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The nonlinear-group-realization methods of Coleman, Wess, and Zumino are extended to include the

effects of space-time symmetry in a simple 2-dimensional model. A coset decomposition of the

4-dimensional Lorentz group is made with respect to the subgroup generated by a Lorentz boost and

one internal rotation. Nonlinear Goldstone fields are identified with the coset parameters in this

decomposition. The physical properties of these fields are determined by the subgroup. Charge pairs

+ q are found which are not scalars under the Lorentz boost. Physical momentum and energy

operators are introduced. Covariant derivatives are then calculated and the phenomenological Lagrangian
is discussed.

I. INTRODUCTION

Although chiral symmetry is believed to be an
approximate symmetry of nature, no parity
doublets are observed. steinberg' resolved this
difficulty by suggesting that chiral symmetry is
not an ordinary symmetry such as isospin, which
is realized by a multiplet structure, but rather a
dynamical symmetry which is realized by the
appearance of a set of massless Goldstone parti-
cles. These particles form a nonlinear realiza-
tion of the dynamical symmetry. The basic dif-
ference between an ordinary and a dynamical sym-
metry is that the ordinary symmetry is character-
ized by conservation laws and relates processes
involving fixed numbers of particles, while the
dynamical symmetry does not produce conserva-
tion laws but relates processes involving different
numbers of these Goldstone fields." This is made
explicit in the nonlinear formalism. Also the non-
linearity of the Goldstone fields implies that the
vacuum must be degenerate in the dynamical-sym-
metry limit. The physical vacuum is thus not in-
variant under the higher-symmetry group, but
only under some physically exact subgroup of the
symmetry, and thus provides the mechanism for
spontaneous breaking of the higher symmetry.

Much of the previous work on nonlinear group
realizations has concentrated on the internal
chiral-symmetry groups SU(3) x SU(2) and
SU(3) x SU(3). The effects of space-time symmetry
were introduced only by requiring the Lagrangian
to be a Lorentz scalar as well as chiral invariant.
Hopkinson and Heya4 considered nonlinear realiza-
tions of the Poincare group itself. Since the
Poincare group is an exact symmetry rather than
a spontaneously broken one, this approach was
unsuccessful. The present paper will investigate
the effects of space-time symmetry on nonlinear
group realizations by requiring the dynamical-

symmetry group to contain the Lorentz group as
part of its physically exact subgroup. The non-
linear realization is required to become linear on
this physical subgroup. Salam and Strathdee'
treated the conformal group in this manner. Their
results will be compared with the results of this
study later. In this paper the methods of Coleman,
Ness, and Zumino" for constructing nonlinear
group realizations and invariant Lagrangians are
applied to a simple 2-dimensional model.

The groups originally used by Coleman, Ness,
and Zumino were compact. This compactness was
used, however, only to prove the uniqueness of
the nonlinear realization given by the canonical
form developed by Coleman et al.4 The use of
this canonical form for noncompact groups still
produces a valid nonlinear realization, but this
particular nonlinear realization now no longer
classifies all possible nonlinear realizations of
the group. The problem of uniqueness will not be
considered in this paper.

Il. METHOD OF CONSTRUCTING NONLINEAR
GROUP REALIZATIONS

Let G be a dynamical-symmetry group generated
by the set of generators (H„,A, ) which satisfy
the commutation relations [A„A, ]C (H„),
[Az, H~]C (A, ), and [H&, H~]C(H„). The set (H„)
generates a subgroup II of G which one identifies
with the unbroken physical symmetry of nature.
Now make a coset decomposition of the group G

with respect to the subgroup H so that any element
g in G can be written as

j ( ~ A ~itf ~ 8

The action of any transformation g, in G on a coset
representative again gives an element of the group
G and so can be written

iC ~ A &SC' ~ A &u"e
~08
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and

g.:$- 5'(h, g.) (2.4)

where $'=('($, g, ) and ii'=u'(g, g, ) are, in general,
nonlinear functions of $ and go. Nonlinear Gold-
stone fields are identified with the coset parame-
ters $, and as fields the P, are made to be functions
of space-time. This is not due to any property
of the dynamical-symmetry group, but is an added
requirement so that one may meaningfully speak
of derivatives of the fields and impose Lorentz
invariance on the resulting Lagrangian. Let i)I be
any other field in the theory which belongs to a
known representation D& of the subgroup H. Thus

cia 'H~ H~eis 8 qD. (eis'H)y (2 3)

where the colon means "acting on." Then a non-
linear realization of the group G is formed by E

and i(i such that

Q =Qo.

Since the above expression for E' is true for any
value of the parameter g, let $ be small. Now let
uo also be infinitesimal. Then upon expanding the
exponentials one finds that

i$'A =i) A+ [$ A, iio H]

=iJi[f., +iii, D... (H )](,jA. . (2.8)

Therefore,

The evaluation of the three exponentials
e'"'"e' ' "e '"0'" in (2.7} involves only commuta-
tors of the form [Ai, H, ]C:(A,), so that one may
identify

i K' 4 iuo ~ 8 i C A -iuo'0

[ is'(K, g&) It] ~~ (2.5)
[] A, ii, H]=-[[ii,.D„, (H.)] ~, ]A, . (2.9)

The nonlinearity in the transformation of g under

g, is contained in the nonlinearity of u'((, g,). The
vacuum state is identified as the stability point
of the subgroup H so that

I cH~h: iO&- iO&. (2.6)

uo' +ej C ' A, +jup'8+ j $ ' A~- juo" H& juo' H

~j 5 ' ~ Aeiu' ~ H (2 7)

When the transformation g, on the coset repre-
sentative ej ~ '" is restricted to the subgroup H,
the nonlinear transformation $' reduces to a
linear one, $'=D&(go a H)t', where the repre-
sentation of the subgroup Di to which the g fields
belong is determined by the structure of the group
G and the subgroup H. Thus the physical proper-
ties of the Goldstone fields are determined by the
group and cannot be introduced arbitrarily. The
representation D& can easily be calculated using
the algebra of G. Let e'"0'" be an arbitrary trans-
formation in the subgroup H:

ja .A i g ~ A ei g '(C,a) ~ Aeiu'(C, n) 8 (2.10)

determines the transformation function ('. The
commutation relations of the fields with the gen-
erators A are given in terms of this function:

gpss

[A, 4]=i s
" (5, o')

~&m a=o
(2.11)

For algebras with a simple structure the nonlinear
commutation relations can be determined exactly
by letting a become infinitesimal and by solving
the following infinite series for Q„= (8$„'/sa )n:

One can thus calculate the representation D& for
the nonlinear fields by knowing only the commuta-
tion relations of the coset generators with those
of the subgroup.

The nonlinear commutation relations of the Gold-
stone fields with the coset generators are de-
termined by restricting the transformation g,e 6
to the set of coact representatives ej '". Then

in A+[in A, i~ A]+ —,[[ia A, i~ A], i~ A]+ [[[in A—, i( A], i( A], i~ A]+ ~ ~ ~

" a H + iQ A+ —[iQ A if„A]+ —[[iQ A i) A] i] A].+ ~ ~ ~
l ~Q~ 1 I

tN 2 ~

(2.12}

If the algebra is not simple enough for the above
equation to be solved explicitly, one can determine
the transformation functions $' approximately by
applying the Baker -Campbell. -Hausdorff formula

pceD = exp( C + D + —,
' [C, D] +,—', [[C,D], D]

—& [[C, D], Cl+ ]~~(2.13)

twice to evaluate the expression

jg +A j{X~ A i g ~ A -ju'~H

The resulting coefficients of the generators H
determine a set of simultaneous equations for the
u' in terms of $ and a. The coefficients of the
generators 3, determine $' as a function of E, e
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and u'. Although tedious, this approximation can
in principle be carried out to any order in E.

A Lagrangian invariant under the dynamical
symmetry group G is constructed out of $ and g
by first constructing covariant derivatives
D„$, D& P which have transformation properties of
the same form as the P field. Thus one wants

go: D„g, D, ~
(e'" 's) Dq$~

and similarly

go'. Dqg, D,'n (e " '
)

Degas

.
Then by making the Lagrangian a function of only
these quantities and explicitly invariant under the
subgroup H, the Lagrangian is automatically in-
variant under the total group Q. Thus g
=f (D„(,D„g, g). The ( fields do not transform in
the above manner and thus can only appear in the
Lagrangian as part of the covariant derivatives.
The covariant derivatives D„g and D„g are calcu-
lated by evaluating the expression'

e "s-„e""=is„(g+ —'[8„~ g, ] z]

i3
+ —[[8 g A $ A] 5 A]+'

(2.14)

Then D„$ =p „and v„gives a correction to the
ordinary derivative of g, D„f=S„tt+ is„D&(H)g.
The nonlinear fields $ only appear in the Lagran-
gian along with their derivatives 8„$ and thus no
mass term is possible. Also, since D„$ and D„g
involve nonlinear functions of $, terms such as
D„$D„$ or D„gD„g relate processes involving
different numbers of the nonlinear fields $. In the
phenomenological approach' the amplitudes for
these processes are calculated by evaluating all
tree diagrams, Feynman diagrams containing no
internal loops, for a given interaction. Higher-
order corrections are assumed to be already in-
cluded in the physical coupling constants.

HI. 2-DIMENSIONAL MODEL

Space-time symmetry is put into a simple 2-
dimensional model to investigate its effect on the
properties and couplings of the Goldstone fields.
Let the dynamical-symmetry group be the 4-di-
mensional Poincare group generated by the usual
Poincare generators {P„,J,K„} (p = 1, 2, 3, 4;
m, n=1, 2, 3). This group is chosen merely for
convenience since the properties of the Poincare
group are well known, and should not be inter-
preted as the physical Poincare group. The exact
physical symmetry in this model is generated by
the set {J'„K„P„P,},where P, and P, are mo-

mentum and energy operators, respectively, K,
generates a Lorentz boost, and J, generates an
internal rotation. Thus this example describes a
space in which there is one space dimension and
one time dimension, plus an internal charge. If
the nonlinear formalism is straightforwardly
applied to this model by making a coset decompo-
sition of the 4-dimensional Poincare group with
respect to the above subgroup and then associating
Goldstone fields with the six coset parameters,
one finds that these Goldstone fields must belong
to an unphysical, nilpotent representation of P,
and P,. Any operator involving transformations
on space-time may be written as the sum of two
parts, a "spin" part which acts on the functional
form of the field and an "orbital" part which acts
only on the argument of the field. The nonlinear
formalism given in Sec. II only predicts the rep-
resentation of the spin part of these operators.
The orbital part is again introduced as an ad-
ditional requirement on the fields in the same
way as dealing with purely internal symmetries.
For P, and P, to correspond to physical momentum
and energy operators, the spin part of the op-
erators must belong to the identity representation
for any field. This means that the momentum and

energy operators actually consist only of an
orbital part. Since the dynamical-symmetry group
now is interpreted as that group which described
the internal symmetries and the spin parts of
space-time symmetries, P, and Po must be deleted
from the set of generators for this group. To
insure closure of the group in this 2-dimensional
model, P, and P, must also be deleted. The dynam-
ical-symmetry group |"used for this model is
then generated by the spin parts of the usual 4-
dimensional Lorentz group generators {J„,K„}
(m, n=1, 2, 3). The subgroup H is generated only

by J, and the spin part of K,. Tlfen momentum
and energy operators may be introduced which
behave physically for all fields.

A coset decomposition of the group G is made
with respect to the subgroup H such that every
element g~ 6 is written as

g= exp[i(-8, J',-8,J, +q,K, +q,K,)]

x exp[i ( 8,J,+qQ-, }] . (3.1}

This yields

The metric chosen for G is (1, -1, -1, -1). The
Goldstone fields are associated with the coset
parameters 8„8„q„g,. The l.inear representa-
tion of the subgroup to which the Goldstone fields
belong is determined by the commutation relation

[(-8~J~-82J2+ g~K, + q2K2), (-83J~+gsK~)].
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0 -i 0 0 Ps —9 3 &3 Soy 4It'3 9 s ~s 0'oy (3.8)

( )
i 0 0 0

0 0 0

0 0 i 0

000
a(fz, ) =

0 j 0 0

-i 00 0

(3.2}

(3.3)

Po —9'o &&3 9's y 9'o —9'o+ & 13 0'3 (3.9)

where qs is the boost parameter. The fields
'p3 'pp are not scalar s under the Lorentz boost.
If the 2-dimensional space of this model is inter-
preted as a slice out of 4-dimensional space, the
Izairs (433', yo') and (rP, , zizo) = (P3', yo')* transform
like the third and zeroth components of a 4-vector.

It is convenient to investigate the nonlinear
transformation properties of the Goldstone fields
in terms of the linear combinations of these fields
which are simultaneous eigenvectors of Js and Ks.
These eigenvectors

Let the eigenvectors of Js correspond to the
physical Goldstone fields. The eigenvectors have
the form

1
P-.3z

= ~ (9'3 + 3 Po } (3.10)

(3.4)
1 + ~ (3.11)

E,'= ~ (J' +iJ,), '

E,'= (X,+ ilz, ),

(3.5)

so that

where + labels the charge eigenstates +q. The
corresponding nonlinear generators are

form charge pairs + q under the operator Js and
have eigenvalues +i under the Lorentz boost Es.
These eigenvectors are actually the 1-dimensional
irreducible representations of the 2-dimensional
Lorentz group. These single eigenvectors are not
individuaBy interpreted as physical fields in order
that a closer analogy may be made with real 4-
dimensional Lorentz transformations. The linear
combinations of the coset generators correspond-
ing to the y, b fields are

4zo E~ + rP„E„—(-8zgz-83/3+ gzICz+ z)3E3),

v=0q 3 ~

1
(E;+E;) (3.12)

Summations over the v indices are implied using
the metric (1, -1) in analogy with the 4-dimension-
al space-time metric (1, -1, -1, -1). The matrix
representations of J, and Ks in this basis are

1 0 0 0

+, +E+ zj (E3 +zEO) (3.13)

In terms of these generators E, , (a=a, fz =+i),
the nonzero commutators expressing the Lie
algebra of the group have the simple form

( )
0 -1 0 0

0 0 1 0

0 00 -1,

(3.6)
[Z3, E, ]=a3E, 3,
[Z„E,, ] =izE. ..
[E.„E. , ] = aJ,-f Z„

(3.14a)

(3.141)

(3.14c)

0 0 1 0

0 0 0 -1
-1 0 0 0

0 1 0 0

Under an infinitesimal Lorentz boost the charge
eigenstates transform in the following way;

so that the infinite series in expression {2.12) can
be summed. The resulting equations are solved
for

I

4ob g~n ~34 '
Wc, d

where a, c=+, 5, a=+i, and summations over c
and d are imlzlied. Using Ezl. (2.11}the commzzta-
tion relations of the fields y, b with the generators
E', „are
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a
[&.,z ~.~ o] = i , "

~9'c,~ a =0 ~

(3.15) [+o» Po] o 6++.i» 0'+.i]+ [&+, i» P+ ~ &]}~ (3.19}

where a, c=~, b, a=+i. Carrying out the above
algebraic procedure and expressing the resulting
series in closed form gives the following nonzero
commutation relations of the y, ~ fields with the
coset generators:

They are nonlinear and in some cases also in-
homogeneous.

The covariant derivatives of the y, , fields are
calculated using Eq. (2.14) and have the form

[E, , y, ] = i ——ln [j (z }]+1

, h—[j.(z}]Ps, o

-a, -b

(3.16)

(3.1'7)

Deeda, t
= ~P9'a, ~+ 2.@-a,-~

[i-j.(2(e., V . , }"')]

x(Coo. a So 9 »», o-p--o, -o So p»», o}»

(3.20)

where a=+ and b =+ i. The covarilnt derivatives
of the y'„ fields may be expressed in terms of
these in the following way:

for each a=+, b=si. j,(z) is the usual zeroth-
order spherical Bessel function with z =2
x (cp, , &p, ,)"' with no summation implied. Using
expressions (3.16) and (3.17}it is straightforward
to verify that the Jacobi identity

1
Do &o = ~ (Do P+, i + Do P+ ~ i }»

~ g

D

ohio

= ~ (Do 9'+
~ -i Di» 0'+

~ i }»

1
Do&.= ~ (Doe' i+Doe'- --i»

(3.21a)

(3.211)

(3.21c)

is satisfied and thus a valid nonlinear realization
of the group has been obtained. The commutation
relations of the y'„ fields with the I'', generators
are given in the terms of the above commutators.
For example,

g

Di»Po= ~ (3.21d)

The couplings of the y fields to other fields in the
theory are determined by the functions v„ in Eq.
(2.14), where

v = — sin [ )i]( s — 8 }zr ~os
L( +,-i 9- ~ i i 9+ ~ -i P9-, i 'P-, i I» P+, -i

9'+,-i P-, i

P+, » P,-i
sin' [( )ilo& & s — a ) [[(9 + ~ i 9 -» i](9-+, i l»'P-

~ -i 9 —,-i i»V+, i (3.22)

»" [(P+.-it .i} 1 ( -s 6 )pK3 2 ++,-i 0+-, i +-, i 0++ ~ -i
9 +, -i +-,i

In order to demonstrate the use of the functions
and v„K in the construction of covariant0 J'3 PK3

derivatives, consider two types of additional fields

g, and g, that one might want to include in the
model. Let g, correspond to a particle like the
pion which is a charge triplet and a pseudoscalar
under Lorentz transformations. Then

and

(1 o o)
D„(J,)= i

o o o
i

&o o -1 f

(3.25)D, (lf,)=o.
The covariant derivatives D&g, have the forms

1 sin' [(y, , ip, )' ']
Dp4'z ~pl'z +

2 ~9'+, -i p9 -, i 9'-, i p9'+, -i~
~+,-i W-, i

soio [( . )'Io][ 0'+. i 9'- ~ -i ] (~ s s )I~&
0+, i 9'-, -i

(3.26)
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Di 4i —s»4x ~ (3.2'f)

Let g~ correspond to a neutral, spinorlike particle.
This would be a A'-like particle in a model with-
out strangeness. Then

00-i 0

0 0 0 iD„(ff,) =-,'y, y, = —,
'

0 0 0

0 i 0 0

(3.29)

D„(J,) =0 (3.28)
where y„y4 are the 4x4 Dirac matrices. In this
case the covariant derivative D„g, has the form

sm f(vi+. -» 0'-.i) l
(P42 842 2 9+,-i o'P, i 9 -

~ i PV + ~
-i)

9+e j9
sm'Ht ..i ~ . )"'J,

(S'+ i SgV' , i0-'- -~ -i Sup+, i) 'Ys'Ycfa ~

P+, f +-, -5
(3.30)

The Lagrangian is now constructed as a function
of D„cp'„, D&g„D„g„g„and i'~ which is ex-
plicitly invariant under the subgroup U(l) x I
where U(1) is generated by J'„and L, is the 2-
dimensional Lorentz group. Although there is no
spin operator in this simple 2-dimensional model,
the fact that the Goldstone fields are not scalars
under the Lorentz boost is suggestive of particles
with nonzero spin in 4-dimensional space-time.
If this 2-dimensional model is interpreted as a
slice out of 4-dimensional space, the fields y'„
(v =0, 3) transform not as scalars (spin 0) but
rather as components of fields with spin 1 or
greater. For example, they could be interpreted
as the third and zeroth components of a 4-vector
under the Lorentz boost K„or they might be the
Tp3 Tpo components of a tensor, etc. To fix the
spin, one would have to perform a similar anal-
ysis on a more "physical" group which includes
the full Lorentz group as a subgroup. For the
sake of argument, in the present simple model,
the ~I() '„ fields will be assumed to be components
of a 4-vector. The Lagrangian for these fields
will then be constructed in analogy to that for a
charged spin-1 field. Define g„'„ to be the anti-
symmetric combination and S„'„ to be the sym-
metric combination of the covariant derivatives
Dp(p fI . Thus

(A)
CP + ~ ~ 0

y+
(8) + 0 ~ 0

where summations over repeated indices p. , v=0, 3
are implied. The first four terms in the Lagran-
gian are kineticlike terms. The coefficients of
these terms are determined by the requirement
that the lowest-order term in each case reduces
to the usual kinetic term for the free Lagrangian
of p„, g» and g» respectively. The remaining
parts of the kineticlike terms represent inter-
action terms as shown in Fig. 1. For example,
all the y„seU-interactions are contained in 2
= --,' F„'„E„„.Charge conservation and Lorentz
invariance require that only terms involving even
numbers of (I() fields and two y derivatives appear.
The self-interaction terms thus represent vertices
involving 2n fI() fields, m=2, 3, . . . . The coefficient
of each of these terms is not arbitrary, but ls

and

&pe=(DpViv-Dv pg)

S~„=( D'pii+ViD„y~ ).

(3.31)

(3.32)

(C)

The phenomenological Lagrangian then has the
form

ll& II& Pf1 ll'WIi k Ill 1 Jli 1 78 Il II'4

2 ~1 (24141+ 4141) ~Bi)248+ 28L+Pv+Pv Slkl
1 + 0 0 1 ++ ag23p~ 3p~ 4i4i+ Xgs &pv+p~ 4A's+

(3.33)

KEY: ~ (P„

FIG. 1. Examples of interaction vertices contained in
the kineticlike terms {A) —2&&„&&„(B)-D&f~+D&g&,
and (C) -$gV~D
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i 3' 3r 3r 3 internal 3 orbital) ' (3.34)

Pure spontaneous symmetry breaking, however,
requires that the Lagrangian be explicitly invari-
ant under

(+Or +3r ~nr +3 internalr +3 orbital 1 (3.35)

To comply with the requirement of 2-dimensional
physical reality the Lagrangian (3.33}has been
constructed in accordance with (3.34). The terms
in the Lagrangian are constructed to be scalars
under the true physical 2-dimensional Lorentz
group containing both the spin and orbital parts
of the space-time operators. Then a term such
as Tits'„D„l(ib which involves the coupling of the spin
and orbital parts of these operators breaks the
symmetry of the Lagrangian under the dynamical
group G. This is the case, since by ignoring the
orbital part, Q treats the spin and orbital parts
of the generators as though they were independent.
Any coupling of these parts then breaks G. Thus
the Lagrangian has two kinds of symmetry break-
ing. The dynamical symmetry G is broken spon-
taneously through the use of the nonlinear group
realization methods of Coleman et f2l. to the sub-
group H which contains the spin parts of the
Lorentz group and the internal rotation. The in-
variance of the Lagrangian under the dynamical
group 6 expected for a strictly spontaneously
broken symxnetry is, however, itself broken by
the coupling of the spin and orbital parts of the
space-time operators in the physical Lorentz
group. If this is the only breaking of G which is
not spontaneous, then the Goldstone fields y are
still required to enter the Lagrangian only in the
form of their covariant derivatives and the co-
variant derivatives of the additional fields. The

y fields thus always appear in connection with a
derivative B„y, so that no mass term for fI() is
possible.

In the phenomenological approach the amplitude

completely determined by the expansion coeffi-
cients of the covariant derivatives. The two terms
——,

' mta (2l(lt'tt, + g,'ytn) and 22-32TII3III2 in the Lagrangian
are mass terms for the additional g„g, fields.
The remaining terms in the Lagrangian represent
additional interaction terms. Here the coupling
constants g~2 g2y g3j ~ ~ ~ are arbitrary, but once
they are fixed the ratios between processes in-
volving different numbers of the y fields with

gt and $2 are determined.
If the 2-dimensional Lagrangian (3.33}is to be

a model of 2-dimensional "reality, " it is nec-
essary that it be invariant under a physical
Lorentz boost which contains both the orbital and
internal parts, i.e., it must be explicitly invariant
under the subgroup

for a given process is calculated by evaluating
all tree diagrams for the process. Let a label the
vertices governed by

&=-g~pv+pv ~

1.et 5 label the vertices governed by

( 2 gl+It V +It tr + 2 gp It l/ 5 It 3 )Ilia I(I ~

and let c label the vertices governed by

(2IaPIJtr+Itn 2gbsttn3IJU)01 '

(3.36)

(3.3't)

(3.38)

d&3 ~ o9's ~OP 3 -~39'o ~39'o (3.39)

which is not positive-definite. An auxiliary con-
dition must then be introduced. In analogy with
4-dimensional linear theories, one might try to
impose the Lorentz condition on the cp,

' fields, so
that B„y&=0. This condition requires that q3

(s)

, v y, ivy
b b b b

KEYI $4
I

I IG. 2. Tree diagrams necessary for the calculation
of the amplitudes (A) lent 2st, (8) g 49r, {C) frt

+2q, {D) g ~t)&+4@, and (E) g&-/&+6'.

Figure 2 shows the tree diagrams necessary for
the calculation of the amplitudes for ttitn-2y,

g, —4p, tjr, - g, + 2', g, Q, + 4q, and g, - f, + 6q
in terms of these vertices. The first four pro-
cesses determine the four arbitrary constants

g„g„g~ and g, appearing in the above Lagran-
gian terms. Then the amplitude for the process
g,'- g', +6y is determined.

To calculate the above diagrams, the field op-
erators q'„must be appropriately quantized so
that propagator functions may be determined. The
Hamiltonian for the free part of the y„Lagran-
gian, however, has the form
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=ay', (a=a). In terms of the eigenstates of the
Lorentz boost E„ the requirement is that y, ,

~ (a=+, 6=+i) .This choice of an auxiliary
condition is not, however, consistent with the
commutation relations of the fields with the coset
generators. These commutation relations (3.16}
and (3.1'I) together require tE, „rp, , ]=-,'i for
y, ,,=y. .. which is inconsistent with Eq. (3.16}.

One possible cure for the inconsistency is to
introduce additional symmetry breaking by giving
a mass to the Goldstone fields. If one assumes
the commutation relations (3.16}and (3.17) to re-
main valid, one can easily check that with massive
Goldstone fields there is no inconsistency induced
on the commutation relations by the imposition of
the Lorentz condition. The propagator has the
usual form for a massive spin-1 field:

The tree diagrams are calculated using the usual
methods of ordinary Lagrangian field theory.
This is the approach used in chiral Lagrangian
theories of the m meson. '

Another cure is to introduce gauge fields into
the model. This approach is perhaps more sat-
isfactory from the standpoint of the original mod-
el because it leaves the spontaneously broken sym-
metry intact. %'hen gauge fields are introduced,
the Goldstone fields are not treated as physical
fields but as manifestations of a particular choice
of gauge. They can be eliminated altogether via
the Higgs mechanism. '~ " Since this approach in-
volves a significant alteration of the simple model
presented, it will be the subject of a subsequent
paper.

IV. CONCLUSION

In this paper 2-dimensional space-time sym-
metry has been introduced explicitly into a non-
linear group realization following the method of
Coleman, Vfess, and Zumino. In order to make
a consistent physical interpretation of the result-
ing Goldstone fields, the group transformations
are allowed to act only on the functional form of
the field and thus predict only the spin part of the

representation of the fields. The spin part of the
physical momentum and energy operators is re-
quired to belong to the identity representation of
these operators. The orbital parts of the space-
time operators are introduced in the same way as
for internal symmetries. The Lagrangian (3.33)
is then constructed to be invariant under the phys-
ical Lorentz group. Because of the required cou-
pling of the spin and orbital parts of the space-
time operators in the physical Lorentz group, the
nonlinear approach suffers from the same disease
as other schemes that couple internal and space-
time symmetry; viz. , additional symmetry break-
ing in addition to the spontaneous breaking of the
dynamical-symmetry group must be introduced to
accommodate the orbital parts. The only essential
difference between including the Lorentz group in
the dynamical-symmetry group and simply re-
quiring Lorentz invariance of the final Lagrangian
is the natural appearance of Goldstone fields with
nonzero spin. This is consistent with the results
of Salam and Strathdee' with the conformal group.
The Goldstone fields in that case formed a Lorentz
4-vector and a Lorentz scalar. The commutation
relations of these fields with the generators of the
dilation and special conformal transformations
were linear and contained inhomogeneous terms.
The commutation relations of the Goldstone
fields mith the coset generators in the present 2-
dimensional model are also inhomogeneous and
are truly nonlinear as expected for a nonlinear
realization of the dynamical symmetry. In ad-
dition to the spin and masslessness of the Goldstone
fields, these nonlinear transformations may make
the construction of a suitable positive-definite
free Hamiltonian for these fields difficult. This
problem is partially overcome by introducing a
small mass term for the Goldstone fields into the
Lagrangian. The problem may be fully resolved
by introducing gauge fields into the model. This
mill be discussed in a subsequent paper.
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By requiring only that conserved vector current (CVC) and partially conserved axial-vector current

(PCAC) be expressed by the field equations, a matrix formalism is developed for the nonlinear meson

Lagrangian density, incorporating both conditions in any group representation. The pseudoscalar-meson

"mass term" is given explicitly. The concept of the chiral covariant derivative is employed to treat a
general system of vector, axial-vector, and pseudoscalar mesons in an elegant manner. In the context of
invariant pseudoscahLr-meson coupling constant f {=0.7m '?) and vector-meson coupling constant g
(-6) there follows immediately a relation between the {unrenormalized) axial-vector and vector-meson

masses: mA = mv + (g/2f) .

I. INTRODUCTION

One of the major problems confronting attempts
to describe the phenomena of elementary particles
within a field-theoretical framework is the rela-
tionship of the internal quantum numbers to the
dynamical properties of fields. The aspirations of
mathematical esthetes to form a unified group
structure providing "higher symmetries" appear
to contain insufficient currency to conquer the
towering difficulties involved. It w'ould seem,
therefore, that we should concentrate our efforts
to understand the "internal" interactions of fields
on the basis of their properties with respect to
space-time with which we can deal effectively.

There are a number of beautiful and powerful
theories employing dynamical subsidiary condi-
tions or conservation laws in electrodynamics,
gravitation, ' and strong and weak interactions',
we may take as a relevant example the principle
of conservation of vector current (CVC), leading
to the so-called E-type coupling of the representa-
tive vector meson. ' The purpose of the present
paper is to point out that the power of at least one
such dynamical condition, partial conservation of
axial-vector current {PCAC),' has not heretofore
been fully exploited. We show explicitly, in a non-
linear system of pseudoscalar mesons, with vector
and axial-vector mesons, how PCAC in a form
unified with CVC can completely determine the

form of the couplings as a generalization of what
is usually referred to as chiral dynamics. These
results can be considered to be the (chiral) ex-
tension of the Yang-Mills theory', they are model-
independent, not only with respect to the form of
the (unitary) pseudoscaiar-meson functional, but
also with respect to the representation of the
"higher symmetry" (given that a second-rank
tensorial, i.e. , matrix, representation is va, lid).
Further, a relation among the vector-meson
mass, the axial-vector-meson mass, and the
vector- and pseudoscalar-meson coupling con-
stants follows directly.

In Sec. II we review the results of previous
work' ' on nonlinear systems of pseudoscalar
mesons, and give a general derivation of PCAC
from the chiral dynamical form of the pseudo-
scalar meson Lagrangian in any representation
[SU(2), SU(3), etc.]. Section III gives a brief
resume of the formalism for vector mesons, with
self-interactions, demonstrating how the supple-
mentary condition follow's from the field equations.
The vector mesons are then added to the nonlinear
pseudoscalar system with the development of the
concept of covariant derivatives; it is shown how

both CVC and {modified) PCAC are maintained.
The axial-vector mesons are introduced into the
combined system in Sec. IV; a broadening of the
concept of the covariant derivative is evolved,
along with a natural basis for the increase in the


