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By requiring only that conserved vector current (CVC) and partially conserved axial-vector current

(PCAC) be expressed by the field equations, a matrix formalism is developed for the nonlinear meson

Lagrangian density, incorporating both conditions in any group representation. The pseudoscalar-meson

"mass term" is given explicitly. The concept of the chiral covariant derivative is employed to treat a
general system of vector, axial-vector, and pseudoscalar mesons in an elegant manner. In the context of
invariant pseudoscahLr-meson coupling constant f {=0.7m '?) and vector-meson coupling constant g
(-6) there follows immediately a relation between the {unrenormalized) axial-vector and vector-meson

masses: mA = mv + (g/2f) .

I. INTRODUCTION

One of the major problems confronting attempts
to describe the phenomena of elementary particles
within a field-theoretical framework is the rela-
tionship of the internal quantum numbers to the
dynamical properties of fields. The aspirations of
mathematical esthetes to form a unified group
structure providing "higher symmetries" appear
to contain insufficient currency to conquer the
towering difficulties involved. It w'ould seem,
therefore, that we should concentrate our efforts
to understand the "internal" interactions of fields
on the basis of their properties with respect to
space-time with which we can deal effectively.

There are a number of beautiful and powerful
theories employing dynamical subsidiary condi-
tions or conservation laws in electrodynamics,
gravitation, ' and strong and weak interactions',
we may take as a relevant example the principle
of conservation of vector current (CVC), leading
to the so-called E-type coupling of the representa-
tive vector meson. ' The purpose of the present
paper is to point out that the power of at least one
such dynamical condition, partial conservation of
axial-vector current {PCAC),' has not heretofore
been fully exploited. We show explicitly, in a non-
linear system of pseudoscalar mesons, with vector
and axial-vector mesons, how PCAC in a form
unified with CVC can completely determine the

form of the couplings as a generalization of what
is usually referred to as chiral dynamics. These
results can be considered to be the (chiral) ex-
tension of the Yang-Mills theory', they are model-
independent, not only with respect to the form of
the (unitary) pseudoscaiar-meson functional, but
also with respect to the representation of the
"higher symmetry" (given that a second-rank
tensorial, i.e. , matrix, representation is va, lid).
Further, a relation among the vector-meson
mass, the axial-vector-meson mass, and the
vector- and pseudoscalar-meson coupling con-
stants follows directly.

In Sec. II we review the results of previous
work' ' on nonlinear systems of pseudoscalar
mesons, and give a general derivation of PCAC
from the chiral dynamical form of the pseudo-
scalar meson Lagrangian in any representation
[SU(2), SU(3), etc.]. Section III gives a brief
resume of the formalism for vector mesons, with
self-interactions, demonstrating how the supple-
mentary condition follow's from the field equations.
The vector mesons are then added to the nonlinear
pseudoscalar system with the development of the
concept of covariant derivatives; it is shown how

both CVC and {modified) PCAC are maintained.
The axial-vector mesons are introduced into the
combined system in Sec. IV; a broadening of the
concept of the covariant derivative is evolved,
along with a natural basis for the increase in the



MESON COUPLINGS FROM CONSERVED VECTOR CURRENT AND. . . yoga

mass of the axial-vector meson over that of the
vector meson. Section V discusses further exten-
sions of the method, including the effects of "sym-
metry breaking" and the presence of baryons. An
outline of the derivation of the nonlinear Lagran-
gian density from CVC and PCAC for a system of
pions, p mesons, and A mesons is consigned to
the Appendix.

II. PSEUDOSCALAR MESONS AND THE DIVERGENCE
CONDITION

Let us consider a general system of pseudosca-
lar mesons P described by a local, Hermitian
Lagrangian density. With an SU(2) representation,
it has been shown explicitly in previous work"'
that in order for the divergence condition

(J» is an initially unspecified axial-vector quan-
tity) to follow from the field equations, the La-
grangian density must have the form

2

gs, = —
f2 (BqU)(&AU) —

2
A.

where the e; are the (matrix) elements of the rep-
resentation, satisfying

Tre; c& = 5,&

and the P; are simply the component pseudoscalar
meson fields, an over-all trace over the matrix
expression in Eq. (2) is understood, so that the
Lagrangian density is a scalar. Equation (7} im-
plies that the ~& used here correspond to 2 '"7;
for an isospin representation and correspond to
2 '" times the Gell-Mann X matrices for an SU(3)
representation. Equations (1) and (3) are matrix
equations (no trace taken).

While the derivation of Eq. (2) from Eq. (1) was
originally done in detail for the SU(2) representa-
tion, a.nd extended to SU(3), with baryons included,
we shall show in the remainder of this section how'

Eq. (1) will follow from the Lagrangian density (2)
for any matrix representation.

The variation (sometimes called the Euler de-
rivative) of a Lagrangian density g with respect to
some parameter (P (not necessarily the pseudo-
scalar meson field P), will be denoted by 5~,Z:

Bd' " s(s„0'()
'

U is any unitary functional of the pseudoscalar
meson field:

U(fy, fP) =1+2fy,fP+ Q a„(iy,fP)", (3)

Now, if 6' is a pseudoscalar parameter which has
been normalized to be equal to P in lowest order,
it can be expressed in general as a series in (odd)
powers of P:

with

(4)
4' =(' ( ~ I .(A',f(')" ),n=2

and f is the expansion parameter, equal to the
(inverse) pion decay constant, defined by the sec-
ond term on the right-hand side of Eq. (3}. p. is
the pseudoscalar meson mass. If the P appearing
in Eq. (1) is the same as in the argument of U in
Eq. (3) (which is not necessary for the subsequent
development), the "mass term" A can be ex-
pressed formally as a. one-dimensional integral:

dU(x)xdx U (x)

The y, appears in conjunction with P not only as a
reminder that P is a pseudoscalar, but chiefly to
facilitate the future addition of baryons to the sys-
tem, which can be done in a straightforward man-
ner without altering the basic results. Note that
y, will not appear explicitly in Z~.

Since P (or, more generally, fP) is assumed to
have a possible matrix representation

and hence any algebraic function of 6' commutes
with any algebraic function of P. Further, any
functional U(iy, fP) can be written as a functional
of (iy,f(P):

U(fy, ff') = 1 + 2ky, f(P + b „(fy,f6')",
n=

(10)

and

s(s„U) BU

a(s„6',) ~" sd';

therefore, taking the variation of g~, Eq. (2),
with respect to 6, gives

with the b„ in general different from the a„ in Eq.
(3), except for b, =a, =2 as required by Eq. (4). It
is not difficult to see that for any component 6'; in
a possible matrix representation of 6'

s(s„U), sU
86. Bp 86.
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6 p(,kp = —,Tr — (B„B„U)t—(a„a„U)

(13)

This set of equations (for all i) can be put in ma-
trix form by multiplying throughout by e, and
summing over i:

6(p&p=Z &( ~(p Zp
i

i

OO n-1
=+ g (iy,f)Q b„s Q (iy, f6')"(B„B~U) (iy,f6')" " '

n= 1 NI= 0

~0 n-j,
—((rJ)p ). p (-(r f+) (&p„U)( (w.f4')-')"

n= l nt((s 0

2 40 n-J
——" (iy,f) Q b„s Q (iy,f6') —(iy,f(y}" " '

5 n 5 gU 5 (14}

From the explicit form of 6().Sp given in Eq. (14) it is clear, with Eq. (13}, that for any algebraic function
of the matrix (iy,f6'}, 6l(iy, f6') =(R, we have

a~gp6(=Q g( 2 Tr (R (B~apU) +(Bpa)(U}dt ——Tr
86'] 9U

and

(Raa,gp=g e, , Tr 6t(B„B~U)t+(B„B„U) ~ (R —
2

Tr ~ (R— {16)

or, as anticommutators and commutators:

'g8 ' Bt; BU

and

[(R, 6 il ] = -Q e;j Tr 6t, (B~B~U) +(B„B„U) 61, ——Tr S,( j. BU 8U p, 8U BA

We shall now show that the pseudoscalar meson
field equation which yields the divergence condi-
tion, Eq. (1), is

g {(U+U ), ae,gp) = 0,

which is a consequence of the unitarity of U:

(UU )= (U U)=0.
96', (23)

with the variational parameter 6'c chosen as the
imaginary (pseudoscalar) part of U, normalized
to the pseudoscalar meson field in lowest order: a(U- U')

=4iy, fe, .96'c) (24)

Now, for the choice 6', =6'c, as given in Eq. (20),

6'c = -iy —(U- U ).1
54 (2o)

We can therefore obtain from Eqs. (21) and (22)
The proof follows simply by using, for the quan-
tity 61 in Eq. (17), half the real part of U, ~(U+ Ut)
and noting that

U+U ' 86'c] =iy,fb;, U7,

()

j I
(U"-U

( t) BU B(U —U )
' ef'; 86',

(21)

(22)

(U+ U ), = —iy,f(e(, U j .BU
' B6'c; (26)

The relation (25}and its conjugate (26) are the key
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to the derivation of the divergence condition; using
them in Eq. (17) with at = &(U+ U }, and putting the
result in matrix form by noting that, for any ma-
trix M we have we get

z) Tr e)M =M,

2

'((()'U'), ()a(' ) =(&'.
q

(((),(&pB„())'I—(()', (&,s())))— v. ( f ()',

~
I.

lt is evident that, as the "mass term" A, Eq. (5),
can be written as

1 1
ga = —4SR„,SR„„—ym'R„R„, (36)

&= /ysPP
A=- —

2 x(U)U'dU,f' a
(29)

with

R)(„=a)( R„-a„R)(—f g g[R)(,SR„], (37)

and hence

BA . 1
U, —= -2iy5 —P' aU) 'f (30)

[x commutes with U(x), and UU" =1]. We have
achieved the desired result by proving the identity

4{(U+U~), 5(p,Z~j= -a„J~—p'P, (31)

g being the vector-meson coupling constant.
Again, a trace is understood to be taken on the
right-hand side of Eq. (36). Starting with the
Lagrangian density (36), we can obtain the sub-
sidiary condition (34) from the field equation (35)
easily. The variation of Eq. (36) with respect to

ls

with 5~ ~=a„R„„—i-', g[R„,R„„]-m' R„. (38)

Z„, =+fy, —(( U', a„U] - ( U, a„U')), (32)

IH. VECTOR MESONS, CVC, AND COVARIANT
DERPf ATIVES

The novel aspects of the material in the previous
section dictated a rather detailed development;
the vector -meson formalism, on the other hand,
is well known, and we shall in this section content
ourselves with a resume to introduce the reader
to the background and notation used for the intro-
duction of axial-vector mesons in Sec. IV.

%'e use the symbol %& to denote a matrix repre-
sentation of vector mesons with nonzero mass m.
It can then be shown' that, in order for the sub-
sidiary condition

(34)

to follow from the field equation

(35)

the vector -meson Lagrangian density gssmust be
given by

and 6'c given explicitly by Eq. (20). The diver-
gence condition (1) holds as a consequence of the
field equation

56,gp =0.
It is hoped that the straightforward mathematical

development of this section dispels any mystery
about the basis of chiral dynamics" "and its
relationship to PCAC.

Let us introduce the "covariant derivative, "D„,
the properties of which will be discussed further,
acting on%, or 8k, &.

D„SR= a„R-f —,
'

g[SR„,R],
where %stands for either R„or %„&. Then the
variation (38) can be written as

5~ ~=D„SRp~ —m SR„. (40}

%e can now write the covariant derivative of the
variation (40) as

D„aaa Z~=D„D„R,„—m'D„R„= —m'a„R„.

(41)

This last step follows from the fact that

D~D„Ãp~ = 2[D~, Dp] R„~ = —i ~g[R~„R„~]=0.

(42)

From Eq. (41) it is clear that the subsidiary con-
dition (34) follows from the field equation (35).
More generally, in the context of field-current
equivalence, the subsidiary condition represents
a manifestation of conservation of the correspond-
ing vector current.

Enlarging our considerations to a system of
interacting fields described by a total Lagrangian
density 2, we note that the subsidiary condition
(34) will follow from the field equations in general
only if

where the "source current" S„ is defined by
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KJs Z =D„SR„„—m'3g„+3„
P

9K' (Zi —2~) ~

If we define a related vector current J„by
J„=S~ —i g [5R„K„~]

then Eq. (44) becomes

&gg„g =a, Sg„„—m'+~ +J~,

and taking the ordinary divergence of Eg. (47)
gives

Bp5~ 2 = -m BpSR~+B„J„

so that the field equation 5M 2 =0 yields

m'~„~ ='u J

{45)

{48}

(47)

(48)

(49)

Dp (PA+B PZ) (D(PA}PB PZ +PA(Dp B) PZ

+ ~ ~ ~ +P P ~ ~ ~ (D P ) (53)

Note in particular that the commutator in, say,
Eq. (51}is distributive.

3. It leaves invariant the form of the field equa-
tions for the various representations upon which
it acts. For example, the replacement of the
ordinary derivative of 6' by the covariant deriva-
tive given by Eq. (51) in a Lagrangian density L (a)'
to give g(D) results in a variation with respect to
(P of

aZ, (D) aZ, (D)
ad' " a(a d')

a Z (a ) . , a 2 (a ) a z (a )
ad' L

"' a(a„d') "a(a d'}

and the subsidiary condition (34) follows from con-
servation of the vector current J&, or vice versa.
As has been shown, '" in order for the total La-
grangian density 8 to lead to a conserved current
J„, the interactions with the vector-meson fields
must be introduced via a covariant derivative 0„,
which replaces the ordinary derivative in the
Lagrangian density without the vector-meson in-
teractions. This covariant derivative is defined
in general' as

D~ =9~ -zgT SR~,

where the components T; of T are Hermitian ma-
trices (of the same order as the vector-meson
representation) representing the generators of the
corresponding components of the conserved cur-
rent, acting upon the field to which D„ is applied.
For our present purposes, it will suffice to as-
sume that the fields of interest (the representa-
tions of the pseudoscalar and axial-vector mesons
a.s well as the vector mesons) have the same trans-
formation properties under T, so that, in particu-
lar,

az(a) ag(a)
ad' " a (a„d')

aR(a) aZ(D)
a(P " a(D„d') (54)

Zz = —
2 (DqU)(DqU) —gp A (55}

from the "covariant divergence condition"

—p, P =D~J~5

which now replaces Eq. {1),with

(58)

Thus the covariant derivative neatly replaces the
ordinary derivative not only in the Lagrangian
densities, but in the consequent field equations.

The addition of vector mesons into the nonlinear
system of pseudoscalar mesons treated in the
previous section is now simple. Owing to the
three properties discussed above, the replace-
ment of ordinary derivatives of P, 6', or U by
covariant derivatives throughout as demanded by
CVC allows the derivation in SU(2) (see Ref. 7) of
the Lagrangian density

Dqd' =aqd' —i 2 g[3g„,d'], (51) Z„= -iy, —(( U, D„U")—[U', D„U) ) (57)

corresponding to Eg. (39), with d' any pseudosca-
lar parameter defined in Eq. (9}. lt will then fol-
low that

D„d~„& —i 2 g[d', 5&pS] = —m'a„3g„. (52)

There are three salient features of the covariant
derivative:

1. It establishes a relationship between the
vector-meson interactions and the generators of
the conserved current such that the subsidiary
condition (34}and CVC are interdependent, as
explained above.

2. It is distributive, i.e. , for a product of field
representations P&P& ~ ~ P~ we have

The proof of Eq. (56) starting with the field equa-
tion from the Lagrangian density (55) likewise
proceeds in a straightforward manner.

IV. AXIAL-VECTOR MESONS, PCAC, AND CHIRAL
COVARIANT DERIVATIVES

Using the ideas established in the previous two
sections, we shall now add axial-vector mesons
to the system, and the full oower of PCAC will be
revealed.

First, in the absence of pseudoscalar mesons
both vector and axial-vector current are assumed
to be conserved (nonconservation due to "mass
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Again y, is used not only to separate the axial-
vector from the vector parts of %&, but also with
a view toward the inclusion of baryons in the for-
malism. A trace over Dirac space as well as over
the "internal" representation space is then as-
sumed in Lagrangian density (36). The formalism
in Sec. III remains unchanged, although one should
keep in mind that the (matrix) equations have both
Dirac scalar and y, parts, and there are therefore
really two equations in each. In particular, notice
that II~„defined by Eq. (37) can be separated into
"1'*and y, parts as

3g~„='Up, + y, Cq, , (59)

symmetry breaking" is discussed in Ref. 6). The
requirement that the subsidiary condition (34) be
obtainable from the field equations for both the
vector meson 'U„and the axial-vector meson 8„
then yields the result'6 ' that the combined La-
grangian density must be given by Eqs. (36) and

(37}, with the replacement

(56)

Zip = —
6 2 (B~U —i ~g[&q, U]+iy, g g{8q, U))

&&(B„U —i —,'g['U„, U ] —i y, —,'g(8„, U }). (65)

Again U is the general nonlinear unitary pseudo-
scalar-meson functional as in Eq. (3). The lengthy
derivation of the above form of il„ for an SU(2)
representation of the mesons is relegated to the
Appendix to avoid interrupting the flow of thought
at this point. %e can demonstrate readily, how-
ever, that for any matrix representation the La-
grangian density (64) with (65) yields field equa-
tions giving the CVC and PCAC conditions (62)
and (63}. For this purpose, we introduce the
"chiral covariant derivative, "

S&, defined acting
on a pseudoscalar functional U as

S~U=B~U —i 2g['Uq, U]+iy, gg/8q, U}

= D~U+i y, g 8,~U,

with the covariant derivative D„given by Eq. (61);
the adjoint operation S„ is then expressed by

(S~U) = S~ U

and that now the variation with respect to R„ is

(60)
=B~U -i ~g['U~, U ] —iy, gg(8~, U }
=D~U —i y, gU ep . (67)

Similarly, the covariant derivative in Eq. (39) be-
comes

D„II=B~3g—i —,'g[%„,3}I]—y, i —,'g[8„,%]. (6l)

The kinematic (derivative) part of the pseudo-
scalar meson Lagrangian, with interactions, can
now be written as

Finally we are ready to consider the full system
of vector, axial-vector, and pseudoscalar mesons.
The fundamental problem to be addressed is that
of finding the most general form of the total La-
grangian yielding field equations which reduce to
the subsidiary conditions

(62)

(63)

with a constant 5, and p.
' being the pseudoscalar

meson mass squared as in Sec. II. Equation (63)
is the PCAC condition in our field-equation form,
and is as powerful a statement as the correspond-
ing CVC condition, Eq. (62). It can be shown that
the required form of the Lagrangian density, as-
sumed to be nonlinear in the pseudoscalar meson
field and local (restricted to terms containing not
more than two vector indices in the pseudoscalar-
meson part and not more than four in the vector-
meson part} is

(66)

(A trace is assumed to be taken on the right so
that g„ is a scalar. ) Let us examine the proper-
ties of the chiral covariant derivative S„, in par-
allel with the properties of the covariant deriva-
tive D„discussed in the previous section:

1. S„has been defined in such a way that the
couplings of the vector and axial-vector mesons
to the pseudoscalar meson functional required by
CVC and PCAC have been "built in. "

2. Q„ is neither a Hermitian nor a distributive
operation like D„; indeed, mathematical manipu-
lations involving S„are such as to make very
questionable its association with the usual concept
of a derivative. However, there is one relation
it has with respect to the covariant derivative that
makes the formalism of Sec. II extendible to the
full meson system: For any two quantities X and
F having the same order representation as 3R„, it
is easy to see, using the definitions (66}and (67),
that

Z =X~+X~ —
& p.'A, (5)&X) V+X 5)& Y'=D&(X Y'). (69)

with the pseudoscalar mass term A. the same as
in Sec. II, and

3. Just as with the covariant derivative D„, the
form of the pseudoscalar-meson field equations as
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given in, say, Eq. (13) or (28) will remain the
same, except for the replacement of the ordinary
derivative a„by the chiral covariant derivative &„
throughout. Thus, starting with the Lagrangian
density (64) with (68), which we can write as

i' = 2 „+Z(S), (70)

where Z($) indicates that Q» has replaced a„
everywhere in the pseudoscalar part of 8, we can
proceed as in Eq. (54), to arrive at the conclusion
that

ag(a) t ag(s) ag(s)
a6' "a(a»6')» a(s»6')t

'

In particular, with Z given in terms of the pseudo-
scalar functional U, we now have, for a compo-
nent6', of 6',

= iy, —((U, (~„S„U)'}—(U', u„X&„U})

aA
'] ' aU)

In addition to the anticommutator (73), we need to
compute the commutator of 5(),Z with 6'c for use
in the CVC subsidiary condition according to Eq.
(52). Starting with Eq. (18) with a„a„U replaced by
S» X)» U and 6t = —,'(U —U ), we use

aU a(U —U~)
(74)

Eq. (13), we obtain the pseudoscalar meson equa-
tion as

—,'((U+ U'), 5,.Z}

5 &p g = —
2

— (5)»X)» U) —(X)»Q» U)

8U 8A
2 86') BU

(72)

rather than Eq. (13) [traces are assumed on the
right-hand side of Eq. (72)].

The above features of the chiral covariant de-
rivative make possible an elegant formulation of
the field equations for the total meson system
which yields a combined vector and axial-vector
subsidiary condition expressing both CVC and
PCAC. First, notice that the results of Sec. II
follow directly with the replacement of the double
chiral covariant derivative, S„S„U,for the ordin-
ary derivative ap»U; starting with Eq. (72) replacing

aUt '

g a(U —U )
' a6', J ' a6';

obtained from the unitarity of U, Eq. (23). Thence,
with the variational parameter 6' =6'c to get Eq.
(24), we put the result in matrix form via Eq. (27)
et seq. :

g[(U —U },5e,k] =iys —([U, (BB»U)»]

+ [U ~»~»U]) (76)

(U commutes with aA/aU). To get the combined
pseudoscalar -meson field equation contributions
to the subsidiary conditions, we take

BA
U ' BU

= —iy, —[Ut5)»Q»U —(5) S» U) U] —iy52pf,&4f »»»»
—,'(((U+ U'), 5„S}—[(U —U'}, 5„Z])= ,'(U'5„Z, —+5„ZU)

(77)

The contributions to the vector and axial-vector
meson field equations from the interactions with
the pseudoscalar field given in Zv, Eq. (65), are

~ =&v &v+~5&a &v

=i g, [U'S),U-(a)„U)'U].

and

6,„Z,=i g; ([U', S„U]+[U, (S„U}']) (V8) Using the relation (69), we have for the covariant
divergence of this current

5, Z„=iy, g, ((U', m„U}-(U, (m„U)'}).
D»S» =i » [U S»&»U —(SK)U») »U]. {81)

(V9)

The quantity (2f/g)ae Z„ is the generalization of
the axial-vector current defined by Eq. (32), al-
though it cannot now be regarded as the source
current for the pseudoscalar meson field. Instead,
we construct a "mixed parity" source current 8„:

Now comparing with Eq. (77}, we see that the
altered pseudoscalar-meson variation of the La-
grangian density is

g(U" 5p,Z+ 66,ZU}

= —y, —D»S» —iy, ~p, 'f U, —. (82)
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Further, the combined vector and axial-vector
field equations can now be written as in Sec. IG
in the form

6u Z+@,6c 2 =DpSR„q —m'3Rq+S„, (83)

with S~ given by Eq. (80). The combined subsid-
iary conditions, referring to Eq. (41), are then
derived from

D„(6u„g+ y, 6 c 2) = —m's„ggq +DqSq . (84)

But the covariant divergence of the source current,
D„S„, is related to the pseudoscalar-meson field
equations through Eq. (82); thus

If we make the a Pnori valid interpretation of the
field quantities in Z as corresponding to the phys-
ical particles, it is evident that the last term in
Eq. (93) contributes to the effective mass of the
axial-vector meson. This term cannot be elimi-
nated by a counterterm in Z~, or else the PCAC
condition (92) will not follow; it must be regarded
as an intrinsic mass increase due to the existence
of the pseudoscalar meson. Indeed, if the PCAC
condition is taken at face value, we must conclude
that

g 2

m '=m '+
Q

D„(5u 2+@,5c Z)+y, —(U 5p,Z+6p, ZU)

= —m's„('U„+y, 8q) —i ,gp-' U, —. (85)

If relation (30) is used for the last term in Eq.
(85),

s 8 = —(mc -mv ) 2p.2 a if2
m 'U

(95)

where m is the axial-vector meson mass, m~ is
the vector-meson mass, g - 6, and 2f 1.4g -'.
Thus, another way of expressing the PCAC con-
dition, independent of the coupling constants,
would be

then the field equations

5g Z=O,

5g 2=0,

56,g =0

yield the combined subsidiary condition

(87)

(88)

(9o)

Another possible interpretation of Eq. (93) is
that the field 8„contains a mixture of the "physi-
cal" axial-vector and derivative pseudoscalar
fields, " "with open parameters governing the
amount of mixing. The latter interpretation neces-
sitates pseudoscalar meson couplings with more
than two derivatives, and seems to lead to more
disorder than we presently wish to consider.

V. DISCUSSION

whose "j." and y, parts are

—m'e„~„=0,

—m9 6 ——p P=O.2 g
2f

(91)

2 Tr(DqU'D~U
1

+ 2iys g8qU DqU +g It~8„). (93}

Therefore Eq. (85), which follows from the meson
Lagrangian (64) and (36) with (58) and (59) regard-
less of whether or not the field equations (87)-(89)
are satisfied, embodies the essence of the rela-
tionship between the field equations and the sub-
sidiary conditions (91) and (92) expressing CVC
and PCAC. It is clear that PCAC fixes the a&al-
vector meson couplings in the same fashion that
CVC fixes the vector-meson couplings.

There is an additional noteworthy feature of the
Lagrangian density (64}. The derivative part of
the pseudoscalar meson Lagrangian density, 8„,
can be written as

The formalism of the preceding three sections
has been presented in the most straightforward
manner and in the context of the most uncompli-
cated system which yields the basic results, in
order to concentrate on the basic idea: that CVC
and PCAC alone determine the form of the meson
Lagrangian density independent of any particular
group-theoretical representation, and that the
two concepts can be formally combined in an ele-
gant fashion. However, before much contact with
reality can be made [in, for example, Eq. (94)],
this skeleton must be fleshed out with addition
considerations, such as the inclusion of differ-
ences among the various meson masses (or cou-
pling constants), loosely referred to as "symmetry
breaking. " Our approach can easily accommodate
mass differences, which leads in a natural manner
to precise expressions for the amount of noncon-
servation of strange vector currents (see, for
example, Ref. 8}. Another obvious direction of
research involves the additions of baryons to the
mesons, the framework for which has already been
constructed. ~" By means of the application of
general covariant derivatives one may extract the
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so-called D and F parts of the vector and axial-
vector baryon currents.

Lastly, the combined vector and axial-vector
interaction employed here lays the groundwork for
a possible unified description of strong and weak
interactions which is not tied to any group-theo-
retical model. In fact, differing representations
can be handled in our formalism through the sim-
ple expedient of embedding them in a common in-
clusive (matrix) representation, without altering
the fundamental results.
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APPENDIX: DERIVATION OF THE MESON LAGRANGIAN
DENSITY FROM CVC AND PCAC IN SU(2)

We shall here construct a general Lagrangian
density for a system of vector (p ), axial-vector
(Ct), and pseudoscalar (w) isotriplet mesons, the
pertinent terms of which have undetermined co-
efficients that are assumed to be in general func-
tions of the w field via the isoscalar m', and we
shall show that CVC and PCS determine all the
coefficients completely, up to a unitary function
U of m and a constant identifiable as the pion cou-
pling constant f.

The Lagrangian density can be written as

(A1}

where it has been demonstrated that CVC (and,
equally, PCAC in the absence of the pion) requires
that the p and 8 Lagrangian be given by

Q =c} Q /vs +gP XQv +ga XPv ~ (A4)

Furthermore, the p-meson couplings must occur
through the vector covariant derivative

bpg+gp~ Xm.

We are therefore presented with the general
pion Lagrangian, with interactions,

Z. = —,'(1 2b)(a„, +gp„x w}

+ c(TT ' a 1T) —g(p, w —2TT)

+ Tw(a 1T+gp xw) ~ 8 ++8

+P(w a„w)(w. 8„)+B(w ~ 8„)',

(A5)

(A6)

where the variations mean

where f2, b, c, a, p, A, and 8 are all assumed to
be functions of m and have been chosen to corre-
spond to the notation of previous work' involving
the pion with the p field; in particular, in the
absence of interactions a(0) =b(0) =0 in order to
obtain the free pion Lagrangian. The variations
of the Lagrangian density Z with respect to p&
and 8„ are

g = (a„+gp„x)p„+g8~x 8„—m p

y CT g w x 8 —g ( 1 - 2b )w x (a +gp ~
x )TT

(A7)

and

5c„Z = (a„+gp, x }8,„+g8„xp„„—(m' —2A) 8„
+ n(a„+gp x)w+p(w a„w)w+2B(w ~ 8„)w,

Zq c = —&(p„„'+8„,') ——,'m'(p„'+8„'), (A2)
94' Bg

P}1

(A9)

P}fv
= d p Pv -~v Pp

+8'P Pv +g 6p ~v (A3)

with implied summation over the Greek indices,
and where

etc. For the pion variation, we eliminate the non-
independent term w ~ (a„+gp„x)'w by using the
quantity

1 —2b
= (1 2b)(a„+gp-„x)' 4wb'(w ~ a„w)(a„+gp„x)w+, , 2(b'- c)a„(w ~ a„w)w

(1 —2b)2c'+ 6b", 1 —2b 2

l —2b —2b'm2 " 1 -2b - 2b'm~

—Tw (a
TT

+ gP TT

x ) 8~ + [ ( P —2 tw )1T '
aTT 11 + 2Bw ' 8~ ] 8~

(1 —2b)p+ 2b '
CT 1-2b 2b'

1 —2b —2b'w " " 1 —2b —2b'w2

(1 —2b)2B'+4b'B 2 (1 —2b)2 '
2Twb' +Tw

+
1 2b 2bg w (TT

8TT ) 'w +
1 2b 2b~ 2 (apw +gpTT 11} 8pw, (Aso)
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A prime in a coefficient indicates differentiation
with respect to the function variable, m'. To form
the subsidiary condition for the I field that we
identify with PCAC, we construct the quantity

d,S=5( ')g,S (8 gp x)b S g8 xb S (All)

with 5(w') an as yet undetermined function of the
pion field, and the relation of the last two terms

Ag = —m'eq8q —5P, 'w, (A12)

with 5 some constant. Using expressions (A10),
(A7}, and (A8) to write aS explicitly, we get

established by CVC. If the m, p, and 8 field equa-
tions are satisfied hS vanishes; we therefore
demand that it be identically

j. -2b 2
EcC PPl BJJ8P g 2Q 2b

+[a+(1 2b)b](s +gp x) w+[(2a'+p) 4b'5](w ~ 8 w)(e +gp x)w

2(1 —2b), ', 2(l —2b)c' +8b"
L

+[2A —ab](s~+gpq x)8q+[4A' —(2a' -p)5](w ~ sqw)8q

+[-g'a+2B5](w 8„)8„+ g'a+
1 2b 2b, , 2A'5 8„'w+[2B+g'(1-2b)](w 8„)(8„+gp~x)w

(w ~ 8~)w+ 4B'+
2 2b, (~ —2a')5 {w ~ s~w)(

(1 —2b)P+2b'a, 2b'

+ -g'(1 —2b)+, 2 5 8q ~ (Sqw+ gPq xw)w+, 2 5 (w 8„)'w. (A13}
(1 —2b)2a'+2b'a (1 —2b)2B'+4b'B

(1 —2b)5' = 8." —g'(1 —2b)w',

a= —(1-2b)b,

P = 2(1 -2b}6',
A = —w'(1 -2b)5',

B = ——,
' g'(1 —2b),

(A14)

(A15)

(A16)

(A17)

(A18)

For (A12) to hold, all of the coefficients in square
brackets must vanish. The twelve consequent
equations yield, with some redundancy, the follow-
ing solutions for 5, e, P, A, I3, c, and u in terms
of the function b and the constant $:

$1
c = b'+ {1—2b —2b'w') —, (A19)

2, 8:(1-2b —2b'w2)

8." -g'(1 —2b}w' (A20)

(A21)

Z„can now be written as

With the relation of the constant 5 to the pion cou-
pling constant f

S„=—q(1 —2b)[(s w+gp xw) -g (w x8 ) ]—

—[1 2b 4f'(1 2b)'w'1»'(S„w+gp„xw) ~ 8„

g 2b'-4 f '(1 —2b)'
~ 2--' 2%2-2

2f [ —2b -4f'(1-2b)' ']'" (A22)

with c and a the same as for the pure pion case. To put the results {A22) in "unitary" form, we define two
other functions of m', p and 0'

p=(l-2b)"',
o =(1 4f'p'w')"'= -[1-4f'(1 —2b)w']'"

so that

g g o'
5=5 —= ——

2f p
'

(A23)

(A24)
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and it can be verified that the Lagrangian (A22} can be written as

, [iy,fp(s +gp x)v+iy, ago 8 +a'(v ~ s v)+2iy, fp'(w ~ 6 v)w -gfp(v ~ 8 }]'If 4 2

&&[-iy fp(s„+gp& x)v iy—, ~ g&r 8„+o'(v ~ s„v}-2iy, fp'(v- s„v)s -gfp(v 8„)]——,'(p, 'w'-2a). (A26)

The "unitary" form of S„given in Eqs. (64) and

(65) of the text, follows by setting

U =o + 2iy, fpw .

The matrix form of + using U, as given in the
text, is derivable from CVC and PCAC as above
for any SU(2) group (not just isospin).
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