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The fourth-order n-n' scattering resulting from nonlinear pion-pion couplings is investigated to show

how such couphngs can be regularized by the method of auxiliary fields. Special care is required in the

choice of coupling terms involving the auxiliary fields to ensure that all quartic divergences are

canceled by the 8(0) terms in the regularized effective interaction. It is found that four counterterms

are necessary for the elimination of divergences in the process under consideration. In the limiting case

of massless pions, the m-m scattering result is free from infrared divergence, satisfies Adler's condition,

and requires only two counterterms for renormalization.

I. INTRODUCTION

Nonlinear pion couplings have attracted wide-
spread attention in recent years, and they appear
promising in the light of experimental results.
These couplings were first introduced' by postulat-
ing the so-called chiral symmetry, which how-

ever holds only for massless pions and therefore
must be broken for real pions. Subsequently, it
was shown' that the desired nonlinear couplings
can be obtained simply by imposing the condition
that the source function in the pion field equation
be a complete divergence.

The scattering matrix elements obtained from

the nonlinear pion couplings are not only highly
complicated but also involve serious divergences.
Ne shall show how the regularization and renor-
malization of such couplings can be carried out by
investigating the fourth-order m-m scattering re-
sulting from the pion-pion couplings. In view of
the complex nature of the problem, we shall not
discuss the regularization and renormalization for
an arbitrary process up to any order. But it is
hoped that the techniques described here will also
be useful for other applications of nonlinear eou-
plings.

For the evaluation of divergent integrals in quan-
tum electrodynamics the method of auxiliary fields
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was formulated, ' and it was ensured by using an
indefinite metric with appropriate initial condi-
tions that the auxiliary fields remain unobserv-
able. Not only has this method been widely used
in the past, but even in recent years it has been
extensively applied to resolve anomalies in vari-
ous applications. 4 The formulation of the meth-
od of auxiliary fields for nonlinear pion-pion cou-
plings, which we shall discuss, is necessarily
more complicated than that for the photon-elec-
tron coupling. But we shall find that considerable
simplification can be achieved by making an im-
portant distinction between the divergences aris-
ing from the leaf diagrams' and those arising from
other types of diagrams.

The m-m scattering due to nonlinear couplings
has been investigated earlier by several authors
using entirely different techniques. For instance,
Bessis and Zinn-Justine have used the nonlinear a

model based on the limit of the linear o model as
the o mass tends to infinity, while Allen and
Willey' have confined their work to the unregular—
ized calculations of the scattering of massless
pions. We shall, however, investigate the scatter-
ing for the realistic case of nonvanishing pion
mass by directly using the nonlinear couplings
and separating all divergences in an unambiguous
manner by regularization.

The isovector pion field operator will be de-
noted by m, and the pion mass by m. %'e shall
denote the space-time coordinates as x„
= (x„x„x„ix,), and take c=i =l.

II. NONLINEAR PION-PION COUPLINGS KITH
NONVANISHING PION MASS

We shall first express the nonlinear pion-pion
couplings in a suitable form for practical applica-
tions. W'e impose the condition that the source
function in the pion field equation be a complete
divergence, so that

(a„'-m') w=a„J„, . (2.1)

&= (1 t'If'), - (2.3)

1,, (t+ 2t' w')'

2f ww — 1 —4t2 w'

while t (w') can be expanded in powers of the cou-
pling constant f as

t(w')=f(1 c+,f' 'wc+, f'w'+ ~ ~ ~ ), (2.4}

c„c„.. . being arbitrary constants. Each term
in the above Lagrangian density is an ordered
product' of field operators, but for simplicity we
have omitted the ordered-product notation.

Substitution of (2.4) into (2.3} leads to the expan-
sions

a(w') = —4(2+3c,)f'm' w'

-+(6+10c,+5c,)f'm' w'+O(f'),

tr( w') = —c,f' w' —w(c, '+2c, )f' w'+O(f'),

c(w ) = —2(1+c,)f -4(2+4c, +c, +ca)f~ w

+ o(f'),
and thus (2.2) becomes

It then follows'. that the Lagrangian density for the
pion fieM is given in general by

L=- w(a„w a w+m w w)

+rr(w2)+5(w')a„w a„w+c(w')(w a w}'

(2.2)

where a(w'), h(w'), and c(w ) are expressible in
terms of a single function &( w') as

r, =--,'(a„w a, w+m'w w)--,'(2+3c,)f'm'w'-c, f'w'(a„w a„w)-2(1+c,)f'(w a„w}'

-$6+ 10c, + 5c, )f'm' w' —2 (c,'+ 2c, )f' w'(a„w a„w)-4(2+4c, + c,'+ c,)f' w'( w a„w)'+O(f ') . (2.5)

Various models of nonl. inear pion couplings can be obtained by assigning special values to c] cp, . . . .
For instance, c, = ——, and c, =~» in Model A, c, =0 and c, =0 in Model 8, while c, = —1 and c, =i in Model

C, where Models A, 8, and C have been described in Ref. 2.
We shall investigate the n. -n scattering for an arbitrary model, and therefore we shall not assign special

values to c, and c,. However, in order to simplify the calculations, let us carry out a transformation of
the pion field as

-w(l wA. ,+f 2w +A f'w~+ ~ ~ ~ }, (2 6)

which transforms (2.5) into
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L=-0(8 w ~ 8 w+m'w')-«(2+Sc +4)). )f'm'w«-(c +)). }f'w'8 w 8 w-2(l+c, +)),) f. '(w ~ 8 w)'

-+~[6 + 10c,+ Sc, + 6(2+ Sc,) ))., + 3)),'+ 6)( ]f«m '
w

« —0(c,'+ 2c, + Bc, X, + )).,'+ 2)( )f' w «B„w ~ B„w

—4[2+4c, + c,'+ c, + (4+Sc,) )),, + A.,'+A ]f«ww( w ~ B„w}'+O(f') . (2.'I)

A., = -(1+c,), ))0 = 1+Sc~+Sc~ c«q (2.8)

It is convenient to choose ))., and )(, such that the
pion derivatives appear only in the form e„w e„n
in L. This requires that

.,(.),(")=-'B,n, ( -"),
B„wg(x) wq(x')'= —i 5;, 8„&)(x -x'),

B„w,(x)'8„'w (x')'= —i5, 8„8„'& (x-x').
(3.6}

and (2.'I) then reduces to

L = —-(80 w ~ 80 w+ m w }

+«(2+c, )f'm'w'+f'rr'B„w 8 w

-+3+4c, + Sc,' —c,}f«m' w'

—
g f«w«80 w '80 w+0( f«) .

III. EFFECTIVE INTERACTION

(2.9)

The 5(0) terms in (3.5} are in agreement with the
result of Gerstein et a/. ,"who have applied a
more general but less conventional treatment to
the nonlinear couplings of massless pions.

IV. REGULARIZATION

Regularization by the method of auxiliary fields'
requires the choice of a Lagrangian density of the
form

The interaction energy density in the interaction
picture, resulting from the Lagrangian density
(2.9), is given by

H = —L,„,+2f'w'B, w B, w+O(f'),

where

L , = «(2+c.,)f'm'w«+f'w'B„w ~ B„w

-'gS +4ci + Sci —c«)f m w

--,'f'w'B„w B„w+O(f«),

(3.1)

(3.2)

and all field operators refer to the interaction pic-
ture. Moreover, the contractions required for the
calculation of the. scattering matrix elements are

L= —,(8 w ~ 8 w+m'w ~ w}

-' V'r}(")(8 w(0) 8 w(")+ m ("» w( ) w(")) + X.2~ ltlt &

(4.1)

where n~"' represents an auxiliary pion field with
the mass~, and a takes the values 1, 2, . . ., n.
The number of required auxiliary fields depends
on the degree of the highest divergence in the in-
tegrals to be evaluated, and g

~ is equal to 1 or
—1 according to whethex the field is normal or ab-
normal. For the present purpose, it is sufficient
to take n =3 such that q = -1 for e =1 or 3, and
q~ =1 for o =2, which implies that

w((x) w, (x') = —i5(', he(x -x'},
8 w((x) wr(x ) = —«5(qB h),(x-x'),

B„wr(x) 8,' w, (x')'= —i „5„8'8& ()xx')

+ i5(r 50«5„«5(x —x'),

with

(3.3)

.&(0)& 1 g.rl(~)- (4.2)

The coupling terms in (4.1) are to be obtained by
introducing the auxiliary fields into the coupling
terms of (2.9) in a suitable way, and it is conve-
nient to define

(x)= Um, Jdke"''
+0 jP+m —ie '

(3.4)

—3if«w«5(0)+O(f«) (3.5)

with the effective contractions

Usually the contributions from the noncovariant
parts of the interaction energy density and the con-
tractions are mutually canceled. ' However, as ex-
plained in Appendix A, in the present case the ef-
fective interaction energy density takes the form

H, rr= - L, -Sif'w'5(0)+ j«0 if«w«5(0)

~~(n)

tX

(4 3)

Before we discuss the regularization of the pion-
pion coupling terms, let us examine the w-m scat-
tering according to the unregularized effective in-
teraction (3.6). The second-order scattering ma-
trix element for this process is free from diver-
gence. %e therefore consider the fourth-order
scattering for which the interaction diagrams are
shown in Fig. 1. %e have not represented the con-
tributions of the 5(0) terms by means of separate
diagrams, because it can be shown that the 5(0)
terms simply cancel the quartic divergences in
the contributions of the diagrams in Fig. 1. This
figure contains the self-energy diagrams (a)-(d),
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the trvo-pion-exchange (TPE) diagrams (e)-(g),
and the single-vertex diagram (h), and it should
be noted that the self-energy and single-vertex
diagrams are teaf diagrams. '

The aim of regularization is to express all di-
vergent integrals in an unambiguous form, so that
divergences can be isolated in a covariant way and
eliminated by renormalization. But the diver-
gences in the leaf diagrams are already in an un-

ambiguous form, and they can be completely ab-
sorbed within renormalization constants. There-
fore, it is necessary only to regularize the con-
tributions of the TPE diagrams. This purpose
can be achieved in the following manner: In the
f2 coupling terms of the unregulariled Lagrangian
density (2.9) we replace w by w+ 4r/v 2 and drop
all terms involving the products of two or more
auxiliary fields, which gives

q(2+c,)f m Tr +f w 8&w 8&w

-'(2+c, )f'm'(w'+242 w'w 4r) +f'(w'B„w B„w+&2w ~ Qs„w ~ B„w+&2wws„w BTr)r.

These coupbng terms indeed lead to the regul, ar-
ization of the TPE contributions, but they also
lead to a modification of the 5(0) terms in the ef-
fective interaction, which results in noncancella-
tion of the quartic divergences. Ne therefore
further introduce all possible f' coupling terms in-
volving the auxiliary fields that can contribute to
the fourth-order n-m scattering, and they are giv-
en by

a,f'm'w Q'+a, f w 8„$ B„P+asf w'4r B„w B„w,

where the constants a„a„and a, will be chosen
later in such a way that the appropriate 5(0) terms
are restored in the effective interaction and the
TPE contributions remain regularized. Thus, by
regulariaing the coupling terms in (2.9) as de-
scribed above, we arrive at the regularized La-
grangian density

(8 w'8 w+m'w w) gr)r (8 w 8 w "+m 'w" wr )+-'(2+c,)f'm'(w +2&2w'w ~ 4r)

+f'( rr B„rr ~ B„w+&2 w ~ $ „Bw „Bw&+2 ws„w ~ 8„$)-g3+4c, + 3c, —c,)f'm' w' —
pf' w'B„w ~ B„rf

+a,f4m'w4rP'+a, f4w'B„rP ~ 8 4r+a f~w'4r'8 w 8 w+O(f'). (4 4)

Cc)

FIG. 1. Fourth-order r-~ scattering diagrams. The effects of 6(0) terms and mass-renormalization terms have been
included in the contributions of the above diagrams as explained in the text.
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The Lagrangian density (4.4) leads to the interaction energy density in the interaction picture

Z =-X,, +f'w's, w e, w+2&f'w'a, w s, q+f'w's, q s, y

+4~2f'w'w. (pe, w ~ s, w+4f'w'w ~ T(r[r, w sartr+4f w T(rw /sow s, w+O(f'), (4.5)

X,.„,=k(2+c, )f' m'( w'+2' w'Yr ~ (p)+f'(w'&„w &„w+vY w ~ p[r„w ~ &„w+W2 w'[r„w ~ 5„$)

-8(3+4c, +Sc,' —c,)f4m*w'-3wf4w'a„w ~ S„w+a,f4m'w'rp'+a, f~w~e„rp 5„(p

+a f' w'q'r& w & w+O(f'). (4.6}

By following the same argument as described in
Appendix A for the unregulax ised case, it is found
that (4.5) is erluivalent to the effective interaction
energy density

It will be useful to note the result for the second-
order scattering process. The contribution of the
scattering operator for this process can be ob-
tained from

ET,rr= —X (
—Sif'w'5(0) —3&2if'w $5(0)

+~2if4w45(0)+Sa~if ~ w'5(0)

-Sa, if w' T(r' 5(0)+O(f') (4 7)

S(f'[=(f' fdic[-,'(2+@,)m'ir ~ ir'&„ir a„ir]

by substituting

(5.2)

with the effective contractions given by (3.6) and w=w'(p)e'~'*, w=w'(j)e"'*, (5.3)
(p, (x)' (pr (x')' = —i 5;, Ee(x —x'),

e„(pr(x) (p~(x') = —i5(, e„ci~(x-x'),

S„(pr (x)'5,' 4 g(x')'= —i «r &„~.' ~r(x -x') i

(4.8}

w = w-(p') e-"' ", w=w (j')e "''*

for the four pion-field operators in every possible
way. Thus y

& (x)=Qn"&I"'(x&, (4.9)

S(f') = i(2w)'5(p+q p' -q')f '-

~(2(2+c,)m'(T„+T, +T,}

and 5$ '(x) can be obtained from (3.4) by replac-
ing m~ by m ~"~~. It is reasonable to require that
if we drop all terms involving the auxiliary fields
in the regularized effective interaction (4.V}, it
should reduce to the unregularized result (3.5).
But an examination of the 5(0) terms shows that
this condition is fulfilled only if a, = -1. It can
also be verified that the m-m scattering contribu-
tion resulting from the terms with the coefficients
a„a„and a, in (4.V} is regularizable only if a,
=a, and a, =0. %e shall, therefore, set

+8(P P'T„+P q'Te PqTc)J, -(5.4)

where

T„=w ((1') w'( j) w ( p'} w'(p),

Te=w (p') w'((1) w ((1') w'(p),

T = w (rl') w (p'}w'( j) ~ w'(p)

a, =a = —1, a =O. (4.10}
VI. FOURTH-ORDER m-m SCATTERING

V. SECOND-ORDER m-n' SCATTERING

Let us consider the scattering of two pions whose
momentum four-vectors are P and q in the initial
state and p' and q' in the final state, so that

P +q pl+pi'

PR qR PIR AIR ~R

PP-e~ P ~-~P P e-P v

As explained in Sec. lV, the fourth-order m-m

scattering diagrams shown in Fig. 1 can be divided
into three categories. %'e shall consider the con-
tribution arising from each category separately.

A. Self-energy diagrams

The contribution of the scattering operator for
the diagrams (a)-(d) is expressible as



DEBOJIT BARUA AND SURA J N. GUPTA 10

T(p) &(q), &(p'), T(q')
1

"[2(2+el)m'(Tk+Trr+Tc)+8(P P 'Tk+P'q Ts -P q Tc)] (6 1)

with

if~ 5(2+c,)m' 6(«I+p')
(2s)' «'+m* «'+m' (6.4)

where &r (0) is the Lorentz-invariant divergent
integral

1
nr((0)

( )4
d«g 2

(6.2)

where Z(P) represents the contribution of the self-
energy part, and the last term within the square
brackets in (6.2) arises from the term —3if' w'6(0)
in (4.7). It is also possible to write (6.2) as

Z(p) = - i(2 —5c,)f 'm'hr (0}+6if'&r (0)(p'+ m'),

(6.3)

Further, a renormaliEation of the pion mass in
the Lagrangian density (4.4) introduces the counter-
terms

6X, = g6(m') rr' —g(2+c, )f'5(m') rr'+ ~ ~ ~,

(6.5)

which lead to the additional fourth-order scatter-
ing contribution

6(m') 5(m') 6(m') 6(m')

X[2(2+c,)m'(T„+ Trr + Tc)+8(P P' T„+P ~ q'Trr -P ~ q Tc)]

( 2Rc, I(m((')( T+ , (+ r, )
I

After adding (6.1) and (6.6), substituting (6.3}, and taking

6(m') = - i(2-5c, )f'm'A~(0),

we can put the resulting contribution in the form

S „+6SsE =i(2rr)46(p+q-p'-q')

x[A, [2(2+c,)m'(T„+ Ts+Tc)+8(p p'T„+p ~ q'Ta-p q Tc)]+8A(T„+Trr+Tc)),

(6.6)

(6.7)

(6.8)

where

A, = —12if~&r (0},

A~ = ~ i(2+ c,){2—5c,)f4m'Ar (0) .
(6.9)

where

B,= 15if4nr (0},

(6.11)
8, = —~ i(6 -41c, —42c,'+ 14c,)f~m'&r(0) .

8. Single-vertex diagram

We associate with diagram (h) the contribution
arising from the terms"

@3+4ci+3cr c~)f m rr

+ ,'f'rr'& rr S rr+aif'rr'5-(0)

in the effective interaction energy density (4.7),
and thus for the single-vertex diagram

C. Two-pion-exchange diagrams

We shall now consider the TPE diagrams (e),
(f), and (g), and it would be convenient here to in-
clude also the contribution of the fourth-order
terms

f'm' rr' rP'+f~ rr'S„Trr ~ S„rP —3if' '5(r0r}

S „=i(2 )' rr{p6+q -p'-q')

x[8, [2(2+c,}m'(T„+Ts + Tc}

+8(P 'O'Tw+P 'O'Ts -P 'q Tc)]

+8as(T„+T +Tc)] ~ (6,10)

appearing in the effective interaction (4.7) with the
condition (4.10}, since these terms were not taken
into account in the treatment of the single-vertex
diagram (h). By carrying out the appropriate con-
tractions in the scattering operator, it is then
found that
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d ff=dxfd*'[[xc, rx ir(x) x(x)ir(x') ir(x') ~ c,'m ir(x) (x')ir(x) (x')

+Sc,m'8„w(x) 8 w(x}Tr(x') ~ w(x') —4c,m'8 w(x) w(x')8 w(x) Tr(x'}

-8„w(x) 8„w(x)8„'w(x') 8„'w(x')+48„w(x) 8'„w(x')s„w(x) 8,'w(x')]Z, (x-x')S,(x'r-x)

-[loc m'w(x) w(x) w(x') 8„'w(x')+48pw(x) ~ spw(x) w(x') ~ 8„'w(x')]& (x-x')8,'& (x'-x)

+[12w(x) 8„w(x) w(x') 8,'w(x')+6 w(x) ~ w(x'}8 w(x) ~ 8 ' w(x')

-88„w(x) w(x') w(x} 8,'w(x')] &s(x-x') 8„8„'~s(x'- x)}

~f fdx[(6+dc, )m'ir(x) (*) (x) (x)+8 (x) (x)c„ir(x) Heir(x)]Z (0), (6.12)

where

&s(x) = rh, s(x) + &„(x),

and it should be observed that b,s(x), Ss(x), and 2)s(x) are even functions of x. The integrands in (6.12)
have been simplified by expressing them in terms of ~~ and 2}~, transferring all derivatives from ~~ by
dropping four-divergences, and applying the relations

(8„' -m') w = 0,
(6.14)

(8„' -m') a,(x

The total contribution of the TPE diagrams can be obtained by substituting (5.3) into (6.12) for the four
pion-field operators in every possible way. Thus, after simplification with the help of (5.1},

~„,=f'5(P+q-p'-q')

14~1 ~A+8+ ~B +3 + ~C +C +4l ~B + ~C +A+ ~C + ~A +B + ~A+ ~B +C

+ 24c~m (p 'p TAXA+p '(f Ta Xa —p 'q Tc Xc)

—1«,m'[P. P'(TB+ Tc) XA+P q'(Tc+ TA) xs Pq(TA+ -TB)xc]

-6[(P P')*TA»A+(P 'q')'Taxa+(P q)'Tcxc]

+16[(p p')'(TB+Tc)XA+(P'q')'(Tc+TA)xs+(P q)'(TA+TB)«c]

+40c,m'k„[(p'„-p„) T„x„+(q' P ) T xa+(P +q ) Tcxc]

MI „[(P„'-P„)PP'T.». (q'„-P„)p q'T. x. -(p„q„)p qT. X.]

+%2„4[ii(PI -p„)(pp-p„) TAX'A+(q'„-p„)(q„'-p, ) Taxa+(p„+q„)(p, +q, ) Tc»c]

+16&[)h [(Pt(+P)))(q'+q )(Ta Tc)XA (PI)+q)))(q' +P )(Tc —TA)xa

+(P'„q'„)(P. q.)(TA-Ta) «,—]—
+6(6+5ci)m'(TA+ Ta+ Tc) ~s(&)+64(P 'O'TA+P 'q'Ta P 'q Tc) nw(&)} (6.15)

x„=&a(k)2)s(k+P'-P), (6.1'1)

and

xa = &s(lr) ~g (fr +q'- p),

XC = raw(lr) E (k+Sp q) +d

(6.16)

Note that, for finite values of }r, (6.15) reduces to
the unregularized result for S~& as the auxiliary
masses tend to infinity, so that the effect of regu-
larization is confined to infinitely large values of k.



1952 DEBOJIT BARUA AND SURA J N. GUPTA 10

The complete TPE contribution can be obtained
with the help of the results given in Appendix B,
where the integrals appearing in (6.15) have been
fully evaluated. However, we shall confine our-
selves to an examination of the divergences, and
therefore, by retaining only the divergent terms
in Eqs. (83), (85), (B6), and (B7), we set

where E ultimately tends to infinity.
With the use of (6.18), together with the relations

(5.1) and

2P q'p q=(p q')'+(p q)'-(p p')'

-2m'p p'-m4,

dk k „&w(k) &w(k! I ) = —
w

w' i I„in(E'/m'),

(6.18)

2P qP P'=(P q)'+(P P')' (p q-'}'

—22K p 'g -m

-2p P'P q'=(P P')'+(P q')' (P q)'-

(6.19)

= 2 w' i 6„,[$' ln2 —(+I'+ m'} In(t'/m')]

+-,' w' i I „I„ln(t'/m'},

+226 p 'g -m

the divergent part of the TPE contribution (6.15)
can be expressed as

S, = i(2w)'6(p+q -p'-q')

x(C, [2(2+c,)m'(T„+ Tw+Tc)+8(p. p'T„+p q'Tw -p q Tc)J

+8C,(T„+ Tw+ Tc)+8C, [(p p')'+(p q')'!(p q)'J(T„+ Tw! Tc}I,
where

C, = (f'/16w')[19f, ' ln2 —(3 —10c,)m' In(t'/m')],

C2 = (f~m /64ww)[3(2+7c, ) t ln2 —(2+ Qc, —c,')m' ln(E'/m')],

C, = (f'/6w ') In(t'/m') .

(6.20}

(6.21)

VII. RENORMALIZATION

It follows from the results of the preceding section that all divergences in the fourth-order m-m scatter-
ing can be removed in the following way:

In addition to the mass-renormalization counterterms given by (6.5), let us also introduce in the Lagran-
gian density the counterterms

6X, = —6(f') [4m'(2+c, ) w'+ w's„w ~ ws] —zw'-w [(s„w ~ &„w)(&„w ~ s„w)!2(s„w &„w)(s„w s„w)J.

The contribution to n -m scattering resulting from the above coupling terms is

6S(f') = —i(2 )46w(P+q -P'-q') (6(f')[2(2+c,)m'(T„+ Tw +Tc}+8(P P'T„+P ~ q'Tw -P q Tc)J

+8X(T„+Tw+Tc)+Sw[(P P')'+(P q')'+(P q}'](T„+Tw +Tc)),

(7.1)

(7.2)

which will cancel all divergences appearing in
(6.8), (6.10), and (6.20) provided that

6(f w) A, +B,+C, ,

A, =A +B +C, ,

a=C, .
(7.3)

We find that the divergences in fourth-order
m-m scattering can be removed by renormalization
with the use of four counterterms. Two of these

counterterms represent the conventional mass
and coupling-constant renormalizations, while
the third counterterm is reminiscent of the well-
known linear pseudoscalar pion-nucleon coupling.
The fourth counterterm, which involves four de-
rivatives and a logarithmic divergence, has a less
familiar form, but the extra divergence that ne-
cessitates the introduction of this term has also
been observed by earlier authors. " It should
also be noted that our results do not single out
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any specific model of nonlinear pion-pion cou-
plings as being superior to the others.

which is equivalent to adding the term

3-ij' rr'6(0) (A3)

VIII. SCATTERING OF MASSLESS PIONS

Although we do not regard a theory of massless
pions as realistic, we shall add some remarks on
the fourth-order m-m scattering process with m =0.

The total fourth-order m-m scattering contribu-
tion consists of (6.8), (6.10), and (6.15), which
correspond to the self-energy, single-vertex, and
TPE diagrams, respectively. The contributions
(6.8) and (6.10) are evidently free from infrared
divergence for m=0. By letting m-0 and using
Eq. (B8), we also find that (6.15) is free from in-
frared divergence. Further, if we set not only
vi=0 but also P =0 without requiring q, P', and p'
to vanish, then it ean be verified that the scatter-
ing contributions (6.8}, (6.10)„and (6.15) com-
pletely vanish, which is in agreement with Adler's
eondition. '2

Finally, it should be noted that, for m = 0, the
m-m scattering result no longer depends on the pa-
rameters c, and c„and thus it becomes model in-
dependent. Moreover, the renormalization con-
stants 5(rrr') and X, given by (6.7) and (7.3), van-
ish for ~=0, and consequently only two counter-
terms survive in the renormalization procedure.

APPENDIX A: DERIVATION OF 5(0) TERMS

Since we are interested in the complications due
to the presence of the field derivatives in the in-
teraction, we shall drop nonderivative terms in
the interaction energy density (3.1), which then
reduces to

H =-j'rr's„rr .s rr+;*j'rr»s„rr ~ s„rr

+2j'rr»& rr S rr+O(j') (Al }

where noncovariant terms appear in fourth and
higher orders. Our aim is to determine what
modification should be carried out in (Al) to com-
pensate for the neglect of the noncovariant term
in the contraction

s„rr, (x)' &„'rr„(x')' = —i5;, s„&,'& (x —x')

+ H;, 6„»6~ 5(x —x')

of the field derivatives.
Let us first consider the second-order contri-

bution of the scattering operator due to the second-
order interaction term in (A1). When the two
field derivatives are contracted, the noneovariant
part of the contraction (A2) gives rise to the con-
tr lbution

to the interaction energy density.
Similarly, let us consider the fourth-order scat-

tering contribution due to the fourth-order covari-
ant interaction term in (Al). If we carry out a
contraction of the two field derivatives, the non-
covariant part of the contraction gives rise to
the contribution

~2j» dx rr'6(0),

which is equivalent to an interaction energy den-
sity term

~2ij» rr» 5(0) . (A4)

%'e now consider the fourth-order scattering con-
tribution due to the second-order interaction term.
It is easy to see that the inclusion of the 6(0) term
(A3) in the interaction will reproduce the fourth-
order contribution arising from the noncovariant
part of the contraction when two field derivatives
belonging to the same vertex are contracted.
Therefore, we shall ignore such contractions, and
examine only those contributions where field de-
rivatives belonging to different vertices are con-
tracted. For this purpose, the following two cases
must be considered separately:

(a) When only one contraction between field de-
rivatives belonging to different vertices is carried
out, the contribution arising from the noncovari-
ant part of the contraction is

2ij» dx m Sorr rrorr,

which is exactly canceled by the contribution due
to the fourth-order noncovariant interaction term
in (Al) without any contraction.

(b) When two contractions between field deriva-
tives belonging to different vertices are carried
out, the contribution involving the noncovariant
parts of the contractions is

6f' (fxrr'([s, s,'&~(x-x')]„i „+25(0}).

On the other hand, the contribution due to the
fourth-order noncovariant interaction term with
the contraction of the two ~ pi7 s ls

—6r fdx '[[B,B,'6 (x —«')J, ,+5(o)).

These two contributions do not cancel each other,
but together yield

sr fax n(o)-'' 3j' dx rr» 5(0), -



1954 DEBOJIT BARUA AND BURA J N. QUPTA

which is equivalent to the introduction of

—3if'w45(0) (A5)

1 ~ 1

in the interaction energy density.
It follows from the above arguments that the non-

covariant term in the contraction (A2) not only can-
cels the contributions due to the noncovariant part
of the interaction (Al), but also generates, ac-
cording to (A3), (A4), and (A5}, the 5(0} interac-
tion terms

—3lfz zz 5(0) ++imf 74r 54(0) -3lf 4~vb(0} +O(f }.
(A6)

APPENDIX B: EVALUATION OF DIVERGENT INTEGRALS

All the divergent integrals in the TPE contribu-
tion (6.15) can be made convergent over the k

space by means of the procedure given in Ref. 3,
for with an appropriate choice of the auxiliary
fields it is possible to convert

into

$2 1
Z &P') =2 dz dz1 z (kz+ mm+z +z )~

0 0 1

where E'-~.
I.et us consider the integral

I = dk 2 ~ &p 0+1),1

where l is an arbitrary four-vector. By using
(81), and combining the denominators with the
help of the identity

1 Q
3=3 dQab', [a+(b —a)u]~ '

(82) can be expressed as

(2 g2 1 QI =6 dip dz, dz, du [k'+2uk 1+ulz+ m'+u(z, +z,)]~
'

The integration over the k space can be carried out easily after shifting the origin as k„-k„-ul „, and

thus

2 ~

K~ K~ 2
Q

[u(1-u) l'+ m'+ u(z, +z,}]'

Then, integrating over ~, and z„and letting g
- , we obtain

I = z'i[in(t'/2m'}+ 1 —E(m', l')],

where

4m z + 1z z/z [(4 ma lz}/lz)a/z
"[(4m*+l*)/l']'/' —1

Similarly,

dk z
"

z Zz(k+ l)0'+ m'

= —z z' l l„[ln(t'/2m')+ —,
' —E(m', l')], (85)

4'+ m'

= z z'ib»[g'1n2 —(m'++1'}1n(t'/2m') -+m'-~l'+&(4m'+ l') E(m' l')]

+ —,
' z' i l „l„[ln(g'/2m') + ~6+ 2m'/l' —(1+m'/l') E(m', l')],
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and

I = dk+~k

= w'i[2 E' 1n2 -m' 1n(('/2m') -m~] .
It is interesting to note that when m-0, (88)„(85), (86), and (8'I) reduce to

I = s'i[in(E'/2l') + 1],
I„=—~ m 'i l „[1n(C'/2l') + ~],

I„„=~ m'i 5„„[f.'in2 -+ I' 1n(P/21') -~~i'] + —,
' wail „l„[ln($'/2l') + ~~],

I =2m if 1n2,

which shows that they are free from infrared divergence.

(87)

(88)
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