a given frame W'„" =g„„. With
this choice

r, =(1, g &», fy, Q"', 2-»'[g», g'"'], y,),
(2.11)

and the G ' ' 's become invariant functions of the
momenta.

For deeper physical insight we shall not use
f» G the representation (2.9}or its covariant
form, but rather choose a, new and better suited
basis (in the 16-dimensional space in which G op-
erates for fixed momenta), for which all of the
symmetry properties (parity, time reversal, ro-
tational invariance, exchange symmetry) become
obvious. This will be the object of Sec. IIB.

B. Choice of basis vectors

Let us introduce four independent spinors

(q, x, p&=y," ""u(x,p), q=+1, x=~-,' (2.12)

F,=1(3)1, I' =y, ey„

r.=2-'"(1ey, —y, e 1) .
(2.16)

The states with P =+,—have positive intrinsic
parity, while the ones with P = e, o have negative
intrinsic parity; moreover, I'„I",F„are ex-
change-invariant, while r, goes into —r, (the
indices e, o, which stand for even and odd, ex-
plicitly show this property}. Letting P and 0 be
the parity and exchange operators in Fock space
and U~, 'U& be their restriction to the 16-dimen-
sional space spanned by the set (2.15), we have
(see Appendix B)

'U~F~ —g8I ~'U~,
'0 qFS —(FBI'8'0 g,

with

for P=+
for P=e, o

for P=+, —,e
for P=o .

(2.17)

(2.18)

The time-reversal operator acts on I'8 in the same
way as parity (see Appendix B for the proof). The
states ~A„A; P„P,& have no definite space and ex-
change parities. In any low-energy theory the
elastic unitarity condition plays a fundamental
role; therefore, it is crucial to introduce a basis
in which the unitarity equation becomes algebraic
and in which, at the same time, the symmetry
properties are evident. Such a basis is provided
by the eigenstates of total angular momentum J,
orbital momentum I, and total spin S. For the
same reason as used previously, define ) P, J, L, S&

to be the states corresponding to (2.15) in the
angular momentum basis. One checks immediately,
using (2.18}, that their space and exchange parities
are given by

P~p, s, r„S&=„,( 1} ~p, ~, I., S&,
(2.19)

ai p, J, Z„S&=~,(-1)""'ip, Z, L„S&,

where I is the total isospin.
The partial-wave expansion of G can be obtained
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by solving a simpler equivalent problem. With

any couple P', P we associate the Green's function
l"8. Gl z and we expand the corresponding transi-
tion amplitude,

Ts 8
= g(p,') 8 u(p 2)

I'~. GI"
q u(p, ) 8 u(p, ), (2.20)

in partial waves by using the Jacob and %ick pro-
cedure. " A pictorial view of this procedure is to
think of the Green's function as a coupled-channel
system of nucleons of both parities. The Jacob
and Varick expansion T&.& gives us all the transition
amplitudes of G corresponding to a given "channel"
P'P, namely,

& Z» f. '» &'
) T, , [ Z» I., & &

(2.21)

If we fix J, the Green's function is a 16 &16 ma-
trix connecting a set of states specified by P, I., S
(we shall often designate such states by using the
generalized spectroscopic notation (' ~"f.~}s). In
this frame, time-reversal invariance implies

&0'» ~» ~ '» ~'
I G I P» ~» f »

~ &

=q, q, .&P, Z, f., S(G)P', g, Z, ', S'& .

(2.22}

C. Selection rules

The conservation of space parity in the nucleon-
nucleon interaction implies

(2.23)

The exchange parity is also conserved and since
only the eigenvalues +1 are allowed (from 0' =1),
we may split the Hilbert space into the direct sum
of two eigenspaces X, . The physical two-nucleon
states belong to X; therefore since we want to
approximate G by the Pads method, which pre-
serves the direct-sum decomposition, we shall be
concerned only with the restriction of G to X .
Taking into account (2.18) we get

TABLE II. Values of ~ = (-}~"x (exchange parity) for
the spectroscopic states.

2S+ 1L

JJ
3J

3(J + l)~

and exchange parity for the singlet 'J~, uncoupled-
triplet 'J~, and coupled-triplet '(2+1)~ states.
In Table III, for fixed J and isospin I, which are
good quantum numbers, we classify into four sets
A, 8, C, D the states with the same space and ex-
change parities. In Table IV we quote the value
of isospin I for which these sets of states belong
to X, or to 3C,.

Finally, as a consequence of the previous state-
ments, we see that the Green's function G splits
into the direct sum of two 4 &4 matrices, one
6@6 matrix, and one 2X2 matrix corresponding
respectively to the transition between the states
of the sets A, 8, C, D of Table III. The first three
matrices will be referred to as singlet, uncoupled-
triplet, and coupled-triplet matrices, in analogy
with the name of the physical amplitude (P= P' =+)
associated with them. The fourth matrix is totally
irrelevant for the Pade approximation because it
never contains any physical amplitude.

D. Symmetry properties of T&&

In Sec. II 8 we stated that the partial-wave ex-
pansion of G is obtained by expanding the transi-
tion amplitudes T8 8 of the associated Green's
functions I'8 GI'8. Ne first notice that the trans-
formation properties of 1 8. GI'8 are given by

space inversion:

I",.GI', -g,g, . I', .GI, ,

( 1)I+s+I
( I}1'+8'+l (2.24) exchange operation:

Tables I and II summarize the values of parity

TABLE I. Values of g = (-)~x (parity) for the spectro-
scopic states.

I'8 GI'g ug(d8 I'8~ GI'~,

time reversal:

I'8 GI'~-q~qa~ I g G I'8~

(2.25)

2S+ 11 e, o
Therefore, the invariance properties of the cor-
responding transition amplitude T& &

will be char-
acterized by q& g& and (d& ~& .

From (2.9}, (2.19), and (2.20) it is evident that
in the basis (2.15) G has the form
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TABLE III. Classification of spectroscopic states according to q and co for fixed J and I .

Label States in spectroscopic notation ps+'L zjs

A Singlet +1 +1 PJgj„(idqj, ( (8 —l)ij~, ( (J+1)qj~

8 Uncoupled +1 -1 ( Jzj+, (Jzj, P(J —1)zjo, (t(8+1)zj0
triplet

C Coupled
triplet

D irrelevant -1 -1 ( Jqj~, ('Jzj,

To+

T8-

T. -

T+8 T+0

T 8 T~0

T88 T80

T08 To 0

(2.26)

(-1)" "=tier(s

(—1) =ps'gsi (ds (dsi
(2.27)

where each T8.8 is itself a 4x4 matrix.
According to (2.25) we distinguish four sets of

transition amplitudes Ts s (see Table V).
For fixed angular momentum the initial and final

states for given J can be specified by I.,S and
L, ',8'; the corresponding transition matrix T&i8

goes into T& &. Only a few' elements in T8&.8 are
nonzero because (2.24) implies that

and the number of allowed transitions varies from
two to six according to the class to which Ts z
belongs (see Table VI).

For fixed I the Green's function G goes into G~,
which is obtained from (2.26) by replacing Ts s by
T88., and can be decomposed, though a suitable
transformation, into the direct sum of the two
4 x 4 matrices, one 6 && 6 matrix, and one 2 x 2 matrix,
as mentioned in Sec. IIC.

III. PROPERTIES OF THE GREEN S FUNCTION

AND ITS PADE APPROXIMATION

A. Unitarity

The exact Green's function G fulfills an extended
unitarity equation, which can be written formally
G —G =iG6'G~ and which explicitly reads in the
elastic region

2

G(P,', P,', P„P,) —Gt(P,', Pi, P„P,) =i — dQ, (k„k,) G(P,', P„k„k,) (PG (k„k„P„P,), (3 1)

G~=~ C" "'r e r (3.2)

and dQ, is the invariant two-body phase space

dn, (k„k,) = d'k, d'k, 6"(k,' -m') 6('(k, ' -m')

X 5(k, +ks —P, -Ps) . (3.3)

where 6' is the projector over the physical states,
G is given by (2.9), Gt is given by

This equation holds order by order in perturbation
theory if one assumes the Cutkosky rules for the
Feynman diagrams contributing to G (see Appendix
C for an explicit proof at second order).

From (3.1) we see that the physical transition
amplitude T = T„fulfills the usual elastic unitarity
condition. In the angular momentum basis the
elastic unitarity equation becomes purely algebraic
and reads

TABLE IV. Splitting of the spectroscopic states clas-
sified in Table HI into positive and negative exchange
parity sets X+ and K according to J and I.

TABLE V. Classification of the transition amplitudes
T 8.8 according to space and exchange parity.

Class Q 0 Yj 8r (d p(d er

Amplitudes which belong to
the class

J Even

A, C

Even

A, C

T+ + T ' T + T T 8 T

Teo s Toe

T+e s T-e ~ Te+s Te-

+0' 0' 0+' 0
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TABLE VI. Selection rules for transition amplitudes
T 8 & according to orbital momentum and total spin.

det [G22. (') —&G2'-2...( )1 = o i (3.7)

Class j]~L / Izs/

0, 2

0, 2

Transitions allowed

i 'J 3 3

3(J +1} 3(J+1}J
3JJ JJ

JJ 3(J+1}J
3JJ 3(J+1}J

some of which are good candidates for the spec-
trum. Two remarks can be made to close this
subsection:

(i) The [N/II] PA can be derived from the
Lippmann-Schwinger var iational pr inciple by using
the perturbative ansatz. '

(ii) Some of the anomalies in the threshold be-
havior of the Born term remain in the [1/1] PA
to the physical amplitude T, but they all disappear
when the Green's function approximation is used
(this point is developed in Sec. III ').

G —G ~=zpGJPGJ~, (3.4)

where P projects on the physical states and p is a
kinematical factor p =2222/2wv s; we shall come
back to this point 8t the end of Sec. IV.

Vfe remind the reader that the matrix elements
of G are specified by the orbital momentum L,
total spin 8, and "intrinsic parity" index P and
that they are analytic functions of the energy s
and of the square of the external four-momenta:

GJ —Gz(s pl2 pi2 p 2 p 2)

The off-shell structure of the NN amplitude is
relevant for some applications in nuclear physics
such as the three-body problems. However, in
the foOowing we shall always restrict ourself to

e case where pc~ p22 pir2 ~2I2 &g2 s
first to develop and test an approximation to the
physical amplitude.

8. The approximation method

Interest in the Qreen's function, beyond its ap-
plications in the N-body problem, is motivated
by the use of a nonlinear approximation scheme
(Pads approximation) in which the physical and
unphysical perturbative amplitudes are coupled
to each other. This situation is very usual, for
instance, in computing the resolvent of a given
operator. It can be shown that the [II/N] PA on
G J has the remarkable and unexpected feature of
fulfilling identically the extended unitarity relation
(3.4). Actually, only the first two terms in the
perturbative expansion of GJ can be easily com-
puted for a renormalizable Lagrangian,

(3 5)

where e is an expansion parameter. The cor-
responding [1/1] PA reads

[1/1]~ = o.G2~„, (G2~„„—aG2 2„„) ' G2~„„. (3.6)

It can be shown that' the PAs have the same ana-
lytic structure in 8 and in p&', p,"as the series
(3.5), and, in addition, have extra poles given by

C. Threshold behavior

G'(k n) =k'~"i"A'(k o) (3.8)

where I.& and I.; are the angular momenta of the
final and initial states II~, &i) and i i&, S;).

Another way to express the content of (3.8) is
to write

G i(k, a) = kI (k) A (k, a) I(k), (3.9)

where I(k) is a diagonal matrix independent of a
whose elements are k ~. When 4-0 we shall say
that the threshold behavior is regular if

lim Ag((k) Ai, (0) +0 .
A ~0

(3.10)

It can be shown" using only Lorentz invari-
ance that the one-pion-exchange contribution pro-
duces an anomalous threshold behavior for the
two s waves as weII as for all the 2(Z-1) ~ waves
(this is due to the pion's negative parity). At zero
energy the pseudoscalar pion cannot be coupled to
the physical nucleon (P-wave coupling), and there-
fore the amplitude vanishes. This is not true for
the other elements contributing to the Green's
function. For instance, a physical nucleon and an
unphysical one of opposite "intrinsic parity" can
be coupled by the pion even at zero energy (s-wave
coupling). Therefore, near threshold, these un-
physical transitions are very large compared to
the physical one and will contribute through the
Padh approximation to the physical phase shifts
in a crucial way. The one-pion exchange is actu-
ally a very bad low-energy approximation, be-
cause it gives zero scattering lengths, while ex-
perimentally they are quite large (+ 5 F for 'S,
and —20 F for 'S,). The [1/1] PA to the Green's
function has already proved to give the good scat-
tering lengths. ' "

For a given isospin I and angular momentum J,
the Green's function has matrix elements which
are functions of k (the center-of-mass momentum)
and of o. (the expansion parameter). For k small
we can write
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From the well-known properties' of Pade approxi-
mation we can write

Ã/&]c~(k, a) =k&(k) [&/N]„z(k, o.) I(k) . (3.11)

It now becomes clear that if some of the matrix
elements of the Born approximation to A~(k, o.)
vanish for k =0, the PA to A~(k, a) will in general
not reflect this pathology. There is however an
exception to this general rule: the [1/1] PA to a
1x1 matrix. However, we shall never encounter
such a case as long as we deal with Green's func-
tions which are at least 4x4 irreducible matrices
(or 3x3 in the exceptional case Z=O). The Green's
function PA restores completely the correct
threshold behavior in aQ partial waves.

More physical intuition of these phenomena can
be obtained by considering, for instance, the 'So
wave. The Born term for the physical amplitude
gives a zero contribution to the scattering length.
For other elements of the Green's function the
contribution of the Born term is large; this occurs
for transitions to negative-parity states. There-
fore, these matrix elements can never be ne-
glected. But, in a, linear perturbation theory such
as ordinary perturbation theory, they will not
affect the physical value because they cannot re-
couple with the physical element, in any order.
In a Pads approximation which is nonlinear the
unphysical matrix element recouples strongly
with the physical one.

IV. PARTIAL-%AVE ANALYSIS OF THE NUCLEON-

NUCLEON GREEN'S FUNCTION

0, =11, 0, =-o„„ 0"',
03 =iy5y~Siy5 y

O~=yq8y", 0, =y, Sy, ,

0 =m '[r, (P +P",)r, +r, l r, (p, +P,')],
0™['6(l +@ 'Y. - 'Y 1' (P' +P ')],

(4.3)

0', =1@y, +y, (E1,

0,'=m '[(P', +ff,') ~r, +~, (P', +P",)],
o,'=m '[r, (P', +/2)1+1@x, (ff, +/'l)],

o,' = y„ y,y" +»y, y",
0', =1@y, - y, @1,
0', = m '[(P', +P",) e y, —y, e (p', +P",)],
0,'=m '[y,Q, +P",) a1-1e y, (P', +P",)],
Os= y„@ys&" - y5y], @'y"-

(4.4)

We note that the five first invariants (0,),
i =1, . . . , 5, are just the Fermi invariants 8, T, A,
V, P, and that the A. s and the A,' 's are functions
of the kinematical invariants. The study of the
transformation laws under parity, time reversal,
and exchange operations, which we have performed
in Sec. II for the Green's function, can be applied
in a straightforward way to the invariant ampli-
tudes (cf. Appendix B). The results are summa-
rized in Table VII.

The parity, time-reversal, and particle-ex-
change transformation properties make it possible
to decompose T8 8, using that subset of the

A. Classification of the invariant amplitudes

Let us consider a transition between two given
"intrinsic parity states" P', P. From (2.5) and
according to the study of Hef. 13 we can decom-
pose the transition amplitude into 16 Lorentz in-
variants (0,) and (0',), i =1, . . . , 8:

[(&()'8 8 (0() +(&l)'g g (0» )]6'r,

Operation Action

Space inversion 0; 0;
0;—-0i5 5

TABLE VH. Transformation properties of the invari-
ants 0i and Oi according to space inversion, exchange
operation, and time reversal.

i=1 y ~ ~ ~ e8

&=0, 1,

(4.1)

Exchange operation 0i 0;, i=1, . . . , 6

0i -0;, i=7 8

where 6'I is the projection operator on the state
of isospin I, and where

0',.-0'i, 2=1, . . . , 4

0',.——0'i, i=5, . . . , 8

«;) =uVl)@uV,') o uV, ) u(P, ),
(0,') = u(P,') e u(P,') 0', u(f, ) e u(P, ),

(4.2)

reversal

0; —0;, i =6, 7

0', -0'i, ~=3,4, 7, 8

0i 0i~ i=12 34 5 8

with
05 05 i =1,2, 5, 6
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TABLE VIII. Classification of the invariants into which the T 8F 8 are decomposed according
to symmetry properties.

Clas s Allowed invariants

O~, . . . , O6 (p =p' eliminates Oe by time reversal)

0), . . . , 045 5

5 505, . . . , 08

16 invariants which transform in the same way
(Tables V and VIII).

(0;&. = (p.') -(p, ') 0;(p„p„p.', p,') (p, ) s(p. ),
& C&~ =s(p,')@ g(pl) ol(p„p„p,', p,') s(p, ) ~(p, ) .

The calculation of the Fierz transformation gives
(Appendix D)

1 1 1 1 1 (0)(0,&F-F

(0,)FF 6 —2 0 0 6

(O,)„, =-,' 4 0 -2 2 -4
(04&FT(0$„11 —1 —1 1

&og =(op,

((o,)„,) (0 11 ((o,) )

(05&
t + S —lc n4

2t

&0,&

&o,&, (4.6)

&o,&

&op

4 0 2 —2 —4

(4.6)

&o,')

B. Fierz transformation

Let us consider the invariants (0;) and (0',) [cf.
(4.2)] and define their Fierz transform (0;&Fr and
&o'& by

trize78 8 with a new set of invariant amplitudes
which are linear combinations of the previous ones
and of their Fierz transforms:

r8, =g OE;) s 8 [(o;&+(-)' (0;&F7 j

(4.10)

C. Partial- wave expansion in the heiicity formalism

In order to project out the partial waves we shall
use the Jacob andNick formalism. " To use it, we
must change the normalization by setting

m'
@8'8 2 ~g T8'8 (4.11)

.(E!&'„[&Ol&-(-)'(0;&„,Jj6', . (4.0)

The linear relations between the E s (or E,''s)
and the A, 's (or A,' 's) of (4.1) are given explicitly
in Appendix D. One can easily check that the
amplitudes F; and I' 5 are free from kinematical
singularities. Furthermore, if one splits E, (s, t, u)
and E,'(s, t, u) into even and odd components for the
exchange t —u, they correspond to transitions in
R, and X, respectively. Precisely, one has

+-u- t t-2&m
t t(o,'& (o,'&

((og„,) (I -2l ((og i

(&o~„,r k0 -I) (&oa)

(4.'I}

%'ith this new normalization, the differential cross
section reads

(op

&OPF.

&08& Fr]

2 1 0 0

-200 0

&o,')

&OP

0 0 0 --,'" (OP

0 0 1 1 (Os/
(4 6)

where Q is the solid angle.
Following Jacob and Nick" we have

(z,'z,'j4, , ~ ~, z,&
=—p (2m+I) d» (cosa)

1
8 8 1 2

x(Z,'Z,' (4,',, ~ Z, X,&,

Since the transition amplitude must have a def-
inite exchange parity, it is convenient to parame-

(4.12)

where 0 is the center-of-mass three-momentum
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k =(-,'s- ')'~'

and where

1 [m'E, +m'(E, +E,) cos8
W Q

—(k'+3k, ') E,],

Equation (4.12) differs by a factor of 2 from Jacob
and%ick since we want, accounting for the iden-
tity of particles, to have the same unitarity equa-
tion for 4~~.6. Using the orthogonality relationof the
d functions,

dpi, (cos8) d„„(cos8)sin8d8-- —
1 6«2J+1 J'J'

XQ~Q~ ~i

(-k,'F, + [(k,'+ k') F, +m'F, ]cos8

+3m E3-p F,),
1

P, =(1+cos8)
7 p

x[ mF, +k,'E, +-,'k'(-E, +2E, +E,)],
1

P, =(1-cos8)
7T p

(4.16)

we invert (4.12}through

(~,'~,' )4,',, j~,X,& =-,'k

(4.13)

(X,'Z,']4, , ~ Z, ~,&

xd~» (cos8) d(cos8) .

x[m'F2+ko'F~ —~ k'(-F, +2E, +E,)],
4, =sine [m'(F, +F,)+4k'(F, +F,)],

P, =sin8 [m'(F, +E ) —4k'(E, +E,)],
(4.14)

The relevant functions d~z&. are related to the
Legendre polynomials by

d~~(cos8) =P i(cos 8),
d~~(cos 8)

1
1+cos6)

y, = sin8 [m'(E, +F,) +4k'(E, —F,)],

p, =sin8 [m'(E, +F,) —4k'(F, —E,)] .

%e recall that 0 and kp are respectively the center-
of-mass momentum and energy.

ii(cos 8}

1
1-cosg

JP~„(cos8)+(/+I) P~,(cos8)
2J.I

TABLE IX. {a}Structure of the transition matrix
4 8 8 in the standard helicity basis with g = g Bq &, i.e.,
the product of intrinsic parities. The indices P'P have
been omitted for convenience. {b}Structure of the par-
tial-wave transition matrix Q 8.8 in the standard helicity
basis. The indices P'P have been omitted for conve-
nience.

ZP~„(cos8) +(J'+1)P~, (cos8)x -Pz cos8+

d(,(cos 8) = —d~~, (cos 8)

[Z(Z+I)]'" 1 [P~„(cos8)-P~,(cos 8)]2J+1 sin8

(4.15)

Following GGMW' notations, we shall call (Q;)8 z
the matrix elements of 4 8 8 in the standard helic-
ity ha»s I+a, +2&, [+2, -z&, l-a, +2&, l-x, -r&.
In this basis the 4 8 & takes the form given in
Table IX(a).

Using the explicit representation of the helicity
spinors (Appendix A), we get the linear relations
which give the p, 's in terms of the invariant am-
plitudes E& and I &. For amplitudes belonging to
classes I and 11 (as defined in Table V), the results
are

{b)
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For amplitudes belonging to classes III and IV
the results are

+I
4»

l +cos]9

ljl, =—(-2E,'cos8-2E,'},

lj12 =—(- -; E', cos 8+ E,'),k

4, =(1+cos8) (--,'—E', +E,' —2E,'+E',),

ljl, =(l-cos8)
2

(-,'E,'+E,'+2E,'+E,'),
(4.17)

y4~= —,
' k

x P~(cos 8)

ZP~„(cos8}+(/+1)P, ,(cos8) d+—~"
1

' ' dcos8,

+I

l- cos6)
P

x -P~(cos8)

JP~„(cos8}+(J+1)P~,(cos8) dd cos8 p

4k,', , 4k,'
y =sin6) ——I'+ ' +'+E'+m2» 5 ~2 7

0
, „[J(4+1)j'/2

y,'=-,'k
(4.18)

k m, 4k,', , 4k,'
(t) =sin(9 ———I"'- I"'+F'+ ' F'

4w k ' m' » m'

k m 4k,', k'+k, '
(t) =sine ———E5+ E'+2 I'5+2E'

4g k ' m' ' m'
0

We notice from (4.18) and (4.19) that the ampli-
tudes free from kinematical singularities and suit-
able for the partial-wave projections are

+I
[P~„(cos8) —P~,(cos8)] d(cos 8),sine

~g 1
q

Id(J+1)]'"
2Z+1

4's. '8 [P~„(cos8}-P~,(cos8)]d(cos8),sin8

„P(d+1)]'"

+ J.

[P~„(cos8)—P~,(cos 8}]d(cos 8),sine

(t)4

1+cos8' 1-cos8'

. ' (f=5, . . . , 9).
sin8

[g(d + 1 )]1/2

2J+1
+1

[P~„(cos8)—P~,(c os 8)] d(cos8) .
sin8

Let us call (41~)8 2 the elements of the partial-
wave transition matrix 48.8 which takes the form
given in Table IX(b).

Combining (4.14) and (4.16), we get

41, P~(cos8) d(cos8),

D. Partial waves in the spectroscopic basis

In order to achieve our program we must now

go from the angular momentum helicity basis to
the spectroscopic one (SB), where the states are
chosen in the following order: ('J~, 2Z» 2(Z- 1)»
'(J+1)~}.An easy calculation shows that this trans-
formation is given by

412 Pi(cos8) d(cos8),
where the transformation matrix reads

(4.19)

[2(2Z+ 1)]
'/'

(2m+1)"'

(d)1/2

(d + 1)1/2

(2J'+1)l/2 (2'g+1)1/2

(d ~1)1/2 (d+ 1)1/2

(g)1/2 (d}l/2

—(2Z+ 1)'/'

(J)1/2

(d+ 1)1/2

(4.20)
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We quote in Appendix E the formulas which give
the spectroscopic final transition directly in terms
of the invariant amplitudes A; and A; defined in
(4.1). Through (4.9), (4.16), (4.17), (4.18), and
(4.19) one finally checks that in (48 8)sq all
transitions, except the ones classified in Table VI,
vanish identically.

Since the matrices T&.8 are related to the T8.8
through the same expansion as (4.12), the unitarity
equation reads

2

Ts 8
—(T~q s)*=i Ts.,(T~s)*, (4.21)

2wgs

while for the matrices 4 8.6 it becomes simply

APPENDIX A

1. Notation and definitions

4pp = ~~

g~p= —~~ for p. = v=ly 2~ 3

g„,=0, for p, ~ v.

The scalar product is then

a b=apbp —a b .
The Dirac equation for the spinors u(P, X) is

(Al)

(A2)

Our metric will be defined by the metric tensor

4 s 8
- (C 8.8)*—s4 si, (C,s) (4.22)

V. CONCLUSION

In this work we have given a simple formalism
to obtain the angular momentum expansion of the
four-nucleon Green's function by generalizing the
method used by QGMW for the physical amplitude.

We proved that the Green's function fulfills an
extended unitarity condition, which, in the elastic
region, is completely diagonalized by choosing the
angular momentum basis, just as for the physical
amplitude.

Our aim is to apply this formalism to the rele-
vant field-theoretical models such as the Yukawa
model, the nonlinear o model, and the Yang-Mills
models with gauge fields associated with the bar-
yonic number and the isospin number (~ and p
particles).

The [1/1] Pade approximant to the Green's func-
tion, which involves the computation up to second
order of the above-mentioned models, will produce
a physical amplitude with all the nice features one
expects in a low-energy theory: correct threshold
behavior in all waves, elastic unitarity, and cor-
rect analyticity in the energy and bound states.
The PA is defined in such a way that it reproduces,
for small coupling, the perturbation series up to
second order and consequently has the same sym-
metry properties as the Lagrangian from which it
is constructed.

Furthermore, such an approximation to the
Green's function allows a, unique field-theoretical
off-shell extension and provides an off-shell T
matrix which can be used for three-body calcula-
tions in nuclear physics.

where we have defined

'Y P =P 'Y —P''Y

We normalize the spinors in such a way that

u(P, x) u(P, x') = 5~~, u=u'r,

u, A u, A. =

For the Dirae matrices we use the representa-
tion in which yp is diagonal and y, is antidiagonal,
l.e.

y

Y5 YP YJ Y2 Y3

The o; are the 2x2 Pauli matrices. In this rep-
resentation one has

(r,)' =(r,)' = -(r)' =1 .

For completeness, we also quote the well-known
anticommutation relations of the y matrices:

(A V)

The tensor operator is defined in the usual way
1 ~

&,.=2&[r„,r, j

2. Kinematics

We denote by pyp p2 and p,', p2' the four-momenta
of the ingoing and outgoing nucleons, respectively.
We define the Mandelstam variables s, t, and u,
as usual, by
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s=4(k'+I') =4k,',
t = —2k' (1-cos&),

u = —2k2 (1+cos8),

(A9)

(A10)

(A11)

where k is the c.m. momentum of each nucleon,

k, is the c.m. energy of each nucleon, and 8 is the
c.m. scattering angle in the 8 channel. Let us re-
call also that in this picture the s channel de-
scribes a nucleon-nucleon process, whereas the
t and u channels describe nucleon-antinucleon pro-
cesses.

In order to make the partial-wave expansion
through the Jacob and%'iek procedure we shall
have to calculate the invariant amplitudes in the
helicity basis. In the center-of-mass helicity
basis, we shall write the Dirac spinors as

++ t+u =4m',

where m is ihe nucleon mass. Since nucleon-nu-
cleon kinematics is well known we will not be dis-
cussing it here.

We quote also the well-known kinematical rela-
tions

theory.
The action of parity is given by

G(pl j Pmt Pli P2} ~~G(Pli P~t Pli P~) ~P

where p=(po, p) and p=(p» —p), and 1)~=yo(2)yo
The exchange operation is defined by

G(pit P21 Pll P2) +0 G(P2I Pl( P2\ Pl) +()

where Q„ is a matrix defined in such a way that

v„AB v„=a@A .

Finally, time reversal acts as follows:

~(p&, P '. , Pi, P.) -&e G (Pi ~ P~~ 6'~ P~ }1)e
'

~

where 'De= i y, y2 S iysy, .
If one assumes t" to be invariant under space

inversion, exchange of particles, and time re-
versal, it follows that the transformation proper-
ties of the associated Green's functions Fs. GI"8,
and consequently of the associated transition ma-
trices T s.s, defined by (2.20}, are obtained by
looking at the action of 'U» 'U&, and 'Ue on I'8. We
find

UP~8 UP 98~8 y

'Un j"s'Un = &8~8

'De~a'Ue '=ngI'8

and finally,

pa, rity:

1' ~ G(P', P', P P ) r s- )) s)l s r s

,) (a, m '*
exchange:

x (:(P,', P,', P„P,) 1 s,

1 s G(pi~p2~Pup2) r s (ds»s' Ts'

x G(pig Pay Pi& P2) 1 s ~

time reversal:

l -i(s/2)Q ( ) I)

e-i(s /2) a~

where )t()(} is a two-dimensional spinor which is
an eigenstate of 2 a ~.

&s ("(P',P', P P ) r s —r/s))s r s

xG(pi~ p ip»2p )f's2.
The transformation properties of the invariants

0& given in Table VII can be obtained in a similar
wa, y.

APPENDIX C: PERTURBATIVE PROOF OF THE
EXTENDED UNITARY RELATION

APPENDIX B: SYMMETRY TRANSFORMATIONS

In order to analyze the symmetry properties of
the Green's function G, we quote explicitly the
transformations that it undergoes for space in-
version, particle exchange, and time reversal.
We shall only quote the results since the derivation
can be found in any standard book on quantum field

=i—2

2 Born 2 Born
m

dn, G...„d G,'.. . (e1)

By expanding Eq. {3.'1) in the nN coupling constant

g, we find at order g'
~Born G Born

and at order g'
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where dQ2 is the invariant two-body phase space
given by

dA2 = d'k, d'k, 5~'(k22 -m')

x5(k, +k, -p, -p, ) .

P)

Pp

k)
I

P)

I

Pp

At order g4 the only Feynman diagram for which

2Born G2Born is nonzero is the direct box diagram
(see Fig. 2). Its contribution in isospin 1 reads

d'k, d'k,

x yn(lt, +m) yn 8 y, (lf +m) yn,

(C2)

FIG. 2. The direct box diagram.

where D, =k,'-m', D, =(P„—k, ) —i1', Dn=kn'-m',
Do =(p,' —k, )

Cutkosky rules applied to G2 B„„give us the
absorptive parts G, 'B„n -Q2*B'„„ofthe invariant
amplitudes 6,'~,'„, into which Q», can be de-
composed [cf. (2.9), (2.11)]. In fact

62 Born ~2 Born d~sc G2 Born

=(tri)'(-i)(tr) ' f k'k, k'k, $"(k,'- ') k"((k*-m*) k(k, k, -t, -t )

1
y, e y, (k', +m) 8(g, +m) y, e y, .

2 4

%e notice that

(g, +m) 8 (P, +m) = 4m' P u(k„a, ) u(k„a, ) 8u(k„X,) u(k„z, )

=4m2 6', (C4)

vs@&s
GBorn ( lt k2t Plt P2)

( r. 12 (C5)

Consequently, when we replace (C4), (C5), and
(3.3) in (C3), we get (C1).

Finally, we remark that the definition (3.2)
implies that

&~IG'I &=& IGlk

[where I p) = r B u(p, ) 8 u(p, ), I p') = I"B.u(p,') 8u(p,'),
and the ad]oints are defined according to (2.14),
(2 15) by &P I =u(p, ) SCP,)rB and &P'I=u(p, ')
Su(PB')rB ] only if the Dirac matrices I'; are de-
fined in such a way that

yor&y =r, (C'I)

so that

(y, e y,) r, r, e r, r„(y,e y,)=(r.r, sr, r,)'
(«)

In order to fulfill condition (CV) the I'; defined
in (2.9) should be defined in the simple change

E P5 ~

where 6' is the projector over the physical states,
and that

The same obviously holds for the I'6 defined in
(2.16). We want to stress that such an exchange
would not affect any of our results or conclusions.

API'END1X D: FIERZ TRANSFORMATIONS

Let us consider an invariant amplitude

&FSG) =u(P,') Su(PB)

X[~1kP2$ Plt P2) 8 Q(P1$ P2 ~ P) t P2)j

xu(p, ) Su(p, ) .

Vfe define its Fierz transform by

&F8 G) „,=u(P,') 8 u(P,')

[ (P1t P2$ P2$ Pl) 8 G(P1$ P2$ P2t Pl)]

xu(p, ) e u(p, } . (D2)

The computation goes through the basic identity

&@SO)»

= —,
' g &r„sF(p„p„p,', p', ) r"G(p„p„p,', p,'))

A

rk Q & (pit P2$ P2t Pl) rk1 (Plt P2$ P2t Pl) 8 +}
A

(D3)
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where I'& is the complete set of 16 matrices

such that

tr[I'„ I'~ j,=45;, , when I"1C I's, I', t:—I's. (D5)

It is obvious to check from the definition that

=&FG). (D5)

For a 4 spin-& interaction the number of ampli-
tudes in the transition matrix (2.9) is ts priori equal
to the number of amplitudes in the Green's func-
tion, but using the Dirac equation and eliminating
the Levi-Civita c symbols arising from the choice
of the basis vectors Wt"' used in (2.'7), one can
show" that the number of independent amplitudes
reduces to 16 and that for equal masses the follow-
ing equalities hold:

—,
' t&cr„„8o""&=-,'t&y, o„.8y,o"")

=4m'(y„8 y") +(s —u) (y,8'
4 (18$,+tt, 81&+(s—u)(181),

—,
' t(y o„„8o"")=-,' t(o„„8y,o"')

= -4m&), 8y, +y, 8),)
+(s -u)(18y, +y, 81&t

&y e y,ys],&
= m&y, y„8y")+m(18' —(y, jf, 81),

&y,y„8ysy']1&+-2'm&o„„8o""& =m&y, 8 y"&- &/2 8 1&,

&y„tts 8 y" g& + -,' (s- u) (o„,8o"')
=-,'(s-u)(181) -(2m2--,' t) &y, 8'

+ m' (iy,y„8 iy, y"&,

&ysys Hg 8 y" Pl& + s (s- u) &ysos 8 o"")
=-' (s —u) (y 8 1) —(m' ——' t) (1 8 yg —m (y,g 81),

&y,y„P, y, y" ft,& +-2( s- u) &o,.8o""& (D'7)

=-,'(s-u)(y, 8'+-,' t(181)
-m&ystt28y, +y, 8y, tt,&,

-&ystts 8 ysg, & + 2 m'&o„„8os "&

=+-'(s u) -(ly, y„81y, y"') +(2m' —-'t) &y„ y")

-m(18$, +$, 81),

&P. 8 .tt, &=-.'( — )&,8, "&

—(m' ,' t) (y—,y—„8y") +m&y, tt, 81),

&P. 8/1& =s(s u)&y-„8y"& -k «iysy, 8 Sy,y")

+m'&y, 8 yg,

(y„y" S,& =m&18» -&y.8.8',
(y,y„8y" tf,&+ —,'m(y, o„„8o"")= —&$28 yg,
where we define

(D8)

The above relations are taken from Ref. 13.
From this set of identities we can derive a new

one using the following remark: If we consider
a relation between invariants of the type

+(Pl!f 2 ~ Plt PS) +(Plt PS ~ P1!PS)& Q Cl! (Plt PSt alt PS) (Ak (Plt P2t Plt PR) 8+k (Plt i St Plt PS)& t

we can also prove that the following relation holds:

(PSt Pl ~ PSt i 1)8A(t St t It PS!i 1)& Q 2 (PSt I lt P2t Pl) & 1!(PSt Pl t t 2t t 1) 1! (P2t Pl t t 2t Pl)& t

i.e., we interchange the order in the tensor. prod-
ucts and we interchange w, —m2.

Taking into account the Fierz transforms (4.V)-
(4.10), which have been calculated using (DS), we

can relate the amplitudes E; and E', defined by
(4.11) to the amplitudes A, and A', given by (4.1)
and get

2

E, = —,'(A, —SAR +2A, ),

E~= 2A6,

E, =
2 (AT -A,),

Fs = 2 (A, +As),

E,' = —,
'

(A,'+A.,'), (D9)

E,' = —,
' (A', +A,'),

F', =-', (A. ', +-,'A,'-A,') .

E, =-,'(A, -A,), E =='A'
3 2 3

1 1 1
t-u+2m2

E, =R(RA+A+RA), E, =R RA+ 2 As2'

APPENDIX E: SUMMARY OF THE RESULTS
AND FINAL PROJECTION FORMULAS

In the spectroscopic basis (SB) the transition
amylitudes (Ts, 2)» are 4X 4 matrices with the
structure given in Table X.
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The only nonzero elements of any amplitudes
(Ts 8)» are the ones associated to the class to
which this amplitude belongs (cf. Table V). The
Green's function for definite angular momentum

(6 )» is built up from the 16 transition matrices
(T~~. 8)» following the same scheme as (2.26);
it is given in Table XI.

This structure allows us to verify the announced
decomposition of (G ) into a direct sum of four
matrices we have labeled in Table IQ as the sin-
glet, uncoupled-triplet, coupled-triplet, and irrele-
vant one. The structure of these matrices is giv-
en in Tables XII(a)-XD(d).

In Table IV are have shown for fixed I and J
which of these matrices correspond to the ex-
change parity -1 and +1, respectively.

In order to give the final results for the transi-
tion amplitudes (I 'S'~C ~z, J I.S) we introduce a set
of auxiliary amplitudes GI„G~ with simple trans-
formation properties for t —u exchange and for
time reversal:

4~G, =E, -4E, + E„4~G,=2E„
4~G, =E, -2E,—E„4~G,=2E„
4~G, =E, +4E, +E„4~G,=2E„
4nG7 = E7+ E8, 4m'G8 =%7 —E8,

~J» ~J» ~(J —1)» 3(J+1)»

3J
~&s 8)ss—

3(J —1)»

~(J +1)»

4+Gs 2ES 4~5 2 1 2
I ly 1-cos8 '

4~', = BE,', 4',' = 8E,',
4~G', = E', + 2E,'+4E', + 2E'„

k '+k' k'4','= E', +2 ', E,'+4 '; E,'+2E', ,

4~G', = -E', +2E65-4E', +2E,',
k' + k k'4~G'=-E'+2 -' E'-4 ' E'+2E'.m~ 6 m~

%e can check that E,' -2E
l )=p =0 and E, + 2E I

TABLE X. Structure of the transition amplitude in the
spectroscopic basis. %e associate *, 6, +, and Cl with
classes I, II, III, and IV, respectively.

TABLE XI. Structure of the partial-wave Green's function in the spectroscopic basis.
+, and 0 are associated with classes I, II, III, and IV, respectively, and the dots are under-
stood as zeros.
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TABLE XG. (a) Structure of the singlet matrix in the spectroscopic basis. * and + are as-
sociated with classes I and III, respectively. (b) Structure of the uncoupled-triplet matrix in
the spectroscopic basis. * and Cl are associated with classes I and IV, respectively. {c)
Structure of the coupled-triplet matrix in the spectroscopic basis. *, 6, +, and C3 are as-
sociated with classes I, II, III, and IV, respectively. {d) Structure of the irrelevant matrix
in the spectroscopic basis. and 6 are associated with classes I and II, respectively,

{a)

['(J—1)g], [ (J +1)~]p

('Jg),

{singlet)— ('Jg)-

['(J —1)g],

['(J +1)g],

['(J —1)&]. [ (J+1)g],

(3J' )

(uncoupled ( Jz)
triplet)

[ (J+1)g],

(c)

[ (J—1)g]+ [ (J+1)~], [ (J —1)gl- [ (J+1)J]- {Jg), ( Jg),

[ (J —l)~]+

[ {J+1)~]+
{coupled

triplet)
[3{J+1)J]

('Jg),

('Jg),

(d)

(JJ),(irrej, evant)—
('J ),

=0 so that G,' has no kinematical singularity.
If in the F,(E',) we take the components of given

f—u parity, which correspond to X, or X [see
(4.10)], then the G, for 0 = I, . . . , 6 have the same

u parity as E~ for the same k, while for @=V, 8
the combinations G, ~ G, have definite I;—u parity.

For the other set, one may notice that O', , G,',

O', -G', , G6-G', have the same parity as I',' for
k odd, while t(G,' -G,'), O'„G,'+O'„G,'+G', have
the same parity as E~5 for 4 even.

We finally quote the expressions for G; (G', ) in

terms of A; (A, ) which make the time-reversal
transformation properties transparent. Using
(D9) we get
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4wG, = a(A, -6A~ —4A~+4A~+ A ),
4wG, = 2(A, +2A, +A,),
4vGs= 2 (A, -2A3-2A~-A~},

(I '&
I e', ., I Z, S& = S(G„G',),

then

(1 &l@g 8lf '&')=&(~pG„ej', Gj'),

(E3)

(E4)

4wG~ = p (A, +2A~+2A4-A~),

4wG, = z (A, —6A, +4A, —4A, +A,),
4m|".,=A„ 4~@,= A„4~a, = A„

4vG,' = 4A'„4vG,' = 4(A,'+ A.,'),

k+4 k4~t."5=A,'+2, ' A,', 4~6,'=4
(E2)

where

I+1, for k=1, 2, 3, 4, 5, 8

) —1, for k=6, 7;

+1, for k=3, 4, 7, 8

-1, for k=1, 2, 5, 6.
k'+k '4','=A'+2A,', 4','=A +2 ' A'

k'4''= 4A'+2A' 4m''=-4 ' A,'+ A,'.
The amplitudes C», G» are linear combinations

of the amplitudes A&, AS&, having the same trans-
formations properties under time reversal. From
the results quoted in Table VII for the time-rever-
sal transformation properties of the invariants
0&, 05& we easily derive the following result. If

Accounting for (4.22), (4.20), (4.21), (4.18),
(4.19), (D9), and (E2) and defining

(a(G„G',l&'= J g( „GG) P( o e)s( o e),

where g(G, , G,') is a linear form in the G, 's and

G,"s [when only one G, or G', will be involved, we
shall write simply Gf or (G,')~], the final formulas
read (we drop the indices P'P for convenience):

singlet-singlet transition:

('J, l
e'i'J, )= —— [(2J+1)(k,'G, + m'G, )' (J+ l)k-'G,'"-Jk'G,'-'];

Q

uncoupled-triplet-uncoupled-triplet transition:

(E6)

( Jgl4 Ng)= 2 „—2 1
[(2J+1)(m Gm+ko G4) -Jk G~+'-(J+l)k'G~ '];

Q

coupled-triplet-coupled-triplet transitions:

('(J - l)~ [4~t'(J —1)~)= ——,(J(J + l)(k, -m)'(G, +G,)~"+ [Jk, +(J+1)m ]'G,' '

+[J'm+(J+1)ko]2G4~ ' —J(2J+1)k'G5 —(J+1)(2J+1)k2G,},
(E8)

('(J+ l)zi@~i'(J+1)~)= ——,[[(J+1)k,+Jm]'G, +'+[(J+1)m+Jk,]'G, +'
2 ko 2J+1

+ J(J+1)(ko m}'(G~+G4)-~ '-(J'+l)(2J+1)k G, J(2J+1)k'G~),

(E9)
1 k J J+1) 'i~('(J-i), |4'i'(J+1),)= ——,[k'J(G, -G,)'"+kmJ(G, -G,)'-'+(k, -m)(mG, -k,G,)'"

singlet-uncoupled-triplet transitions:

+(k, -m)(k@, -mG, )' '+k'(2 J+1)(G, -G,)'

-4(k im)k'(2J+1)(G'" -G'-')]. ( E10)

(E11)
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singlet-coupled-triplet transitions:
2 1/2

IC I'(&-1)„)=— -(/+1)(G,'-G,'+G', )"'-&(G,'-G,'+G,') '+(28+1)(G', —O,'-G,')
m y 2 J'+j.

+—„(@+1)o,'+ ', c,' ——(v+1) c,'+ ', G,'
0 0

(E12)
2 j./2

&'~, l C'I'(~+1),)= — '
(~+1)(O', -O,'+G,')'"+~(G', -G,'+G', )'-' -(»+ l)(O', -G', -O,')'

pn y 2 4+1
y 2 J'-l~

0 0

uncoupled-triplet-coupled-triplet transitions:
2 X/2

&'Zgl@ I'(J —1)g)= —
2 1 2 1

Z(G', +G,') "+(J+l)(G',+G',)
' —(2J'+1)(G,'-G,')~

——z (c'+o')'" +—z (o'+ o')'-'
6 8 y 6 8

2 j./2
~

&'Z, I C'I~(v+1),&= —.. . ~(cs+G',)"'+(~+1)(O;+O',)' ' -(2&+»(O'. -O', )'
2 2J+1 2J'+ j.

(E14}

+ —(/+1)(G~+GSB) "——(J+1)(G6+Gs)
0 0

(E15)

z,'&" = » fc', &'& —G5&'&j+
&& cos&& c,'&-'& =o, (E16)

where e = + P'(-1) +' if the amplitude belongs to
3C ~. Therefore

Using the results of Table VIII, one can verify
from the previous formulas that any amplitude
4 8 8 contributes only to the transitions classified
in Table VI.

We should also remark that for any &
'ISIS ILS),

only the G, or G'„of a given f —u parity contribute
to the ( ~ ~ ~ ) Legendre projections and those of op-
posite parity to the ( .) ' ' Legendre projections.

It is only in the singlet-coupled-triplet transitions
that 625 appears in which have no definite t —u
parity. However, letting G2('~ be the components
of G,' with f —u parity e&lual to a 1, one writes
62' =C' "+t"25 and remarks that

(g+ }1(
5O&t )J&+I + g(cs&-e&)z 1

+ (2J + 1)(O,'&'& -G,'&'&)' = O.

and in (E12) we find that only the appropriate
combinations (O' ' -G'&'+ G,'') ' '
(G'& "+G" ")~, and

J' aj.
g5(E) 0 65{6)I ~)2 3

contribute to &'/~I 4I'(8 + 1)~).
This remark is useful since in perturbation

theory one may compute the G~ for any given
graph and obtain the partial-vrave contribution
for the sum of that graph and the one for vrhich
the final lines are interchanged simply by multi-
plying the previous results for (I 'S'I@I LS) by a
factor 2.
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are, Sezione di Bologna, Bologna, Italy.
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